about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.py789
1 files changed, 789 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.py
new file mode 100644
index 00000000..48291389
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.py
@@ -0,0 +1,789 @@
+"""
+Utility classes and functions for the polynomial modules.
+
+This module provides: error and warning objects; a polynomial base class;
+and some routines used in both the `polynomial` and `chebyshev` modules.
+
+Warning objects
+---------------
+
+.. autosummary::
+   :toctree: generated/
+
+   RankWarning  raised in least-squares fit for rank-deficient matrix.
+
+Functions
+---------
+
+.. autosummary::
+   :toctree: generated/
+
+   as_series    convert list of array_likes into 1-D arrays of common type.
+   trimseq      remove trailing zeros.
+   trimcoef     remove small trailing coefficients.
+   getdomain    return the domain appropriate for a given set of abscissae.
+   mapdomain    maps points between domains.
+   mapparms     parameters of the linear map between domains.
+
+"""
+import operator
+import functools
+import warnings
+
+import numpy as np
+
+from numpy.core.multiarray import dragon4_positional, dragon4_scientific
+from numpy.core.umath import absolute
+
+__all__ = [
+    'RankWarning', 'as_series', 'trimseq',
+    'trimcoef', 'getdomain', 'mapdomain', 'mapparms',
+    'format_float']
+
+#
+# Warnings and Exceptions
+#
+
+class RankWarning(UserWarning):
+    """Issued by chebfit when the design matrix is rank deficient."""
+    pass
+
+#
+# Helper functions to convert inputs to 1-D arrays
+#
+def trimseq(seq):
+    """Remove small Poly series coefficients.
+
+    Parameters
+    ----------
+    seq : sequence
+        Sequence of Poly series coefficients. This routine fails for
+        empty sequences.
+
+    Returns
+    -------
+    series : sequence
+        Subsequence with trailing zeros removed. If the resulting sequence
+        would be empty, return the first element. The returned sequence may
+        or may not be a view.
+
+    Notes
+    -----
+    Do not lose the type info if the sequence contains unknown objects.
+
+    """
+    if len(seq) == 0:
+        return seq
+    else:
+        for i in range(len(seq) - 1, -1, -1):
+            if seq[i] != 0:
+                break
+        return seq[:i+1]
+
+
+def as_series(alist, trim=True):
+    """
+    Return argument as a list of 1-d arrays.
+
+    The returned list contains array(s) of dtype double, complex double, or
+    object.  A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of
+    size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays
+    of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array
+    raises a Value Error if it is not first reshaped into either a 1-d or 2-d
+    array.
+
+    Parameters
+    ----------
+    alist : array_like
+        A 1- or 2-d array_like
+    trim : boolean, optional
+        When True, trailing zeros are removed from the inputs.
+        When False, the inputs are passed through intact.
+
+    Returns
+    -------
+    [a1, a2,...] : list of 1-D arrays
+        A copy of the input data as a list of 1-d arrays.
+
+    Raises
+    ------
+    ValueError
+        Raised when `as_series` cannot convert its input to 1-d arrays, or at
+        least one of the resulting arrays is empty.
+
+    Examples
+    --------
+    >>> from numpy.polynomial import polyutils as pu
+    >>> a = np.arange(4)
+    >>> pu.as_series(a)
+    [array([0.]), array([1.]), array([2.]), array([3.])]
+    >>> b = np.arange(6).reshape((2,3))
+    >>> pu.as_series(b)
+    [array([0., 1., 2.]), array([3., 4., 5.])]
+
+    >>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16)))
+    [array([1.]), array([0., 1., 2.]), array([0., 1.])]
+
+    >>> pu.as_series([2, [1.1, 0.]])
+    [array([2.]), array([1.1])]
+
+    >>> pu.as_series([2, [1.1, 0.]], trim=False)
+    [array([2.]), array([1.1, 0. ])]
+
+    """
+    arrays = [np.array(a, ndmin=1, copy=False) for a in alist]
+    if min([a.size for a in arrays]) == 0:
+        raise ValueError("Coefficient array is empty")
+    if any(a.ndim != 1 for a in arrays):
+        raise ValueError("Coefficient array is not 1-d")
+    if trim:
+        arrays = [trimseq(a) for a in arrays]
+
+    if any(a.dtype == np.dtype(object) for a in arrays):
+        ret = []
+        for a in arrays:
+            if a.dtype != np.dtype(object):
+                tmp = np.empty(len(a), dtype=np.dtype(object))
+                tmp[:] = a[:]
+                ret.append(tmp)
+            else:
+                ret.append(a.copy())
+    else:
+        try:
+            dtype = np.common_type(*arrays)
+        except Exception as e:
+            raise ValueError("Coefficient arrays have no common type") from e
+        ret = [np.array(a, copy=True, dtype=dtype) for a in arrays]
+    return ret
+
+
+def trimcoef(c, tol=0):
+    """
+    Remove "small" "trailing" coefficients from a polynomial.
+
+    "Small" means "small in absolute value" and is controlled by the
+    parameter `tol`; "trailing" means highest order coefficient(s), e.g., in
+    ``[0, 1, 1, 0, 0]`` (which represents ``0 + x + x**2 + 0*x**3 + 0*x**4``)
+    both the 3-rd and 4-th order coefficients would be "trimmed."
+
+    Parameters
+    ----------
+    c : array_like
+        1-d array of coefficients, ordered from lowest order to highest.
+    tol : number, optional
+        Trailing (i.e., highest order) elements with absolute value less
+        than or equal to `tol` (default value is zero) are removed.
+
+    Returns
+    -------
+    trimmed : ndarray
+        1-d array with trailing zeros removed.  If the resulting series
+        would be empty, a series containing a single zero is returned.
+
+    Raises
+    ------
+    ValueError
+        If `tol` < 0
+
+    See Also
+    --------
+    trimseq
+
+    Examples
+    --------
+    >>> from numpy.polynomial import polyutils as pu
+    >>> pu.trimcoef((0,0,3,0,5,0,0))
+    array([0.,  0.,  3.,  0.,  5.])
+    >>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
+    array([0.])
+    >>> i = complex(0,1) # works for complex
+    >>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
+    array([0.0003+0.j   , 0.001 -0.001j])
+
+    """
+    if tol < 0:
+        raise ValueError("tol must be non-negative")
+
+    [c] = as_series([c])
+    [ind] = np.nonzero(np.abs(c) > tol)
+    if len(ind) == 0:
+        return c[:1]*0
+    else:
+        return c[:ind[-1] + 1].copy()
+
+def getdomain(x):
+    """
+    Return a domain suitable for given abscissae.
+
+    Find a domain suitable for a polynomial or Chebyshev series
+    defined at the values supplied.
+
+    Parameters
+    ----------
+    x : array_like
+        1-d array of abscissae whose domain will be determined.
+
+    Returns
+    -------
+    domain : ndarray
+        1-d array containing two values.  If the inputs are complex, then
+        the two returned points are the lower left and upper right corners
+        of the smallest rectangle (aligned with the axes) in the complex
+        plane containing the points `x`. If the inputs are real, then the
+        two points are the ends of the smallest interval containing the
+        points `x`.
+
+    See Also
+    --------
+    mapparms, mapdomain
+
+    Examples
+    --------
+    >>> from numpy.polynomial import polyutils as pu
+    >>> points = np.arange(4)**2 - 5; points
+    array([-5, -4, -1,  4])
+    >>> pu.getdomain(points)
+    array([-5.,  4.])
+    >>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle
+    >>> pu.getdomain(c)
+    array([-1.-1.j,  1.+1.j])
+
+    """
+    [x] = as_series([x], trim=False)
+    if x.dtype.char in np.typecodes['Complex']:
+        rmin, rmax = x.real.min(), x.real.max()
+        imin, imax = x.imag.min(), x.imag.max()
+        return np.array((complex(rmin, imin), complex(rmax, imax)))
+    else:
+        return np.array((x.min(), x.max()))
+
+def mapparms(old, new):
+    """
+    Linear map parameters between domains.
+
+    Return the parameters of the linear map ``offset + scale*x`` that maps
+    `old` to `new` such that ``old[i] -> new[i]``, ``i = 0, 1``.
+
+    Parameters
+    ----------
+    old, new : array_like
+        Domains. Each domain must (successfully) convert to a 1-d array
+        containing precisely two values.
+
+    Returns
+    -------
+    offset, scale : scalars
+        The map ``L(x) = offset + scale*x`` maps the first domain to the
+        second.
+
+    See Also
+    --------
+    getdomain, mapdomain
+
+    Notes
+    -----
+    Also works for complex numbers, and thus can be used to calculate the
+    parameters required to map any line in the complex plane to any other
+    line therein.
+
+    Examples
+    --------
+    >>> from numpy.polynomial import polyutils as pu
+    >>> pu.mapparms((-1,1),(-1,1))
+    (0.0, 1.0)
+    >>> pu.mapparms((1,-1),(-1,1))
+    (-0.0, -1.0)
+    >>> i = complex(0,1)
+    >>> pu.mapparms((-i,-1),(1,i))
+    ((1+1j), (1-0j))
+
+    """
+    oldlen = old[1] - old[0]
+    newlen = new[1] - new[0]
+    off = (old[1]*new[0] - old[0]*new[1])/oldlen
+    scl = newlen/oldlen
+    return off, scl
+
+def mapdomain(x, old, new):
+    """
+    Apply linear map to input points.
+
+    The linear map ``offset + scale*x`` that maps the domain `old` to
+    the domain `new` is applied to the points `x`.
+
+    Parameters
+    ----------
+    x : array_like
+        Points to be mapped. If `x` is a subtype of ndarray the subtype
+        will be preserved.
+    old, new : array_like
+        The two domains that determine the map.  Each must (successfully)
+        convert to 1-d arrays containing precisely two values.
+
+    Returns
+    -------
+    x_out : ndarray
+        Array of points of the same shape as `x`, after application of the
+        linear map between the two domains.
+
+    See Also
+    --------
+    getdomain, mapparms
+
+    Notes
+    -----
+    Effectively, this implements:
+
+    .. math::
+        x\\_out = new[0] + m(x - old[0])
+
+    where
+
+    .. math::
+        m = \\frac{new[1]-new[0]}{old[1]-old[0]}
+
+    Examples
+    --------
+    >>> from numpy.polynomial import polyutils as pu
+    >>> old_domain = (-1,1)
+    >>> new_domain = (0,2*np.pi)
+    >>> x = np.linspace(-1,1,6); x
+    array([-1. , -0.6, -0.2,  0.2,  0.6,  1. ])
+    >>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out
+    array([ 0.        ,  1.25663706,  2.51327412,  3.76991118,  5.02654825, # may vary
+            6.28318531])
+    >>> x - pu.mapdomain(x_out, new_domain, old_domain)
+    array([0., 0., 0., 0., 0., 0.])
+
+    Also works for complex numbers (and thus can be used to map any line in
+    the complex plane to any other line therein).
+
+    >>> i = complex(0,1)
+    >>> old = (-1 - i, 1 + i)
+    >>> new = (-1 + i, 1 - i)
+    >>> z = np.linspace(old[0], old[1], 6); z
+    array([-1. -1.j , -0.6-0.6j, -0.2-0.2j,  0.2+0.2j,  0.6+0.6j,  1. +1.j ])
+    >>> new_z = pu.mapdomain(z, old, new); new_z
+    array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j,  0.2-0.2j,  0.6-0.6j,  1.0-1.j ]) # may vary
+
+    """
+    x = np.asanyarray(x)
+    off, scl = mapparms(old, new)
+    return off + scl*x
+
+
+def _nth_slice(i, ndim):
+    sl = [np.newaxis] * ndim
+    sl[i] = slice(None)
+    return tuple(sl)
+
+
+def _vander_nd(vander_fs, points, degrees):
+    r"""
+    A generalization of the Vandermonde matrix for N dimensions
+
+    The result is built by combining the results of 1d Vandermonde matrices,
+
+    .. math::
+        W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{V_k(x_k)[i_0, \ldots, i_M, j_k]}
+
+    where
+
+    .. math::
+        N &= \texttt{len(points)} = \texttt{len(degrees)} = \texttt{len(vander\_fs)} \\
+        M &= \texttt{points[k].ndim} \\
+        V_k &= \texttt{vander\_fs[k]} \\
+        x_k &= \texttt{points[k]} \\
+        0 \le j_k &\le \texttt{degrees[k]}
+
+    Expanding the one-dimensional :math:`V_k` functions gives:
+
+    .. math::
+        W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{B_{k, j_k}(x_k[i_0, \ldots, i_M])}
+
+    where :math:`B_{k,m}` is the m'th basis of the polynomial construction used along
+    dimension :math:`k`. For a regular polynomial, :math:`B_{k, m}(x) = P_m(x) = x^m`.
+
+    Parameters
+    ----------
+    vander_fs : Sequence[function(array_like, int) -> ndarray]
+        The 1d vander function to use for each axis, such as ``polyvander``
+    points : Sequence[array_like]
+        Arrays of point coordinates, all of the same shape. The dtypes
+        will be converted to either float64 or complex128 depending on
+        whether any of the elements are complex. Scalars are converted to
+        1-D arrays.
+        This must be the same length as `vander_fs`.
+    degrees : Sequence[int]
+        The maximum degree (inclusive) to use for each axis.
+        This must be the same length as `vander_fs`.
+
+    Returns
+    -------
+    vander_nd : ndarray
+        An array of shape ``points[0].shape + tuple(d + 1 for d in degrees)``.
+    """
+    n_dims = len(vander_fs)
+    if n_dims != len(points):
+        raise ValueError(
+            f"Expected {n_dims} dimensions of sample points, got {len(points)}")
+    if n_dims != len(degrees):
+        raise ValueError(
+            f"Expected {n_dims} dimensions of degrees, got {len(degrees)}")
+    if n_dims == 0:
+        raise ValueError("Unable to guess a dtype or shape when no points are given")
+
+    # convert to the same shape and type
+    points = tuple(np.array(tuple(points), copy=False) + 0.0)
+
+    # produce the vandermonde matrix for each dimension, placing the last
+    # axis of each in an independent trailing axis of the output
+    vander_arrays = (
+        vander_fs[i](points[i], degrees[i])[(...,) + _nth_slice(i, n_dims)]
+        for i in range(n_dims)
+    )
+
+    # we checked this wasn't empty already, so no `initial` needed
+    return functools.reduce(operator.mul, vander_arrays)
+
+
+def _vander_nd_flat(vander_fs, points, degrees):
+    """
+    Like `_vander_nd`, but flattens the last ``len(degrees)`` axes into a single axis
+
+    Used to implement the public ``<type>vander<n>d`` functions.
+    """
+    v = _vander_nd(vander_fs, points, degrees)
+    return v.reshape(v.shape[:-len(degrees)] + (-1,))
+
+
+def _fromroots(line_f, mul_f, roots):
+    """
+    Helper function used to implement the ``<type>fromroots`` functions.
+
+    Parameters
+    ----------
+    line_f : function(float, float) -> ndarray
+        The ``<type>line`` function, such as ``polyline``
+    mul_f : function(array_like, array_like) -> ndarray
+        The ``<type>mul`` function, such as ``polymul``
+    roots
+        See the ``<type>fromroots`` functions for more detail
+    """
+    if len(roots) == 0:
+        return np.ones(1)
+    else:
+        [roots] = as_series([roots], trim=False)
+        roots.sort()
+        p = [line_f(-r, 1) for r in roots]
+        n = len(p)
+        while n > 1:
+            m, r = divmod(n, 2)
+            tmp = [mul_f(p[i], p[i+m]) for i in range(m)]
+            if r:
+                tmp[0] = mul_f(tmp[0], p[-1])
+            p = tmp
+            n = m
+        return p[0]
+
+
+def _valnd(val_f, c, *args):
+    """
+    Helper function used to implement the ``<type>val<n>d`` functions.
+
+    Parameters
+    ----------
+    val_f : function(array_like, array_like, tensor: bool) -> array_like
+        The ``<type>val`` function, such as ``polyval``
+    c, args
+        See the ``<type>val<n>d`` functions for more detail
+    """
+    args = [np.asanyarray(a) for a in args]
+    shape0 = args[0].shape
+    if not all((a.shape == shape0 for a in args[1:])):
+        if len(args) == 3:
+            raise ValueError('x, y, z are incompatible')
+        elif len(args) == 2:
+            raise ValueError('x, y are incompatible')
+        else:
+            raise ValueError('ordinates are incompatible')
+    it = iter(args)
+    x0 = next(it)
+
+    # use tensor on only the first
+    c = val_f(x0, c)
+    for xi in it:
+        c = val_f(xi, c, tensor=False)
+    return c
+
+
+def _gridnd(val_f, c, *args):
+    """
+    Helper function used to implement the ``<type>grid<n>d`` functions.
+
+    Parameters
+    ----------
+    val_f : function(array_like, array_like, tensor: bool) -> array_like
+        The ``<type>val`` function, such as ``polyval``
+    c, args
+        See the ``<type>grid<n>d`` functions for more detail
+    """
+    for xi in args:
+        c = val_f(xi, c)
+    return c
+
+
+def _div(mul_f, c1, c2):
+    """
+    Helper function used to implement the ``<type>div`` functions.
+
+    Implementation uses repeated subtraction of c2 multiplied by the nth basis.
+    For some polynomial types, a more efficient approach may be possible.
+
+    Parameters
+    ----------
+    mul_f : function(array_like, array_like) -> array_like
+        The ``<type>mul`` function, such as ``polymul``
+    c1, c2
+        See the ``<type>div`` functions for more detail
+    """
+    # c1, c2 are trimmed copies
+    [c1, c2] = as_series([c1, c2])
+    if c2[-1] == 0:
+        raise ZeroDivisionError()
+
+    lc1 = len(c1)
+    lc2 = len(c2)
+    if lc1 < lc2:
+        return c1[:1]*0, c1
+    elif lc2 == 1:
+        return c1/c2[-1], c1[:1]*0
+    else:
+        quo = np.empty(lc1 - lc2 + 1, dtype=c1.dtype)
+        rem = c1
+        for i in range(lc1 - lc2, - 1, -1):
+            p = mul_f([0]*i + [1], c2)
+            q = rem[-1]/p[-1]
+            rem = rem[:-1] - q*p[:-1]
+            quo[i] = q
+        return quo, trimseq(rem)
+
+
+def _add(c1, c2):
+    """ Helper function used to implement the ``<type>add`` functions. """
+    # c1, c2 are trimmed copies
+    [c1, c2] = as_series([c1, c2])
+    if len(c1) > len(c2):
+        c1[:c2.size] += c2
+        ret = c1
+    else:
+        c2[:c1.size] += c1
+        ret = c2
+    return trimseq(ret)
+
+
+def _sub(c1, c2):
+    """ Helper function used to implement the ``<type>sub`` functions. """
+    # c1, c2 are trimmed copies
+    [c1, c2] = as_series([c1, c2])
+    if len(c1) > len(c2):
+        c1[:c2.size] -= c2
+        ret = c1
+    else:
+        c2 = -c2
+        c2[:c1.size] += c1
+        ret = c2
+    return trimseq(ret)
+
+
+def _fit(vander_f, x, y, deg, rcond=None, full=False, w=None):
+    """
+    Helper function used to implement the ``<type>fit`` functions.
+
+    Parameters
+    ----------
+    vander_f : function(array_like, int) -> ndarray
+        The 1d vander function, such as ``polyvander``
+    c1, c2
+        See the ``<type>fit`` functions for more detail
+    """
+    x = np.asarray(x) + 0.0
+    y = np.asarray(y) + 0.0
+    deg = np.asarray(deg)
+
+    # check arguments.
+    if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0:
+        raise TypeError("deg must be an int or non-empty 1-D array of int")
+    if deg.min() < 0:
+        raise ValueError("expected deg >= 0")
+    if x.ndim != 1:
+        raise TypeError("expected 1D vector for x")
+    if x.size == 0:
+        raise TypeError("expected non-empty vector for x")
+    if y.ndim < 1 or y.ndim > 2:
+        raise TypeError("expected 1D or 2D array for y")
+    if len(x) != len(y):
+        raise TypeError("expected x and y to have same length")
+
+    if deg.ndim == 0:
+        lmax = deg
+        order = lmax + 1
+        van = vander_f(x, lmax)
+    else:
+        deg = np.sort(deg)
+        lmax = deg[-1]
+        order = len(deg)
+        van = vander_f(x, lmax)[:, deg]
+
+    # set up the least squares matrices in transposed form
+    lhs = van.T
+    rhs = y.T
+    if w is not None:
+        w = np.asarray(w) + 0.0
+        if w.ndim != 1:
+            raise TypeError("expected 1D vector for w")
+        if len(x) != len(w):
+            raise TypeError("expected x and w to have same length")
+        # apply weights. Don't use inplace operations as they
+        # can cause problems with NA.
+        lhs = lhs * w
+        rhs = rhs * w
+
+    # set rcond
+    if rcond is None:
+        rcond = len(x)*np.finfo(x.dtype).eps
+
+    # Determine the norms of the design matrix columns.
+    if issubclass(lhs.dtype.type, np.complexfloating):
+        scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1))
+    else:
+        scl = np.sqrt(np.square(lhs).sum(1))
+    scl[scl == 0] = 1
+
+    # Solve the least squares problem.
+    c, resids, rank, s = np.linalg.lstsq(lhs.T/scl, rhs.T, rcond)
+    c = (c.T/scl).T
+
+    # Expand c to include non-fitted coefficients which are set to zero
+    if deg.ndim > 0:
+        if c.ndim == 2:
+            cc = np.zeros((lmax+1, c.shape[1]), dtype=c.dtype)
+        else:
+            cc = np.zeros(lmax+1, dtype=c.dtype)
+        cc[deg] = c
+        c = cc
+
+    # warn on rank reduction
+    if rank != order and not full:
+        msg = "The fit may be poorly conditioned"
+        warnings.warn(msg, RankWarning, stacklevel=2)
+
+    if full:
+        return c, [resids, rank, s, rcond]
+    else:
+        return c
+
+
+def _pow(mul_f, c, pow, maxpower):
+    """
+    Helper function used to implement the ``<type>pow`` functions.
+
+    Parameters
+    ----------
+    mul_f : function(array_like, array_like) -> ndarray
+        The ``<type>mul`` function, such as ``polymul``
+    c : array_like
+        1-D array of array of series coefficients
+    pow, maxpower
+        See the ``<type>pow`` functions for more detail
+    """
+    # c is a trimmed copy
+    [c] = as_series([c])
+    power = int(pow)
+    if power != pow or power < 0:
+        raise ValueError("Power must be a non-negative integer.")
+    elif maxpower is not None and power > maxpower:
+        raise ValueError("Power is too large")
+    elif power == 0:
+        return np.array([1], dtype=c.dtype)
+    elif power == 1:
+        return c
+    else:
+        # This can be made more efficient by using powers of two
+        # in the usual way.
+        prd = c
+        for i in range(2, power + 1):
+            prd = mul_f(prd, c)
+        return prd
+
+
+def _deprecate_as_int(x, desc):
+    """
+    Like `operator.index`, but emits a deprecation warning when passed a float
+
+    Parameters
+    ----------
+    x : int-like, or float with integral value
+        Value to interpret as an integer
+    desc : str
+        description to include in any error message
+
+    Raises
+    ------
+    TypeError : if x is a non-integral float or non-numeric
+    DeprecationWarning : if x is an integral float
+    """
+    try:
+        return operator.index(x)
+    except TypeError as e:
+        # Numpy 1.17.0, 2019-03-11
+        try:
+            ix = int(x)
+        except TypeError:
+            pass
+        else:
+            if ix == x:
+                warnings.warn(
+                    f"In future, this will raise TypeError, as {desc} will "
+                    "need to be an integer not just an integral float.",
+                    DeprecationWarning,
+                    stacklevel=3
+                )
+                return ix
+
+        raise TypeError(f"{desc} must be an integer") from e
+
+
+def format_float(x, parens=False):
+    if not np.issubdtype(type(x), np.floating):
+        return str(x)
+
+    opts = np.get_printoptions()
+
+    if np.isnan(x):
+        return opts['nanstr']
+    elif np.isinf(x):
+        return opts['infstr']
+
+    exp_format = False
+    if x != 0:
+        a = absolute(x)
+        if a >= 1.e8 or a < 10**min(0, -(opts['precision']-1)//2):
+            exp_format = True
+
+    trim, unique = '0', True
+    if opts['floatmode'] == 'fixed':
+        trim, unique = 'k', False
+
+    if exp_format:
+        s = dragon4_scientific(x, precision=opts['precision'],
+                               unique=unique, trim=trim, 
+                               sign=opts['sign'] == '+')
+        if parens:
+            s = '(' + s + ')'
+    else:
+        s = dragon4_positional(x, precision=opts['precision'],
+                               fractional=True,
+                               unique=unique, trim=trim,
+                               sign=opts['sign'] == '+')
+    return s