about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/networkx/classes/multidigraph.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/classes/multidigraph.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/classes/multidigraph.py966
1 files changed, 966 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/classes/multidigraph.py b/.venv/lib/python3.12/site-packages/networkx/classes/multidigraph.py
new file mode 100644
index 00000000..597af796
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/classes/multidigraph.py
@@ -0,0 +1,966 @@
+"""Base class for MultiDiGraph."""
+
+from copy import deepcopy
+from functools import cached_property
+
+import networkx as nx
+from networkx import convert
+from networkx.classes.coreviews import MultiAdjacencyView
+from networkx.classes.digraph import DiGraph
+from networkx.classes.multigraph import MultiGraph
+from networkx.classes.reportviews import (
+    DiMultiDegreeView,
+    InMultiDegreeView,
+    InMultiEdgeView,
+    OutMultiDegreeView,
+    OutMultiEdgeView,
+)
+from networkx.exception import NetworkXError
+
+__all__ = ["MultiDiGraph"]
+
+
+class MultiDiGraph(MultiGraph, DiGraph):
+    """A directed graph class that can store multiedges.
+
+    Multiedges are multiple edges between two nodes.  Each edge
+    can hold optional data or attributes.
+
+    A MultiDiGraph holds directed edges.  Self loops are allowed.
+
+    Nodes can be arbitrary (hashable) Python objects with optional
+    key/value attributes. By convention `None` is not used as a node.
+
+    Edges are represented as links between nodes with optional
+    key/value attributes.
+
+    Parameters
+    ----------
+    incoming_graph_data : input graph (optional, default: None)
+        Data to initialize graph. If None (default) an empty
+        graph is created.  The data can be any format that is supported
+        by the to_networkx_graph() function, currently including edge list,
+        dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
+        sparse matrix, or PyGraphviz graph.
+
+    multigraph_input : bool or None (default None)
+        Note: Only used when `incoming_graph_data` is a dict.
+        If True, `incoming_graph_data` is assumed to be a
+        dict-of-dict-of-dict-of-dict structure keyed by
+        node to neighbor to edge keys to edge data for multi-edges.
+        A NetworkXError is raised if this is not the case.
+        If False, :func:`to_networkx_graph` is used to try to determine
+        the dict's graph data structure as either a dict-of-dict-of-dict
+        keyed by node to neighbor to edge data, or a dict-of-iterable
+        keyed by node to neighbors.
+        If None, the treatment for True is tried, but if it fails,
+        the treatment for False is tried.
+
+    attr : keyword arguments, optional (default= no attributes)
+        Attributes to add to graph as key=value pairs.
+
+    See Also
+    --------
+    Graph
+    DiGraph
+    MultiGraph
+
+    Examples
+    --------
+    Create an empty graph structure (a "null graph") with no nodes and
+    no edges.
+
+    >>> G = nx.MultiDiGraph()
+
+    G can be grown in several ways.
+
+    **Nodes:**
+
+    Add one node at a time:
+
+    >>> G.add_node(1)
+
+    Add the nodes from any container (a list, dict, set or
+    even the lines from a file or the nodes from another graph).
+
+    >>> G.add_nodes_from([2, 3])
+    >>> G.add_nodes_from(range(100, 110))
+    >>> H = nx.path_graph(10)
+    >>> G.add_nodes_from(H)
+
+    In addition to strings and integers any hashable Python object
+    (except None) can represent a node, e.g. a customized node object,
+    or even another Graph.
+
+    >>> G.add_node(H)
+
+    **Edges:**
+
+    G can also be grown by adding edges.
+
+    Add one edge,
+
+    >>> key = G.add_edge(1, 2)
+
+    a list of edges,
+
+    >>> keys = G.add_edges_from([(1, 2), (1, 3)])
+
+    or a collection of edges,
+
+    >>> keys = G.add_edges_from(H.edges)
+
+    If some edges connect nodes not yet in the graph, the nodes
+    are added automatically.  If an edge already exists, an additional
+    edge is created and stored using a key to identify the edge.
+    By default the key is the lowest unused integer.
+
+    >>> keys = G.add_edges_from([(4, 5, dict(route=282)), (4, 5, dict(route=37))])
+    >>> G[4]
+    AdjacencyView({5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}})
+
+    **Attributes:**
+
+    Each graph, node, and edge can hold key/value attribute pairs
+    in an associated attribute dictionary (the keys must be hashable).
+    By default these are empty, but can be added or changed using
+    add_edge, add_node or direct manipulation of the attribute
+    dictionaries named graph, node and edge respectively.
+
+    >>> G = nx.MultiDiGraph(day="Friday")
+    >>> G.graph
+    {'day': 'Friday'}
+
+    Add node attributes using add_node(), add_nodes_from() or G.nodes
+
+    >>> G.add_node(1, time="5pm")
+    >>> G.add_nodes_from([3], time="2pm")
+    >>> G.nodes[1]
+    {'time': '5pm'}
+    >>> G.nodes[1]["room"] = 714
+    >>> del G.nodes[1]["room"]  # remove attribute
+    >>> list(G.nodes(data=True))
+    [(1, {'time': '5pm'}), (3, {'time': '2pm'})]
+
+    Add edge attributes using add_edge(), add_edges_from(), subscript
+    notation, or G.edges.
+
+    >>> key = G.add_edge(1, 2, weight=4.7)
+    >>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red")
+    >>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
+    >>> G[1][2][0]["weight"] = 4.7
+    >>> G.edges[1, 2, 0]["weight"] = 4
+
+    Warning: we protect the graph data structure by making `G.edges[1,
+    2, 0]` a read-only dict-like structure. However, you can assign to
+    attributes in e.g. `G.edges[1, 2, 0]`. Thus, use 2 sets of brackets
+    to add/change data attributes: `G.edges[1, 2, 0]['weight'] = 4`
+    (for multigraphs the edge key is required: `MG.edges[u, v,
+    key][name] = value`).
+
+    **Shortcuts:**
+
+    Many common graph features allow python syntax to speed reporting.
+
+    >>> 1 in G  # check if node in graph
+    True
+    >>> [n for n in G if n < 3]  # iterate through nodes
+    [1, 2]
+    >>> len(G)  # number of nodes in graph
+    5
+    >>> G[1]  # adjacency dict-like view mapping neighbor -> edge key -> edge attributes
+    AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}})
+
+    Often the best way to traverse all edges of a graph is via the neighbors.
+    The neighbors are available as an adjacency-view `G.adj` object or via
+    the method `G.adjacency()`.
+
+    >>> for n, nbrsdict in G.adjacency():
+    ...     for nbr, keydict in nbrsdict.items():
+    ...         for key, eattr in keydict.items():
+    ...             if "weight" in eattr:
+    ...                 # Do something useful with the edges
+    ...                 pass
+
+    But the edges() method is often more convenient:
+
+    >>> for u, v, keys, weight in G.edges(data="weight", keys=True):
+    ...     if weight is not None:
+    ...         # Do something useful with the edges
+    ...         pass
+
+    **Reporting:**
+
+    Simple graph information is obtained using methods and object-attributes.
+    Reporting usually provides views instead of containers to reduce memory
+    usage. The views update as the graph is updated similarly to dict-views.
+    The objects `nodes`, `edges` and `adj` provide access to data attributes
+    via lookup (e.g. `nodes[n]`, `edges[u, v, k]`, `adj[u][v]`) and iteration
+    (e.g. `nodes.items()`, `nodes.data('color')`,
+    `nodes.data('color', default='blue')` and similarly for `edges`)
+    Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
+
+    For details on these and other miscellaneous methods, see below.
+
+    **Subclasses (Advanced):**
+
+    The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure.
+    The outer dict (node_dict) holds adjacency information keyed by node.
+    The next dict (adjlist_dict) represents the adjacency information
+    and holds edge_key dicts keyed by neighbor. The edge_key dict holds
+    each edge_attr dict keyed by edge key. The inner dict
+    (edge_attr_dict) represents the edge data and holds edge attribute
+    values keyed by attribute names.
+
+    Each of these four dicts in the dict-of-dict-of-dict-of-dict
+    structure can be replaced by a user defined dict-like object.
+    In general, the dict-like features should be maintained but
+    extra features can be added. To replace one of the dicts create
+    a new graph class by changing the class(!) variable holding the
+    factory for that dict-like structure. The variable names are
+    node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,
+    adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory
+    and graph_attr_dict_factory.
+
+    node_dict_factory : function, (default: dict)
+        Factory function to be used to create the dict containing node
+        attributes, keyed by node id.
+        It should require no arguments and return a dict-like object
+
+    node_attr_dict_factory: function, (default: dict)
+        Factory function to be used to create the node attribute
+        dict which holds attribute values keyed by attribute name.
+        It should require no arguments and return a dict-like object
+
+    adjlist_outer_dict_factory : function, (default: dict)
+        Factory function to be used to create the outer-most dict
+        in the data structure that holds adjacency info keyed by node.
+        It should require no arguments and return a dict-like object.
+
+    adjlist_inner_dict_factory : function, (default: dict)
+        Factory function to be used to create the adjacency list
+        dict which holds multiedge key dicts keyed by neighbor.
+        It should require no arguments and return a dict-like object.
+
+    edge_key_dict_factory : function, (default: dict)
+        Factory function to be used to create the edge key dict
+        which holds edge data keyed by edge key.
+        It should require no arguments and return a dict-like object.
+
+    edge_attr_dict_factory : function, (default: dict)
+        Factory function to be used to create the edge attribute
+        dict which holds attribute values keyed by attribute name.
+        It should require no arguments and return a dict-like object.
+
+    graph_attr_dict_factory : function, (default: dict)
+        Factory function to be used to create the graph attribute
+        dict which holds attribute values keyed by attribute name.
+        It should require no arguments and return a dict-like object.
+
+    Typically, if your extension doesn't impact the data structure all
+    methods will inherited without issue except: `to_directed/to_undirected`.
+    By default these methods create a DiGraph/Graph class and you probably
+    want them to create your extension of a DiGraph/Graph. To facilitate
+    this we define two class variables that you can set in your subclass.
+
+    to_directed_class : callable, (default: DiGraph or MultiDiGraph)
+        Class to create a new graph structure in the `to_directed` method.
+        If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
+
+    to_undirected_class : callable, (default: Graph or MultiGraph)
+        Class to create a new graph structure in the `to_undirected` method.
+        If `None`, a NetworkX class (Graph or MultiGraph) is used.
+
+    **Subclassing Example**
+
+    Create a low memory graph class that effectively disallows edge
+    attributes by using a single attribute dict for all edges.
+    This reduces the memory used, but you lose edge attributes.
+
+    >>> class ThinGraph(nx.Graph):
+    ...     all_edge_dict = {"weight": 1}
+    ...
+    ...     def single_edge_dict(self):
+    ...         return self.all_edge_dict
+    ...
+    ...     edge_attr_dict_factory = single_edge_dict
+    >>> G = ThinGraph()
+    >>> G.add_edge(2, 1)
+    >>> G[2][1]
+    {'weight': 1}
+    >>> G.add_edge(2, 2)
+    >>> G[2][1] is G[2][2]
+    True
+    """
+
+    # node_dict_factory = dict    # already assigned in Graph
+    # adjlist_outer_dict_factory = dict
+    # adjlist_inner_dict_factory = dict
+    edge_key_dict_factory = dict
+    # edge_attr_dict_factory = dict
+
+    def __init__(self, incoming_graph_data=None, multigraph_input=None, **attr):
+        """Initialize a graph with edges, name, or graph attributes.
+
+        Parameters
+        ----------
+        incoming_graph_data : input graph
+            Data to initialize graph.  If incoming_graph_data=None (default)
+            an empty graph is created.  The data can be an edge list, or any
+            NetworkX graph object.  If the corresponding optional Python
+            packages are installed the data can also be a 2D NumPy array, a
+            SciPy sparse array, or a PyGraphviz graph.
+
+        multigraph_input : bool or None (default None)
+            Note: Only used when `incoming_graph_data` is a dict.
+            If True, `incoming_graph_data` is assumed to be a
+            dict-of-dict-of-dict-of-dict structure keyed by
+            node to neighbor to edge keys to edge data for multi-edges.
+            A NetworkXError is raised if this is not the case.
+            If False, :func:`to_networkx_graph` is used to try to determine
+            the dict's graph data structure as either a dict-of-dict-of-dict
+            keyed by node to neighbor to edge data, or a dict-of-iterable
+            keyed by node to neighbors.
+            If None, the treatment for True is tried, but if it fails,
+            the treatment for False is tried.
+
+        attr : keyword arguments, optional (default= no attributes)
+            Attributes to add to graph as key=value pairs.
+
+        See Also
+        --------
+        convert
+
+        Examples
+        --------
+        >>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
+        >>> G = nx.Graph(name="my graph")
+        >>> e = [(1, 2), (2, 3), (3, 4)]  # list of edges
+        >>> G = nx.Graph(e)
+
+        Arbitrary graph attribute pairs (key=value) may be assigned
+
+        >>> G = nx.Graph(e, day="Friday")
+        >>> G.graph
+        {'day': 'Friday'}
+
+        """
+        # multigraph_input can be None/True/False. So check "is not False"
+        if isinstance(incoming_graph_data, dict) and multigraph_input is not False:
+            DiGraph.__init__(self)
+            try:
+                convert.from_dict_of_dicts(
+                    incoming_graph_data, create_using=self, multigraph_input=True
+                )
+                self.graph.update(attr)
+            except Exception as err:
+                if multigraph_input is True:
+                    raise nx.NetworkXError(
+                        f"converting multigraph_input raised:\n{type(err)}: {err}"
+                    )
+                DiGraph.__init__(self, incoming_graph_data, **attr)
+        else:
+            DiGraph.__init__(self, incoming_graph_data, **attr)
+
+    @cached_property
+    def adj(self):
+        """Graph adjacency object holding the neighbors of each node.
+
+        This object is a read-only dict-like structure with node keys
+        and neighbor-dict values.  The neighbor-dict is keyed by neighbor
+        to the edgekey-dict.  So `G.adj[3][2][0]['color'] = 'blue'` sets
+        the color of the edge `(3, 2, 0)` to `"blue"`.
+
+        Iterating over G.adj behaves like a dict. Useful idioms include
+        `for nbr, datadict in G.adj[n].items():`.
+
+        The neighbor information is also provided by subscripting the graph.
+        So `for nbr, foovalue in G[node].data('foo', default=1):` works.
+
+        For directed graphs, `G.adj` holds outgoing (successor) info.
+        """
+        return MultiAdjacencyView(self._succ)
+
+    @cached_property
+    def succ(self):
+        """Graph adjacency object holding the successors of each node.
+
+        This object is a read-only dict-like structure with node keys
+        and neighbor-dict values.  The neighbor-dict is keyed by neighbor
+        to the edgekey-dict.  So `G.adj[3][2][0]['color'] = 'blue'` sets
+        the color of the edge `(3, 2, 0)` to `"blue"`.
+
+        Iterating over G.adj behaves like a dict. Useful idioms include
+        `for nbr, datadict in G.adj[n].items():`.
+
+        The neighbor information is also provided by subscripting the graph.
+        So `for nbr, foovalue in G[node].data('foo', default=1):` works.
+
+        For directed graphs, `G.succ` is identical to `G.adj`.
+        """
+        return MultiAdjacencyView(self._succ)
+
+    @cached_property
+    def pred(self):
+        """Graph adjacency object holding the predecessors of each node.
+
+        This object is a read-only dict-like structure with node keys
+        and neighbor-dict values.  The neighbor-dict is keyed by neighbor
+        to the edgekey-dict.  So `G.adj[3][2][0]['color'] = 'blue'` sets
+        the color of the edge `(3, 2, 0)` to `"blue"`.
+
+        Iterating over G.adj behaves like a dict. Useful idioms include
+        `for nbr, datadict in G.adj[n].items():`.
+        """
+        return MultiAdjacencyView(self._pred)
+
+    def add_edge(self, u_for_edge, v_for_edge, key=None, **attr):
+        """Add an edge between u and v.
+
+        The nodes u and v will be automatically added if they are
+        not already in the graph.
+
+        Edge attributes can be specified with keywords or by directly
+        accessing the edge's attribute dictionary. See examples below.
+
+        Parameters
+        ----------
+        u_for_edge, v_for_edge : nodes
+            Nodes can be, for example, strings or numbers.
+            Nodes must be hashable (and not None) Python objects.
+        key : hashable identifier, optional (default=lowest unused integer)
+            Used to distinguish multiedges between a pair of nodes.
+        attr : keyword arguments, optional
+            Edge data (or labels or objects) can be assigned using
+            keyword arguments.
+
+        Returns
+        -------
+        The edge key assigned to the edge.
+
+        See Also
+        --------
+        add_edges_from : add a collection of edges
+
+        Notes
+        -----
+        To replace/update edge data, use the optional key argument
+        to identify a unique edge.  Otherwise a new edge will be created.
+
+        NetworkX algorithms designed for weighted graphs cannot use
+        multigraphs directly because it is not clear how to handle
+        multiedge weights.  Convert to Graph using edge attribute
+        'weight' to enable weighted graph algorithms.
+
+        Default keys are generated using the method `new_edge_key()`.
+        This method can be overridden by subclassing the base class and
+        providing a custom `new_edge_key()` method.
+
+        Examples
+        --------
+        The following all add the edge e=(1, 2) to graph G:
+
+        >>> G = nx.MultiDiGraph()
+        >>> e = (1, 2)
+        >>> key = G.add_edge(1, 2)  # explicit two-node form
+        >>> G.add_edge(*e)  # single edge as tuple of two nodes
+        1
+        >>> G.add_edges_from([(1, 2)])  # add edges from iterable container
+        [2]
+
+        Associate data to edges using keywords:
+
+        >>> key = G.add_edge(1, 2, weight=3)
+        >>> key = G.add_edge(1, 2, key=0, weight=4)  # update data for key=0
+        >>> key = G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
+
+        For non-string attribute keys, use subscript notation.
+
+        >>> ekey = G.add_edge(1, 2)
+        >>> G[1][2][0].update({0: 5})
+        >>> G.edges[1, 2, 0].update({0: 5})
+        """
+        u, v = u_for_edge, v_for_edge
+        # add nodes
+        if u not in self._succ:
+            if u is None:
+                raise ValueError("None cannot be a node")
+            self._succ[u] = self.adjlist_inner_dict_factory()
+            self._pred[u] = self.adjlist_inner_dict_factory()
+            self._node[u] = self.node_attr_dict_factory()
+        if v not in self._succ:
+            if v is None:
+                raise ValueError("None cannot be a node")
+            self._succ[v] = self.adjlist_inner_dict_factory()
+            self._pred[v] = self.adjlist_inner_dict_factory()
+            self._node[v] = self.node_attr_dict_factory()
+        if key is None:
+            key = self.new_edge_key(u, v)
+        if v in self._succ[u]:
+            keydict = self._adj[u][v]
+            datadict = keydict.get(key, self.edge_attr_dict_factory())
+            datadict.update(attr)
+            keydict[key] = datadict
+        else:
+            # selfloops work this way without special treatment
+            datadict = self.edge_attr_dict_factory()
+            datadict.update(attr)
+            keydict = self.edge_key_dict_factory()
+            keydict[key] = datadict
+            self._succ[u][v] = keydict
+            self._pred[v][u] = keydict
+        nx._clear_cache(self)
+        return key
+
+    def remove_edge(self, u, v, key=None):
+        """Remove an edge between u and v.
+
+        Parameters
+        ----------
+        u, v : nodes
+            Remove an edge between nodes u and v.
+        key : hashable identifier, optional (default=None)
+            Used to distinguish multiple edges between a pair of nodes.
+            If None, remove a single edge between u and v. If there are
+            multiple edges, removes the last edge added in terms of
+            insertion order.
+
+        Raises
+        ------
+        NetworkXError
+            If there is not an edge between u and v, or
+            if there is no edge with the specified key.
+
+        See Also
+        --------
+        remove_edges_from : remove a collection of edges
+
+        Examples
+        --------
+        >>> G = nx.MultiDiGraph()
+        >>> nx.add_path(G, [0, 1, 2, 3])
+        >>> G.remove_edge(0, 1)
+        >>> e = (1, 2)
+        >>> G.remove_edge(*e)  # unpacks e from an edge tuple
+
+        For multiple edges
+
+        >>> G = nx.MultiDiGraph()
+        >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)])  # key_list returned
+        [0, 1, 2]
+
+        When ``key=None`` (the default), edges are removed in the opposite
+        order that they were added:
+
+        >>> G.remove_edge(1, 2)
+        >>> G.edges(keys=True)
+        OutMultiEdgeView([(1, 2, 0), (1, 2, 1)])
+
+        For edges with keys
+
+        >>> G = nx.MultiDiGraph()
+        >>> G.add_edge(1, 2, key="first")
+        'first'
+        >>> G.add_edge(1, 2, key="second")
+        'second'
+        >>> G.remove_edge(1, 2, key="first")
+        >>> G.edges(keys=True)
+        OutMultiEdgeView([(1, 2, 'second')])
+
+        """
+        try:
+            d = self._adj[u][v]
+        except KeyError as err:
+            raise NetworkXError(f"The edge {u}-{v} is not in the graph.") from err
+        # remove the edge with specified data
+        if key is None:
+            d.popitem()
+        else:
+            try:
+                del d[key]
+            except KeyError as err:
+                msg = f"The edge {u}-{v} with key {key} is not in the graph."
+                raise NetworkXError(msg) from err
+        if len(d) == 0:
+            # remove the key entries if last edge
+            del self._succ[u][v]
+            del self._pred[v][u]
+        nx._clear_cache(self)
+
+    @cached_property
+    def edges(self):
+        """An OutMultiEdgeView of the Graph as G.edges or G.edges().
+
+        edges(self, nbunch=None, data=False, keys=False, default=None)
+
+        The OutMultiEdgeView provides set-like operations on the edge-tuples
+        as well as edge attribute lookup. When called, it also provides
+        an EdgeDataView object which allows control of access to edge
+        attributes (but does not provide set-like operations).
+        Hence, ``G.edges[u, v, k]['color']`` provides the value of the color
+        attribute for the edge from ``u`` to ``v`` with key ``k`` while
+        ``for (u, v, k, c) in G.edges(data='color', default='red', keys=True):``
+        iterates through all the edges yielding the color attribute with
+        default `'red'` if no color attribute exists.
+
+        Edges are returned as tuples with optional data and keys
+        in the order (node, neighbor, key, data). If ``keys=True`` is not
+        provided, the tuples will just be (node, neighbor, data), but
+        multiple tuples with the same node and neighbor will be
+        generated when multiple edges between two nodes exist.
+
+        Parameters
+        ----------
+        nbunch : single node, container, or all nodes (default= all nodes)
+            The view will only report edges from these nodes.
+        data : string or bool, optional (default=False)
+            The edge attribute returned in 3-tuple (u, v, ddict[data]).
+            If True, return edge attribute dict in 3-tuple (u, v, ddict).
+            If False, return 2-tuple (u, v).
+        keys : bool, optional (default=False)
+            If True, return edge keys with each edge, creating (u, v, k,
+            d) tuples when data is also requested (the default) and (u,
+            v, k) tuples when data is not requested.
+        default : value, optional (default=None)
+            Value used for edges that don't have the requested attribute.
+            Only relevant if data is not True or False.
+
+        Returns
+        -------
+        edges : OutMultiEdgeView
+            A view of edge attributes, usually it iterates over (u, v)
+            (u, v, k) or (u, v, k, d) tuples of edges, but can also be
+            used for attribute lookup as ``edges[u, v, k]['foo']``.
+
+        Notes
+        -----
+        Nodes in nbunch that are not in the graph will be (quietly) ignored.
+        For directed graphs this returns the out-edges.
+
+        Examples
+        --------
+        >>> G = nx.MultiDiGraph()
+        >>> nx.add_path(G, [0, 1, 2])
+        >>> key = G.add_edge(2, 3, weight=5)
+        >>> key2 = G.add_edge(1, 2)  # second edge between these nodes
+        >>> [e for e in G.edges()]
+        [(0, 1), (1, 2), (1, 2), (2, 3)]
+        >>> list(G.edges(data=True))  # default data is {} (empty dict)
+        [(0, 1, {}), (1, 2, {}), (1, 2, {}), (2, 3, {'weight': 5})]
+        >>> list(G.edges(data="weight", default=1))
+        [(0, 1, 1), (1, 2, 1), (1, 2, 1), (2, 3, 5)]
+        >>> list(G.edges(keys=True))  # default keys are integers
+        [(0, 1, 0), (1, 2, 0), (1, 2, 1), (2, 3, 0)]
+        >>> list(G.edges(data=True, keys=True))
+        [(0, 1, 0, {}), (1, 2, 0, {}), (1, 2, 1, {}), (2, 3, 0, {'weight': 5})]
+        >>> list(G.edges(data="weight", default=1, keys=True))
+        [(0, 1, 0, 1), (1, 2, 0, 1), (1, 2, 1, 1), (2, 3, 0, 5)]
+        >>> list(G.edges([0, 2]))
+        [(0, 1), (2, 3)]
+        >>> list(G.edges(0))
+        [(0, 1)]
+        >>> list(G.edges(1))
+        [(1, 2), (1, 2)]
+
+        See Also
+        --------
+        in_edges, out_edges
+        """
+        return OutMultiEdgeView(self)
+
+    # alias out_edges to edges
+    @cached_property
+    def out_edges(self):
+        return OutMultiEdgeView(self)
+
+    out_edges.__doc__ = edges.__doc__
+
+    @cached_property
+    def in_edges(self):
+        """A view of the in edges of the graph as G.in_edges or G.in_edges().
+
+        in_edges(self, nbunch=None, data=False, keys=False, default=None)
+
+        Parameters
+        ----------
+        nbunch : single node, container, or all nodes (default= all nodes)
+            The view will only report edges incident to these nodes.
+        data : string or bool, optional (default=False)
+            The edge attribute returned in 3-tuple (u, v, ddict[data]).
+            If True, return edge attribute dict in 3-tuple (u, v, ddict).
+            If False, return 2-tuple (u, v).
+        keys : bool, optional (default=False)
+            If True, return edge keys with each edge, creating 3-tuples
+            (u, v, k) or with data, 4-tuples (u, v, k, d).
+        default : value, optional (default=None)
+            Value used for edges that don't have the requested attribute.
+            Only relevant if data is not True or False.
+
+        Returns
+        -------
+        in_edges : InMultiEdgeView or InMultiEdgeDataView
+            A view of edge attributes, usually it iterates over (u, v)
+            or (u, v, k) or (u, v, k, d) tuples of edges, but can also be
+            used for attribute lookup as `edges[u, v, k]['foo']`.
+
+        See Also
+        --------
+        edges
+        """
+        return InMultiEdgeView(self)
+
+    @cached_property
+    def degree(self):
+        """A DegreeView for the Graph as G.degree or G.degree().
+
+        The node degree is the number of edges adjacent to the node.
+        The weighted node degree is the sum of the edge weights for
+        edges incident to that node.
+
+        This object provides an iterator for (node, degree) as well as
+        lookup for the degree for a single node.
+
+        Parameters
+        ----------
+        nbunch : single node, container, or all nodes (default= all nodes)
+            The view will only report edges incident to these nodes.
+
+        weight : string or None, optional (default=None)
+           The name of an edge attribute that holds the numerical value used
+           as a weight.  If None, then each edge has weight 1.
+           The degree is the sum of the edge weights adjacent to the node.
+
+        Returns
+        -------
+        DiMultiDegreeView or int
+            If multiple nodes are requested (the default), returns a `DiMultiDegreeView`
+            mapping nodes to their degree.
+            If a single node is requested, returns the degree of the node as an integer.
+
+        See Also
+        --------
+        out_degree, in_degree
+
+        Examples
+        --------
+        >>> G = nx.MultiDiGraph()
+        >>> nx.add_path(G, [0, 1, 2, 3])
+        >>> G.degree(0)  # node 0 with degree 1
+        1
+        >>> list(G.degree([0, 1, 2]))
+        [(0, 1), (1, 2), (2, 2)]
+        >>> G.add_edge(0, 1)  # parallel edge
+        1
+        >>> list(G.degree([0, 1, 2]))  # parallel edges are counted
+        [(0, 2), (1, 3), (2, 2)]
+
+        """
+        return DiMultiDegreeView(self)
+
+    @cached_property
+    def in_degree(self):
+        """A DegreeView for (node, in_degree) or in_degree for single node.
+
+        The node in-degree is the number of edges pointing into the node.
+        The weighted node degree is the sum of the edge weights for
+        edges incident to that node.
+
+        This object provides an iterator for (node, degree) as well as
+        lookup for the degree for a single node.
+
+        Parameters
+        ----------
+        nbunch : single node, container, or all nodes (default= all nodes)
+            The view will only report edges incident to these nodes.
+
+        weight : string or None, optional (default=None)
+           The edge attribute that holds the numerical value used
+           as a weight.  If None, then each edge has weight 1.
+           The degree is the sum of the edge weights adjacent to the node.
+
+        Returns
+        -------
+        If a single node is requested
+        deg : int
+            Degree of the node
+
+        OR if multiple nodes are requested
+        nd_iter : iterator
+            The iterator returns two-tuples of (node, in-degree).
+
+        See Also
+        --------
+        degree, out_degree
+
+        Examples
+        --------
+        >>> G = nx.MultiDiGraph()
+        >>> nx.add_path(G, [0, 1, 2, 3])
+        >>> G.in_degree(0)  # node 0 with degree 0
+        0
+        >>> list(G.in_degree([0, 1, 2]))
+        [(0, 0), (1, 1), (2, 1)]
+        >>> G.add_edge(0, 1)  # parallel edge
+        1
+        >>> list(G.in_degree([0, 1, 2]))  # parallel edges counted
+        [(0, 0), (1, 2), (2, 1)]
+
+        """
+        return InMultiDegreeView(self)
+
+    @cached_property
+    def out_degree(self):
+        """Returns an iterator for (node, out-degree) or out-degree for single node.
+
+        out_degree(self, nbunch=None, weight=None)
+
+        The node out-degree is the number of edges pointing out of the node.
+        This function returns the out-degree for a single node or an iterator
+        for a bunch of nodes or if nothing is passed as argument.
+
+        Parameters
+        ----------
+        nbunch : single node, container, or all nodes (default= all nodes)
+            The view will only report edges incident to these nodes.
+
+        weight : string or None, optional (default=None)
+           The edge attribute that holds the numerical value used
+           as a weight.  If None, then each edge has weight 1.
+           The degree is the sum of the edge weights.
+
+        Returns
+        -------
+        If a single node is requested
+        deg : int
+            Degree of the node
+
+        OR if multiple nodes are requested
+        nd_iter : iterator
+            The iterator returns two-tuples of (node, out-degree).
+
+        See Also
+        --------
+        degree, in_degree
+
+        Examples
+        --------
+        >>> G = nx.MultiDiGraph()
+        >>> nx.add_path(G, [0, 1, 2, 3])
+        >>> G.out_degree(0)  # node 0 with degree 1
+        1
+        >>> list(G.out_degree([0, 1, 2]))
+        [(0, 1), (1, 1), (2, 1)]
+        >>> G.add_edge(0, 1)  # parallel edge
+        1
+        >>> list(G.out_degree([0, 1, 2]))  # counts parallel edges
+        [(0, 2), (1, 1), (2, 1)]
+
+        """
+        return OutMultiDegreeView(self)
+
+    def is_multigraph(self):
+        """Returns True if graph is a multigraph, False otherwise."""
+        return True
+
+    def is_directed(self):
+        """Returns True if graph is directed, False otherwise."""
+        return True
+
+    def to_undirected(self, reciprocal=False, as_view=False):
+        """Returns an undirected representation of the digraph.
+
+        Parameters
+        ----------
+        reciprocal : bool (optional)
+          If True only keep edges that appear in both directions
+          in the original digraph.
+        as_view : bool (optional, default=False)
+          If True return an undirected view of the original directed graph.
+
+        Returns
+        -------
+        G : MultiGraph
+            An undirected graph with the same name and nodes and
+            with edge (u, v, data) if either (u, v, data) or (v, u, data)
+            is in the digraph.  If both edges exist in digraph and
+            their edge data is different, only one edge is created
+            with an arbitrary choice of which edge data to use.
+            You must check and correct for this manually if desired.
+
+        See Also
+        --------
+        MultiGraph, copy, add_edge, add_edges_from
+
+        Notes
+        -----
+        This returns a "deepcopy" of the edge, node, and
+        graph attributes which attempts to completely copy
+        all of the data and references.
+
+        This is in contrast to the similar D=MultiDiGraph(G) which
+        returns a shallow copy of the data.
+
+        See the Python copy module for more information on shallow
+        and deep copies, https://docs.python.org/3/library/copy.html.
+
+        Warning: If you have subclassed MultiDiGraph to use dict-like
+        objects in the data structure, those changes do not transfer
+        to the MultiGraph created by this method.
+
+        Examples
+        --------
+        >>> G = nx.path_graph(2)  # or MultiGraph, etc
+        >>> H = G.to_directed()
+        >>> list(H.edges)
+        [(0, 1), (1, 0)]
+        >>> G2 = H.to_undirected()
+        >>> list(G2.edges)
+        [(0, 1)]
+        """
+        graph_class = self.to_undirected_class()
+        if as_view is True:
+            return nx.graphviews.generic_graph_view(self, graph_class)
+        # deepcopy when not a view
+        G = graph_class()
+        G.graph.update(deepcopy(self.graph))
+        G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
+        if reciprocal is True:
+            G.add_edges_from(
+                (u, v, key, deepcopy(data))
+                for u, nbrs in self._adj.items()
+                for v, keydict in nbrs.items()
+                for key, data in keydict.items()
+                if v in self._pred[u] and key in self._pred[u][v]
+            )
+        else:
+            G.add_edges_from(
+                (u, v, key, deepcopy(data))
+                for u, nbrs in self._adj.items()
+                for v, keydict in nbrs.items()
+                for key, data in keydict.items()
+            )
+        return G
+
+    def reverse(self, copy=True):
+        """Returns the reverse of the graph.
+
+        The reverse is a graph with the same nodes and edges
+        but with the directions of the edges reversed.
+
+        Parameters
+        ----------
+        copy : bool optional (default=True)
+            If True, return a new DiGraph holding the reversed edges.
+            If False, the reverse graph is created using a view of
+            the original graph.
+        """
+        if copy:
+            H = self.__class__()
+            H.graph.update(deepcopy(self.graph))
+            H.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
+            H.add_edges_from(
+                (v, u, k, deepcopy(d))
+                for u, v, k, d in self.edges(keys=True, data=True)
+            )
+            return H
+        return nx.reverse_view(self)