about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/PyPDF2/_encryption.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/PyPDF2/_encryption.py')
-rw-r--r--.venv/lib/python3.12/site-packages/PyPDF2/_encryption.py895
1 files changed, 895 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/PyPDF2/_encryption.py b/.venv/lib/python3.12/site-packages/PyPDF2/_encryption.py
new file mode 100644
index 00000000..5c80e600
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/PyPDF2/_encryption.py
@@ -0,0 +1,895 @@
+# Copyright (c) 2022, exiledkingcc
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are
+# met:
+#
+# * Redistributions of source code must retain the above copyright notice,
+# this list of conditions and the following disclaimer.
+# * Redistributions in binary form must reproduce the above copyright notice,
+# this list of conditions and the following disclaimer in the documentation
+# and/or other materials provided with the distribution.
+# * The name of the author may not be used to endorse or promote products
+# derived from this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+# POSSIBILITY OF SUCH DAMAGE.
+
+import hashlib
+import random
+import struct
+from enum import IntEnum
+from typing import Any, Dict, Optional, Tuple, Union, cast
+
+from ._utils import logger_warning
+from .errors import DependencyError
+from .generic import (
+    ArrayObject,
+    ByteStringObject,
+    DictionaryObject,
+    PdfObject,
+    StreamObject,
+    TextStringObject,
+    create_string_object,
+)
+
+
+class CryptBase:
+    def encrypt(self, data: bytes) -> bytes:  # pragma: no cover
+        return data
+
+    def decrypt(self, data: bytes) -> bytes:  # pragma: no cover
+        return data
+
+
+class CryptIdentity(CryptBase):
+    pass
+
+
+try:
+    from Crypto.Cipher import AES, ARC4  # type: ignore[import]
+    from Crypto.Util.Padding import pad  # type: ignore[import]
+
+    class CryptRC4(CryptBase):
+        def __init__(self, key: bytes) -> None:
+            self.key = key
+
+        def encrypt(self, data: bytes) -> bytes:
+            return ARC4.ARC4Cipher(self.key).encrypt(data)
+
+        def decrypt(self, data: bytes) -> bytes:
+            return ARC4.ARC4Cipher(self.key).decrypt(data)
+
+    class CryptAES(CryptBase):
+        def __init__(self, key: bytes) -> None:
+            self.key = key
+
+        def encrypt(self, data: bytes) -> bytes:
+            iv = bytes(bytearray(random.randint(0, 255) for _ in range(16)))
+            p = 16 - len(data) % 16
+            data += bytes(bytearray(p for _ in range(p)))
+            aes = AES.new(self.key, AES.MODE_CBC, iv)
+            return iv + aes.encrypt(data)
+
+        def decrypt(self, data: bytes) -> bytes:
+            iv = data[:16]
+            data = data[16:]
+            aes = AES.new(self.key, AES.MODE_CBC, iv)
+            if len(data) % 16:
+                data = pad(data, 16)
+            d = aes.decrypt(data)
+            if len(d) == 0:
+                return d
+            else:
+                return d[: -d[-1]]
+
+    def RC4_encrypt(key: bytes, data: bytes) -> bytes:
+        return ARC4.ARC4Cipher(key).encrypt(data)
+
+    def RC4_decrypt(key: bytes, data: bytes) -> bytes:
+        return ARC4.ARC4Cipher(key).decrypt(data)
+
+    def AES_ECB_encrypt(key: bytes, data: bytes) -> bytes:
+        return AES.new(key, AES.MODE_ECB).encrypt(data)
+
+    def AES_ECB_decrypt(key: bytes, data: bytes) -> bytes:
+        return AES.new(key, AES.MODE_ECB).decrypt(data)
+
+    def AES_CBC_encrypt(key: bytes, iv: bytes, data: bytes) -> bytes:
+        return AES.new(key, AES.MODE_CBC, iv).encrypt(data)
+
+    def AES_CBC_decrypt(key: bytes, iv: bytes, data: bytes) -> bytes:
+        return AES.new(key, AES.MODE_CBC, iv).decrypt(data)
+
+except ImportError:
+
+    class CryptRC4(CryptBase):  # type: ignore
+        def __init__(self, key: bytes) -> None:
+            self.S = list(range(256))
+            j = 0
+            for i in range(256):
+                j = (j + self.S[i] + key[i % len(key)]) % 256
+                self.S[i], self.S[j] = self.S[j], self.S[i]
+
+        def encrypt(self, data: bytes) -> bytes:
+            S = list(self.S)
+            out = list(0 for _ in range(len(data)))
+            i, j = 0, 0
+            for k in range(len(data)):
+                i = (i + 1) % 256
+                j = (j + S[i]) % 256
+                S[i], S[j] = S[j], S[i]
+                x = S[(S[i] + S[j]) % 256]
+                out[k] = data[k] ^ x
+            return bytes(bytearray(out))
+
+        def decrypt(self, data: bytes) -> bytes:
+            return self.encrypt(data)
+
+    class CryptAES(CryptBase):  # type: ignore
+        def __init__(self, key: bytes) -> None:
+            pass
+
+        def encrypt(self, data: bytes) -> bytes:
+            raise DependencyError("PyCryptodome is required for AES algorithm")
+
+        def decrypt(self, data: bytes) -> bytes:
+            raise DependencyError("PyCryptodome is required for AES algorithm")
+
+    def RC4_encrypt(key: bytes, data: bytes) -> bytes:
+        return CryptRC4(key).encrypt(data)
+
+    def RC4_decrypt(key: bytes, data: bytes) -> bytes:
+        return CryptRC4(key).decrypt(data)
+
+    def AES_ECB_encrypt(key: bytes, data: bytes) -> bytes:
+        raise DependencyError("PyCryptodome is required for AES algorithm")
+
+    def AES_ECB_decrypt(key: bytes, data: bytes) -> bytes:
+        raise DependencyError("PyCryptodome is required for AES algorithm")
+
+    def AES_CBC_encrypt(key: bytes, iv: bytes, data: bytes) -> bytes:
+        raise DependencyError("PyCryptodome is required for AES algorithm")
+
+    def AES_CBC_decrypt(key: bytes, iv: bytes, data: bytes) -> bytes:
+        raise DependencyError("PyCryptodome is required for AES algorithm")
+
+
+class CryptFilter:
+    def __init__(
+        self, stmCrypt: CryptBase, strCrypt: CryptBase, efCrypt: CryptBase
+    ) -> None:
+        self.stmCrypt = stmCrypt
+        self.strCrypt = strCrypt
+        self.efCrypt = efCrypt
+
+    def encrypt_object(self, obj: PdfObject) -> PdfObject:
+        # TODO
+        return NotImplemented
+
+    def decrypt_object(self, obj: PdfObject) -> PdfObject:
+        if isinstance(obj, (ByteStringObject, TextStringObject)):
+            data = self.strCrypt.decrypt(obj.original_bytes)
+            obj = create_string_object(data)
+        elif isinstance(obj, StreamObject):
+            obj._data = self.stmCrypt.decrypt(obj._data)
+        elif isinstance(obj, DictionaryObject):
+            for dictkey, value in list(obj.items()):
+                obj[dictkey] = self.decrypt_object(value)
+        elif isinstance(obj, ArrayObject):
+            for i in range(len(obj)):
+                obj[i] = self.decrypt_object(obj[i])
+        return obj
+
+
+_PADDING = bytes(
+    [
+        0x28,
+        0xBF,
+        0x4E,
+        0x5E,
+        0x4E,
+        0x75,
+        0x8A,
+        0x41,
+        0x64,
+        0x00,
+        0x4E,
+        0x56,
+        0xFF,
+        0xFA,
+        0x01,
+        0x08,
+        0x2E,
+        0x2E,
+        0x00,
+        0xB6,
+        0xD0,
+        0x68,
+        0x3E,
+        0x80,
+        0x2F,
+        0x0C,
+        0xA9,
+        0xFE,
+        0x64,
+        0x53,
+        0x69,
+        0x7A,
+    ]
+)
+
+
+def _padding(data: bytes) -> bytes:
+    return (data + _PADDING)[:32]
+
+
+class AlgV4:
+    @staticmethod
+    def compute_key(
+        password: bytes,
+        rev: int,
+        key_size: int,
+        o_entry: bytes,
+        P: int,
+        id1_entry: bytes,
+        metadata_encrypted: bool,
+    ) -> bytes:
+        """
+        Algorithm 2: Computing an encryption key.
+
+        a) Pad or truncate the password string to exactly 32 bytes. If the
+           password string is more than 32 bytes long,
+           use only its first 32 bytes; if it is less than 32 bytes long, pad it
+           by appending the required number of
+           additional bytes from the beginning of the following padding string:
+                < 28 BF 4E 5E 4E 75 8A 41 64 00 4E 56 FF FA 01 08
+                2E 2E 00 B6 D0 68 3E 80 2F 0C A9 FE 64 53 69 7A >
+           That is, if the password string is n bytes long, append
+           the first 32 - n bytes of the padding string to the end
+           of the password string. If the password string is empty (zero-length),
+           meaning there is no user password,
+           substitute the entire padding string in its place.
+
+        b) Initialize the MD5 hash function and pass the result of step (a)
+           as input to this function.
+        c) Pass the value of the encryption dictionary’s O entry to the
+           MD5 hash function. ("Algorithm 3: Computing
+           the encryption dictionary’s O (owner password) value" shows how the
+           O value is computed.)
+        d) Convert the integer value of the P entry to a 32-bit unsigned binary
+           number and pass these bytes to the
+           MD5 hash function, low-order byte first.
+        e) Pass the first element of the file’s file identifier array (the value
+           of the ID entry in the document’s trailer
+           dictionary; see Table 15) to the MD5 hash function.
+        f) (Security handlers of revision 4 or greater) If document metadata is
+           not being encrypted, pass 4 bytes with
+           the value 0xFFFFFFFF to the MD5 hash function.
+        g) Finish the hash.
+        h) (Security handlers of revision 3 or greater) Do the following
+           50 times: Take the output from the previous
+           MD5 hash and pass the first n bytes of the output as input into a new
+           MD5 hash, where n is the number of
+           bytes of the encryption key as defined by the value of the encryption
+           dictionary’s Length entry.
+        i) Set the encryption key to the first n bytes of the output from the
+           final MD5 hash, where n shall always be 5
+           for security handlers of revision 2 but, for security handlers of
+           revision 3 or greater, shall depend on the
+           value of the encryption dictionary’s Length entry.
+        """
+        a = _padding(password)
+        u_hash = hashlib.md5(a)
+        u_hash.update(o_entry)
+        u_hash.update(struct.pack("<I", P))
+        u_hash.update(id1_entry)
+        if rev >= 4 and metadata_encrypted is False:
+            u_hash.update(b"\xff\xff\xff\xff")
+        u_hash_digest = u_hash.digest()
+        length = key_size // 8
+        if rev >= 3:
+            for _ in range(50):
+                u_hash_digest = hashlib.md5(u_hash_digest[:length]).digest()
+        return u_hash_digest[:length]
+
+    @staticmethod
+    def compute_O_value_key(owner_password: bytes, rev: int, key_size: int) -> bytes:
+        """
+        Algorithm 3: Computing the encryption dictionary’s O (owner password) value.
+
+        a) Pad or truncate the owner password string as described in step (a)
+           of "Algorithm 2: Computing an encryption key".
+           If there is no owner password, use the user password instead.
+        b) Initialize the MD5 hash function and pass the result of step (a) as
+           input to this function.
+        c) (Security handlers of revision 3 or greater) Do the following 50 times:
+           Take the output from the previous
+           MD5 hash and pass it as input into a new MD5 hash.
+        d) Create an RC4 encryption key using the first n bytes of the output
+           from the final MD5 hash, where n shall
+           always be 5 for security handlers of revision 2 but, for security
+           handlers of revision 3 or greater, shall
+           depend on the value of the encryption dictionary’s Length entry.
+        e) Pad or truncate the user password string as described in step (a) of
+           "Algorithm 2: Computing an encryption key".
+        f) Encrypt the result of step (e), using an RC4 encryption function with
+           the encryption key obtained in step (d).
+        g) (Security handlers of revision 3 or greater) Do the following 19 times:
+           Take the output from the previous
+           invocation of the RC4 function and pass it as input to a new
+           invocation of the function; use an encryption
+           key generated by taking each byte of the encryption key obtained in
+           step (d) and performing an XOR
+           (exclusive or) operation between that byte and the single-byte value
+           of the iteration counter (from 1 to 19).
+        h) Store the output from the final invocation of the RC4 function as
+           the value of the O entry in the encryption dictionary.
+        """
+        a = _padding(owner_password)
+        o_hash_digest = hashlib.md5(a).digest()
+
+        if rev >= 3:
+            for _ in range(50):
+                o_hash_digest = hashlib.md5(o_hash_digest).digest()
+
+        rc4_key = o_hash_digest[: key_size // 8]
+        return rc4_key
+
+    @staticmethod
+    def compute_O_value(rc4_key: bytes, user_password: bytes, rev: int) -> bytes:
+        """See :func:`compute_O_value_key`."""
+        a = _padding(user_password)
+        rc4_enc = RC4_encrypt(rc4_key, a)
+        if rev >= 3:
+            for i in range(1, 20):
+                key = bytes(bytearray(x ^ i for x in rc4_key))
+                rc4_enc = RC4_encrypt(key, rc4_enc)
+        return rc4_enc
+
+    @staticmethod
+    def compute_U_value(key: bytes, rev: int, id1_entry: bytes) -> bytes:
+        """
+        Algorithm 4: Computing the encryption dictionary’s U (user password) value.
+
+        (Security handlers of revision 2)
+
+        a) Create an encryption key based on the user password string, as
+           described in "Algorithm 2: Computing an encryption key".
+        b) Encrypt the 32-byte padding string shown in step (a) of
+           "Algorithm 2: Computing an encryption key", using an RC4 encryption
+           function with the encryption key from the preceding step.
+        c) Store the result of step (b) as the value of the U entry in the
+           encryption dictionary.
+        """
+        if rev <= 2:
+            value = RC4_encrypt(key, _PADDING)
+            return value
+
+        """
+        Algorithm 5: Computing the encryption dictionary’s U (user password) value.
+
+        (Security handlers of revision 3 or greater)
+
+        a) Create an encryption key based on the user password string, as
+           described in "Algorithm 2: Computing an encryption key".
+        b) Initialize the MD5 hash function and pass the 32-byte padding string
+           shown in step (a) of "Algorithm 2:
+           Computing an encryption key" as input to this function.
+        c) Pass the first element of the file’s file identifier array (the value
+           of the ID entry in the document’s trailer
+           dictionary; see Table 15) to the hash function and finish the hash.
+        d) Encrypt the 16-byte result of the hash, using an RC4 encryption
+           function with the encryption key from step (a).
+        e) Do the following 19 times: Take the output from the previous
+           invocation of the RC4 function and pass it as input to a new
+           invocation of the function; use an encryption key generated by
+           taking each byte of the original encryption key obtained in
+           step (a) and performing an XOR (exclusive or) operation between that
+           byte and the single-byte value of the iteration counter (from 1 to 19).
+        f) Append 16 bytes of arbitrary padding to the output from the final
+           invocation of the RC4 function and store the 32-byte result as the
+           value of the U entry in the encryption dictionary.
+        """
+        u_hash = hashlib.md5(_PADDING)
+        u_hash.update(id1_entry)
+        rc4_enc = RC4_encrypt(key, u_hash.digest())
+        for i in range(1, 20):
+            rc4_key = bytes(bytearray(x ^ i for x in key))
+            rc4_enc = RC4_encrypt(rc4_key, rc4_enc)
+        return _padding(rc4_enc)
+
+    @staticmethod
+    def verify_user_password(
+        user_password: bytes,
+        rev: int,
+        key_size: int,
+        o_entry: bytes,
+        u_entry: bytes,
+        P: int,
+        id1_entry: bytes,
+        metadata_encrypted: bool,
+    ) -> bytes:
+        """
+        Algorithm 6: Authenticating the user password.
+
+        a) Perform all but the last step of "Algorithm 4: Computing the encryption dictionary’s U (user password)
+           value (Security handlers of revision 2)" or "Algorithm 5: Computing the encryption dictionary’s U (user
+           password) value (Security handlers of revision 3 or greater)" using the supplied password string.
+        b) If the result of step (a) is equal to the value of the encryption dictionary’s U entry (comparing on the first 16
+           bytes in the case of security handlers of revision 3 or greater), the password supplied is the correct user
+           password. The key obtained in step (a) (that is, in the first step of "Algorithm 4: Computing the encryption
+           dictionary’s U (user password) value (Security handlers of revision 2)" or "Algorithm 5: Computing the
+           encryption dictionary’s U (user password) value (Security handlers of revision 3 or greater)") shall be used
+           to decrypt the document.
+        """
+        key = AlgV4.compute_key(
+            user_password, rev, key_size, o_entry, P, id1_entry, metadata_encrypted
+        )
+        u_value = AlgV4.compute_U_value(key, rev, id1_entry)
+        if rev >= 3:
+            u_value = u_value[:16]
+            u_entry = u_entry[:16]
+        if u_value != u_entry:
+            key = b""
+        return key
+
+    @staticmethod
+    def verify_owner_password(
+        owner_password: bytes,
+        rev: int,
+        key_size: int,
+        o_entry: bytes,
+        u_entry: bytes,
+        P: int,
+        id1_entry: bytes,
+        metadata_encrypted: bool,
+    ) -> bytes:
+        """
+        Algorithm 7: Authenticating the owner password.
+
+        a) Compute an encryption key from the supplied password string, as described in steps (a) to (d) of
+           "Algorithm 3: Computing the encryption dictionary’s O (owner password) value".
+        b) (Security handlers of revision 2 only) Decrypt the value of the encryption dictionary’s O entry, using an RC4
+           encryption function with the encryption key computed in step (a).
+           (Security handlers of revision 3 or greater) Do the following 20 times: Decrypt the value of the encryption
+           dictionary’s O entry (first iteration) or the output from the previous iteration (all subsequent iterations),
+           using an RC4 encryption function with a different encryption key at each iteration. The key shall be
+           generated by taking the original key (obtained in step (a)) and performing an XOR (exclusive or) operation
+           between each byte of the key and the single-byte value of the iteration counter (from 19 to 0).
+        c) The result of step (b) purports to be the user password. Authenticate this user password using "Algorithm 6:
+           Authenticating the user password". If it is correct, the password supplied is the correct owner password.
+        """
+        rc4_key = AlgV4.compute_O_value_key(owner_password, rev, key_size)
+
+        if rev <= 2:
+            user_password = RC4_decrypt(rc4_key, o_entry)
+        else:
+            user_password = o_entry
+            for i in range(19, -1, -1):
+                key = bytes(bytearray(x ^ i for x in rc4_key))
+                user_password = RC4_decrypt(key, user_password)
+        return AlgV4.verify_user_password(
+            user_password,
+            rev,
+            key_size,
+            o_entry,
+            u_entry,
+            P,
+            id1_entry,
+            metadata_encrypted,
+        )
+
+
+class AlgV5:
+    @staticmethod
+    def verify_owner_password(
+        R: int, password: bytes, o_value: bytes, oe_value: bytes, u_value: bytes
+    ) -> bytes:
+        """
+        Algorithm 3.2a Computing an encryption key.
+
+        To understand the algorithm below, it is necessary to treat the O and U strings in the Encrypt dictionary
+        as made up of three sections. The first 32 bytes are a hash value (explained below). The next 8 bytes are
+        called the Validation Salt. The final 8 bytes are called the Key Salt.
+
+        1. The password string is generated from Unicode input by processing the input string with the SASLprep
+           (IETF RFC 4013) profile of stringprep (IETF RFC 3454), and then converting to a UTF-8 representation.
+        2. Truncate the UTF-8 representation to 127 bytes if it is longer than 127 bytes.
+        3. Test the password against the owner key by computing the SHA-256 hash of the UTF-8 password
+           concatenated with the 8 bytes of owner Validation Salt, concatenated with the 48-byte U string. If the
+           32-byte result matches the first 32 bytes of the O string, this is the owner password.
+           Compute an intermediate owner key by computing the SHA-256 hash of the UTF-8 password
+           concatenated with the 8 bytes of owner Key Salt, concatenated with the 48-byte U string. The 32-byte
+           result is the key used to decrypt the 32-byte OE string using AES-256 in CBC mode with no padding and
+           an initialization vector of zero. The 32-byte result is the file encryption key.
+        4. Test the password against the user key by computing the SHA-256 hash of the UTF-8 password
+           concatenated with the 8 bytes of user Validation Salt. If the 32 byte result matches the first 32 bytes of
+           the U string, this is the user password.
+           Compute an intermediate user key by computing the SHA-256 hash of the UTF-8 password
+           concatenated with the 8 bytes of user Key Salt. The 32-byte result is the key used to decrypt the 32-byte
+           UE string using AES-256 in CBC mode with no padding and an initialization vector of zero. The 32-byte
+           result is the file encryption key.
+        5. Decrypt the 16-byte Perms string using AES-256 in ECB mode with an initialization vector of zero and
+           the file encryption key as the key. Verify that bytes 9-11 of the result are the characters ‘a’, ‘d’, ‘b’. Bytes
+           0-3 of the decrypted Perms entry, treated as a little-endian integer, are the user permissions. They
+           should match the value in the P key.
+        """
+        password = password[:127]
+        if (
+            AlgV5.calculate_hash(R, password, o_value[32:40], u_value[:48])
+            != o_value[:32]
+        ):
+            return b""
+        iv = bytes(0 for _ in range(16))
+        tmp_key = AlgV5.calculate_hash(R, password, o_value[40:48], u_value[:48])
+        key = AES_CBC_decrypt(tmp_key, iv, oe_value)
+        return key
+
+    @staticmethod
+    def verify_user_password(
+        R: int, password: bytes, u_value: bytes, ue_value: bytes
+    ) -> bytes:
+        """See :func:`verify_owner_password`."""
+        password = password[:127]
+        if AlgV5.calculate_hash(R, password, u_value[32:40], b"") != u_value[:32]:
+            return b""
+        iv = bytes(0 for _ in range(16))
+        tmp_key = AlgV5.calculate_hash(R, password, u_value[40:48], b"")
+        return AES_CBC_decrypt(tmp_key, iv, ue_value)
+
+    @staticmethod
+    def calculate_hash(R: int, password: bytes, salt: bytes, udata: bytes) -> bytes:
+        # from https://github.com/qpdf/qpdf/blob/main/libqpdf/QPDF_encryption.cc
+        K = hashlib.sha256(password + salt + udata).digest()
+        if R < 6:
+            return K
+        count = 0
+        while True:
+            count += 1
+            K1 = password + K + udata
+            E = AES_CBC_encrypt(K[:16], K[16:32], K1 * 64)
+            hash_fn = (
+                hashlib.sha256,
+                hashlib.sha384,
+                hashlib.sha512,
+            )[sum(E[:16]) % 3]
+            K = hash_fn(E).digest()
+            if count >= 64 and E[-1] <= count - 32:
+                break
+        return K[:32]
+
+    @staticmethod
+    def verify_perms(
+        key: bytes, perms: bytes, p: int, metadata_encrypted: bool
+    ) -> bool:
+        """See :func:`verify_owner_password` and :func:`compute_Perms_value`."""
+        b8 = b"T" if metadata_encrypted else b"F"
+        p1 = struct.pack("<I", p) + b"\xff\xff\xff\xff" + b8 + b"adb"
+        p2 = AES_ECB_decrypt(key, perms)
+        return p1 == p2[:12]
+
+    @staticmethod
+    def generate_values(
+        user_password: bytes,
+        owner_password: bytes,
+        key: bytes,
+        p: int,
+        metadata_encrypted: bool,
+    ) -> Dict[Any, Any]:
+        u_value, ue_value = AlgV5.compute_U_value(user_password, key)
+        o_value, oe_value = AlgV5.compute_O_value(owner_password, key, u_value)
+        perms = AlgV5.compute_Perms_value(key, p, metadata_encrypted)
+        return {
+            "/U": u_value,
+            "/UE": ue_value,
+            "/O": o_value,
+            "/OE": oe_value,
+            "/Perms": perms,
+        }
+
+    @staticmethod
+    def compute_U_value(password: bytes, key: bytes) -> Tuple[bytes, bytes]:
+        """
+        Algorithm 3.8 Computing the encryption dictionary’s U (user password) and UE (user encryption key) values
+
+        1. Generate 16 random bytes of data using a strong random number generator. The first 8 bytes are the
+           User Validation Salt. The second 8 bytes are the User Key Salt. Compute the 32-byte SHA-256 hash of
+           the password concatenated with the User Validation Salt. The 48-byte string consisting of the 32-byte
+           hash followed by the User Validation Salt followed by the User Key Salt is stored as the U key.
+        2. Compute the 32-byte SHA-256 hash of the password concatenated with the User Key Salt. Using this
+           hash as the key, encrypt the file encryption key using AES-256 in CBC mode with no padding and an
+           initialization vector of zero. The resulting 32-byte string is stored as the UE key.
+        """
+        random_bytes = bytes(random.randrange(0, 256) for _ in range(16))
+        val_salt = random_bytes[:8]
+        key_salt = random_bytes[8:]
+        u_value = hashlib.sha256(password + val_salt).digest() + val_salt + key_salt
+
+        tmp_key = hashlib.sha256(password + key_salt).digest()
+        iv = bytes(0 for _ in range(16))
+        ue_value = AES_CBC_encrypt(tmp_key, iv, key)
+        return u_value, ue_value
+
+    @staticmethod
+    def compute_O_value(
+        password: bytes, key: bytes, u_value: bytes
+    ) -> Tuple[bytes, bytes]:
+        """
+        Algorithm 3.9 Computing the encryption dictionary’s O (owner password) and OE (owner encryption key) values.
+
+        1. Generate 16 random bytes of data using a strong random number generator. The first 8 bytes are the
+           Owner Validation Salt. The second 8 bytes are the Owner Key Salt. Compute the 32-byte SHA-256 hash
+           of the password concatenated with the Owner Validation Salt and then concatenated with the 48-byte
+           U string as generated in Algorithm 3.8. The 48-byte string consisting of the 32-byte hash followed by
+           the Owner Validation Salt followed by the Owner Key Salt is stored as the O key.
+        2. Compute the 32-byte SHA-256 hash of the password concatenated with the Owner Key Salt and then
+           concatenated with the 48-byte U string as generated in Algorithm 3.8. Using this hash as the key,
+           encrypt the file encryption key using AES-256 in CBC mode with no padding and an initialization vector
+           of zero. The resulting 32-byte string is stored as the OE key.
+        """
+        random_bytes = bytes(random.randrange(0, 256) for _ in range(16))
+        val_salt = random_bytes[:8]
+        key_salt = random_bytes[8:]
+        o_value = (
+            hashlib.sha256(password + val_salt + u_value).digest() + val_salt + key_salt
+        )
+
+        tmp_key = hashlib.sha256(password + key_salt + u_value).digest()
+        iv = bytes(0 for _ in range(16))
+        oe_value = AES_CBC_encrypt(tmp_key, iv, key)
+        return o_value, oe_value
+
+    @staticmethod
+    def compute_Perms_value(key: bytes, p: int, metadata_encrypted: bool) -> bytes:
+        """
+        Algorithm 3.10 Computing the encryption dictionary’s Perms (permissions) value
+
+        1. Extend the permissions (contents of the P integer) to 64 bits by setting the upper 32 bits to all 1’s. (This
+           allows for future extension without changing the format.)
+        2. Record the 8 bytes of permission in the bytes 0-7 of the block, low order byte first.
+        3. Set byte 8 to the ASCII value ' T ' or ' F ' according to the EncryptMetadata Boolean.
+        4. Set bytes 9-11 to the ASCII characters ' a ', ' d ', ' b '.
+        5. Set bytes 12-15 to 4 bytes of random data, which will be ignored.
+        6. Encrypt the 16-byte block using AES-256 in ECB mode with an initialization vector of zero, using the file
+           encryption key as the key. The result (16 bytes) is stored as the Perms string, and checked for validity
+           when the file is opened.
+        """
+        b8 = b"T" if metadata_encrypted else b"F"
+        rr = bytes(random.randrange(0, 256) for _ in range(4))
+        data = struct.pack("<I", p) + b"\xff\xff\xff\xff" + b8 + b"adb" + rr
+        perms = AES_ECB_encrypt(key, data)
+        return perms
+
+
+class PasswordType(IntEnum):
+    NOT_DECRYPTED = 0
+    USER_PASSWORD = 1
+    OWNER_PASSWORD = 2
+
+
+class Encryption:
+    def __init__(
+        self,
+        algV: int,
+        algR: int,
+        entry: DictionaryObject,
+        first_id_entry: bytes,
+        StmF: str,
+        StrF: str,
+        EFF: str,
+    ) -> None:
+        # See TABLE 3.18 Entries common to all encryption dictionaries
+        self.algV = algV
+        self.algR = algR
+        self.entry = entry
+        self.key_size = entry.get("/Length", 40)
+        self.id1_entry = first_id_entry
+        self.StmF = StmF
+        self.StrF = StrF
+        self.EFF = EFF
+
+        # 1 => owner password
+        # 2 => user password
+        self._password_type = PasswordType.NOT_DECRYPTED
+        self._key: Optional[bytes] = None
+
+    def is_decrypted(self) -> bool:
+        return self._password_type != PasswordType.NOT_DECRYPTED
+
+    def decrypt_object(self, obj: PdfObject, idnum: int, generation: int) -> PdfObject:
+        """
+        Algorithm 1: Encryption of data using the RC4 or AES algorithms.
+
+        a) Obtain the object number and generation number from the object identifier of the string or stream to be
+           encrypted (see 7.3.10, "Indirect Objects"). If the string is a direct object, use the identifier of the indirect
+           object containing it.
+        b) For all strings and streams without crypt filter specifier; treating the object number and generation number
+           as binary integers, extend the original n-byte encryption key to n + 5 bytes by appending the low-order 3
+           bytes of the object number and the low-order 2 bytes of the generation number in that order, low-order byte
+           first. (n is 5 unless the value of V in the encryption dictionary is greater than 1, in which case n is the value
+           of Length divided by 8.)
+           If using the AES algorithm, extend the encryption key an additional 4 bytes by adding the value “sAlT”,
+           which corresponds to the hexadecimal values 0x73, 0x41, 0x6C, 0x54. (This addition is done for backward
+           compatibility and is not intended to provide additional security.)
+        c) Initialize the MD5 hash function and pass the result of step (b) as input to this function.
+        d) Use the first (n + 5) bytes, up to a maximum of 16, of the output from the MD5 hash as the key for the RC4
+           or AES symmetric key algorithms, along with the string or stream data to be encrypted.
+           If using the AES algorithm, the Cipher Block Chaining (CBC) mode, which requires an initialization vector,
+           is used. The block size parameter is set to 16 bytes, and the initialization vector is a 16-byte random
+           number that is stored as the first 16 bytes of the encrypted stream or string.
+
+        Algorithm 3.1a Encryption of data using the AES algorithm
+        1. Use the 32-byte file encryption key for the AES-256 symmetric key algorithm, along with the string or
+           stream data to be encrypted.
+           Use the AES algorithm in Cipher Block Chaining (CBC) mode, which requires an initialization vector. The
+           block size parameter is set to 16 bytes, and the initialization vector is a 16-byte random number that is
+           stored as the first 16 bytes of the encrypted stream or string.
+           The output is the encrypted data to be stored in the PDF file.
+        """
+        pack1 = struct.pack("<i", idnum)[:3]
+        pack2 = struct.pack("<i", generation)[:2]
+
+        assert self._key
+        key = self._key
+        n = 5 if self.algV == 1 else self.key_size // 8
+        key_data = key[:n] + pack1 + pack2
+        key_hash = hashlib.md5(key_data)
+        rc4_key = key_hash.digest()[: min(n + 5, 16)]
+        # for AES-128
+        key_hash.update(b"sAlT")
+        aes128_key = key_hash.digest()[: min(n + 5, 16)]
+
+        # for AES-256
+        aes256_key = key
+
+        stmCrypt = self._get_crypt(self.StmF, rc4_key, aes128_key, aes256_key)
+        StrCrypt = self._get_crypt(self.StrF, rc4_key, aes128_key, aes256_key)
+        efCrypt = self._get_crypt(self.EFF, rc4_key, aes128_key, aes256_key)
+
+        cf = CryptFilter(stmCrypt, StrCrypt, efCrypt)
+        return cf.decrypt_object(obj)
+
+    @staticmethod
+    def _get_crypt(
+        method: str, rc4_key: bytes, aes128_key: bytes, aes256_key: bytes
+    ) -> CryptBase:
+        if method == "/AESV3":
+            return CryptAES(aes256_key)
+        if method == "/AESV2":
+            return CryptAES(aes128_key)
+        elif method == "/Identity":
+            return CryptIdentity()
+        else:
+            return CryptRC4(rc4_key)
+
+    def verify(self, password: Union[bytes, str]) -> PasswordType:
+        if isinstance(password, str):
+            try:
+                pwd = password.encode("latin-1")
+            except Exception:  # noqa
+                pwd = password.encode("utf-8")
+        else:
+            pwd = password
+
+        key, rc = self.verify_v4(pwd) if self.algV <= 4 else self.verify_v5(pwd)
+        if rc != PasswordType.NOT_DECRYPTED:
+            self._password_type = rc
+            self._key = key
+        return rc
+
+    def verify_v4(self, password: bytes) -> Tuple[bytes, PasswordType]:
+        R = cast(int, self.entry["/R"])
+        P = cast(int, self.entry["/P"])
+        P = (P + 0x100000000) % 0x100000000  # maybe < 0
+        # make type(metadata_encrypted) == bool
+        em = self.entry.get("/EncryptMetadata")
+        metadata_encrypted = em.value if em else True
+        o_entry = cast(ByteStringObject, self.entry["/O"].get_object()).original_bytes
+        u_entry = cast(ByteStringObject, self.entry["/U"].get_object()).original_bytes
+
+        # verify owner password first
+        key = AlgV4.verify_owner_password(
+            password,
+            R,
+            self.key_size,
+            o_entry,
+            u_entry,
+            P,
+            self.id1_entry,
+            metadata_encrypted,
+        )
+        if key:
+            return key, PasswordType.OWNER_PASSWORD
+        key = AlgV4.verify_user_password(
+            password,
+            R,
+            self.key_size,
+            o_entry,
+            u_entry,
+            P,
+            self.id1_entry,
+            metadata_encrypted,
+        )
+        if key:
+            return key, PasswordType.USER_PASSWORD
+        return b"", PasswordType.NOT_DECRYPTED
+
+    def verify_v5(self, password: bytes) -> Tuple[bytes, PasswordType]:
+        # TODO: use SASLprep process
+        o_entry = cast(ByteStringObject, self.entry["/O"].get_object()).original_bytes
+        u_entry = cast(ByteStringObject, self.entry["/U"].get_object()).original_bytes
+        oe_entry = cast(ByteStringObject, self.entry["/OE"].get_object()).original_bytes
+        ue_entry = cast(ByteStringObject, self.entry["/UE"].get_object()).original_bytes
+
+        # verify owner password first
+        key = AlgV5.verify_owner_password(
+            self.algR, password, o_entry, oe_entry, u_entry
+        )
+        rc = PasswordType.OWNER_PASSWORD
+        if not key:
+            key = AlgV5.verify_user_password(self.algR, password, u_entry, ue_entry)
+            rc = PasswordType.USER_PASSWORD
+        if not key:
+            return b"", PasswordType.NOT_DECRYPTED
+
+        # verify Perms
+        perms = cast(ByteStringObject, self.entry["/Perms"].get_object()).original_bytes
+        P = cast(int, self.entry["/P"])
+        P = (P + 0x100000000) % 0x100000000  # maybe < 0
+        metadata_encrypted = self.entry.get("/EncryptMetadata", True)
+        if not AlgV5.verify_perms(key, perms, P, metadata_encrypted):
+            logger_warning("ignore '/Perms' verify failed", __name__)
+        return key, rc
+
+    @staticmethod
+    def read(encryption_entry: DictionaryObject, first_id_entry: bytes) -> "Encryption":
+        filter = encryption_entry.get("/Filter")
+        if filter != "/Standard":
+            raise NotImplementedError(
+                "only Standard PDF encryption handler is available"
+            )
+        if "/SubFilter" in encryption_entry:
+            raise NotImplementedError("/SubFilter NOT supported")
+
+        StmF = "/V2"
+        StrF = "/V2"
+        EFF = "/V2"
+
+        V = encryption_entry.get("/V", 0)
+        if V not in (1, 2, 3, 4, 5):
+            raise NotImplementedError(f"Encryption V={V} NOT supported")
+        if V >= 4:
+            filters = encryption_entry["/CF"]
+
+            StmF = encryption_entry.get("/StmF", "/Identity")
+            StrF = encryption_entry.get("/StrF", "/Identity")
+            EFF = encryption_entry.get("/EFF", StmF)
+
+            if StmF != "/Identity":
+                StmF = filters[StmF]["/CFM"]  # type: ignore
+            if StrF != "/Identity":
+                StrF = filters[StrF]["/CFM"]  # type: ignore
+            if EFF != "/Identity":
+                EFF = filters[EFF]["/CFM"]  # type: ignore
+
+            allowed_methods = ("/Identity", "/V2", "/AESV2", "/AESV3")
+            if StmF not in allowed_methods:
+                raise NotImplementedError("StmF Method {StmF} NOT supported!")
+            if StrF not in allowed_methods:
+                raise NotImplementedError(f"StrF Method {StrF} NOT supported!")
+            if EFF not in allowed_methods:
+                raise NotImplementedError(f"EFF Method {EFF} NOT supported!")
+
+        R = cast(int, encryption_entry["/R"])
+        return Encryption(V, R, encryption_entry, first_id_entry, StmF, StrF, EFF)