aboutsummaryrefslogtreecommitdiff
{
  "question": [
    "List as many studies as you can that include rapamycin.",
    "Why is it so diffuclut to map gene loci that control aging in humans?",
    "What is apoptosis?",
    "which genes are involved in the aging process",
    "what causes the aging process"
  ],
  "answer": [
    "1. A study by Kaeberlein in 2013b on the use of rapamycin to prevent organ transplant rejection, some forms of cancer, and restenosis in cardiac stents.\n2. A study by Mannick et al. in 2014 on the use of rapamycin derivative RAD001 to improve age-associated decline in immune function in healthy elderly people.\n3. A study by Yi et al. in 2014 on the use of rapamycin in dogs to improve outcomes in a glycogen storage disease model.\n4. A study by Paoloni et al. in 2010 on the use of rapamycin in veterinary clinical trials as a treatment for osteosarcoma.\n5. A study by Kaeberlein in 2015 on the use of rapamycin in a veterinary clinical trial to assess side effects and effects on age-associated cardiac function in healthy elderly dogs.\n6. A study by Johnson et al. in 2013 on the use of rapamycin as a pharmacological intervention for extending lifespan and delaying age-related functional declines in rodents.\n7. A study by Augustine et al. in 2007 and de Oliveira et al. in 2011 on the side effects of rapamycin.\n8. A study by Lamming et al. in 2012 on the possible exception of impaired glucose homeostasis as a side effect of rapamycin.\n9. A study by Larson et al. in 2016 on the pharmacokinetic analysis of rapamycin treatment in healthy dogs.\n10. A study by Dai et al. in 2014 and Flynn et al. in 2013 on the improvements in cardiac function in aged dogs and mice after rapamycin treatment.\n11. A study by Johnson et al. in 2015 on the beneficial impacts of rapamycin on multiple age-related phenotypes in aging mice.\n12. A study by Chen et al. in 2009 on the effects of rapamycin on the aged immune system in elderly mice.\n13. A study by Mannick et al. in 2014 on the use of rapamycin derivative RAD001 to enhance the function of the aged immune system in humans.",
    "Mapping gene loci that control aging in humans is difficult due to several reasons. Firstly, aging is a complex phenotype influenced by multiple genes and numerous different pathophysiological processes and diseases. Secondly, any common variation in genes associated with aging probably has a small effect, requiring large studies for identification. Thirdly, human studies face issues like environmental heterogeneity, genetic diversity, and lack of birth matched controls. Lastly, the influence of environmental factors and human-specific confounders like psychosocial, economic, and cultural factors can potentially mask purely biological aging mechanisms, making the analysis more difficult.",
    "Apoptosis, also known as cell suicide or programmed cell death, is a biological process in multicellular organisms that allows specific cells to be removed during the development of complex tissues, or potentially dangerous damaged cells to be destroyed for the benefit of the whole organism. It is characterized by a sequence of well-defined events resulting in cell destruction and is necessary for normal cell turnover. It is also essential to various other biological processes.",
    "The genes involved in the aging process include daf-16, daf-2, BAZ2B, HMGB4, NOC2L, RAI1, SIK1, SMARCA2, SPZ1, TBP, TRIP13, ZKSCAN1, DBH, TPO, LSS, GPER, HCRTR2, ATG2A, NEDD4L, PSMB1, UBXN4, USP6, EEF1A2, ITGB2, TUBB2C, WRN, ABCA7, AZGP1, CD36, DEGS2, PI4KA, SOAT2, APOE, LDLR, CDKN2B, RBM38, IGF1R, FOXO3, SNCA, NAP1L4, GAB2, QKI, and many others.",
    "The aging process is caused by a combination of factors including genetic influences, environmental conditions, and stochastic processes. It involves the accumulation of molecular damage, mutations, incomplete repair, and genetic programs. Other factors include wear and tear on cells, decreased immune defenses, oxidation and inefficient mitochondria, toxins and radiation, glycosylation, caloric intake and sirtuin production, neurotransmitter imbalance, hormone mechanisms, reduced nitric oxide, and stem cell slowdown. Aging is also associated with changes in dynamic biological, physiological, environmental, psychological, behavioral, and social processes."
  ],
  "contexts": [
    [
      "Intervention trials and cell-based monotherapy",
      "Rapamycin is used clinically to prevent organ transplant rejection, for some forms of cancer, and to prevent restenosis in cardiac stents (Kaeberlein 2013b).Shortterm treatment with the rapamycin derivative RAD001 improves ageassociated decline in immune function, as measured by antibody response to an influenza vaccine, in healthy elderly people (Mannick et al. 2014).Rapamycin has been shown to be well tolerated in dogs, improves outcome in a glycogen storage disease model (Yi et al. 2014), and is currently being tested in veterinary clinical trials as a treatment for osteosarcoma (Paoloni et al. 2010).A veterinary clinical trial is underway to assess the side effect profile and effects on age-associated cardiac function following 10 weeks of rapamycin treatment in healthy elderly dogs (Kaeberlein 2015).Rapamycin is currently the most effective pharmacological intervention for extending lifespan and delaying a broad range of age-related functional declines in rodents (Johnson et al. 2013).However, the doses used clinically to prevent organ transplant rejection are associated with side effects, such as impaired wound healing, edema, elevated circulating triglycerides, impaired glucose homeostasis, gastrointestinal discomfort, and mouth ulcers (Augustine et al. 2007;de Oliveira et al. 2011).These adverse side effects would likely preclude long-term use of rapamycin at these levels in otherwise healthy people.With the possible exception of impaired glucose homeostasis (Lamming et al. 2012), these side effects have not been observed at doses that are associated with increased lifespan and healthspan in mice, however, raising the possibility that lower doses of this drug could promote healthy aging with minimal adverse effects.This trial is designed to determine whether treatment with the drug rapamycin (see Table 1) can significantly reduce age-related disease and disability as well as mortality in middle-aged large dogs.The initial phase of this trial, which is in progress at the time of this writing, is intended to enroll at least 32 dogs 6 years of age or older and 40 lb in weight or greater.Each animal receives an initial veterinary exam and comprehensive blood work along with a cardiac exam including echocardiography (Fig. 3).Those dogs that do not present with any abnormalities or significant pre-existing health conditions are randomized into either placebo or rapamycin treatment groups for a 10-week treatment period.Initial rapamycin dosing regimens were determined, in part, based on pharmacokinetic analysis of rapamycin treatment in healthy dogs (Larson et al. 2016).After 10 weeks in the study, each dog receives another full exam and blood chemistry panel as well as repeat cardiac exam.The primary goals of this first phase are to establish appropriate dosing of rapamycin in the absence of significant adverse events and to determine whether similar improvements in cardiac function are achieved in aged dogs after 10 weeks of rapamycin treatment, as has been observed in laboratory mice (Dai et al. 2014;Flynn et al. 2013).To date, only one study has been performed assessing the impact of a rapamycin derivative on healthy aging in people.In this trial, it was observed that 6 weeks of treatment with the rapamycin derivative RAD001 (everolimus) was sufficient to enhance function of the aged immune system, as assessed by response to an influenza vaccine (Mannick et al. 2014).This recapitulates what was observed in elderly mice (Chen et al. 2009), and suggests that at least some of the mechanisms by which rapamycin delays aging in mice work similarly in humans.Although both compounds have essentially identical biological activities, RAD001 was used in this study instead of rapamycin because the study was funded by Novartis, who holds the patent rights for RAD001 (rapamycin is now off patent and sold as a generic drug).The doses of RAD001 used in the human immune aging study were lower than those typically used to prevent organ transplant rejection and showed improved side effect profiles, although some adverse effects, including the presence of mouth sores in a subset of the patients, were noted.Pending the outcome of phase 1, we anticipate enrolling several hundred additional dogs with similar entry criteria into a longer-term, 3-5 year study, to carefully assess the extent to which rapamycin improves health and reduces mortality in middle-age companion dogs.In addition to cardiac function, assessments of multiple age-related phenotypes will be performed including measures of cognitive function, muscle function, kidney function, glucose homeostasis, and cancer incidence.Many of these parameters are beneficially impacted by rapamycin in aging mice (Johnson et al. 2015), and we predict that rapamycin will induce similar improvements in aging dogs.Fig. 3 Design of the current short-term rapamycin intervention trial.Dogs must weigh at least 40 pounds and be at least 6 years old at time of entry into the study.If no significant pre-existing health conditions are detected at the first exam, dogs are randomized into either placebo or one of the rapamycin treatment groups.Red indicates the 10-week period during which the dogs receive either rapamycin or placebo.Dogs receive the same generic rapamycin (sirolimus) pill that is provided to human patients.Asterisk Serum and feces are collected at each appointment for future metabolomic and microbiome analyses and for quantitation of circulating rapamycin levels",
      "All patients included in the study were receiving medications such as anti-hypertensive drugs (mainly angiotensin-converting enzyme inhibitors), blood sugar lowering agents and diuretics.In addition, infusions of human recombinant erythropoietin and iron hydroxide were administered.Just one patient reported a history of gastric cancer.Patients with chronic viral diseases (hepatitis, HIV) were excluded from the study.",
      "RapamycinRapamycin is a macrolide isolated from Streptomyces hygroscopicus, a bacteria from Pascua Island (Rapa Nui).It has functions as an antibiotic, an immune suppressant drug, and it is also proposed as a CRM.After the first studies, it was found that rapamycin could induce the extension of the replicative life of yeast through the inhibition of TOR signaling [57].This compound could extend the lifetime useful in 20-month-old mice in correlation with TOR activity [58].These studies were the basis of the research to determine the function of rapamycin as a CRM, due to its modulating properties over proteostasis.In addition, studies suggest that rapamycin can be combined with other compounds (metformin, losartan, statins, propranolol, and aspirin among others) to potentiate their anti-aging activity [59].",
      "One out of the 25 FDA approved Breast cancerdrugs (Gemcitabine), was found in the top 20 drug list from LINCS from breast cancer stage I (dark magenta). As shown in Fig. 12, one drug out of 25 FDA approved Breast cancer drugs, Gemcitabine, was found asrepurposed drug from LINCS for breast cancer stage III. Letrozole (Breast cancer drug) has similar structure(greater than 60%) with Ruxolitinib (repurposed drug from LINCS) a drug for the treatment of intermediate orhigh-risk myelofibrosis (Fig. 13).One out of the 25 FDA approved Breastcancer drugs (Palbociclib), was found in the top 20 drug list from LINCS from breast cancer stage II (deep pink). Scientific Reports | 6:20518 | DOI: 10.1038/srep2051813www.nature.com/scientificreports/Figure 11. Highlighted target genes that physically interact with genes from the breast cancer stageII common network pattern and their corresponding repurposed drugs from LINCS, along with theirstructurally similar Breast cancer drugs. As shown in Figs 1617 two target genes (TOP2A and TYMS) are also involved in the Triple Negative pattern.Two of them (Gemcitabine and Palbociclib) are included in the list of the 25 knownFDA-approved Breast cancer therapeutic drugs. We performed a Hypergeometric distribution test in order tofind the statistical significance of this drug overlapping. More precisely, LINCS_L1000 database is comprisedfrom 20,413 chemical reagents. Twenty two out of twenty five breast cancer drugs are also included in LINCSdatabase. Finally, from the 105 drugs that were found from our analysis, the probability of finding two drugs tooverlap with the Breast Cancer drugs in LINCS is 0.005471157, pointing out that there is statistical significancein their selection.Two from the 25 FDAapproved Breast cancer drugs (Gemcitabine and Palbociclib), was found in the top 20 drug list from LINCSfrom Luminal A breast cancer (dark magenta and deep pink respectively).One out of the 25 FDAapproved Breast cancer drugs (Gemcitabine), was found in the top 20 drug list from LINCS from breast cancerstage III (dark magenta). that was found from the drug repurposing analysis of HER2 pattern. It has similar structure - 75% withWZ-4002 repurposed drug, which is a novel mutant-selective inhibitor of EGFR. Finally, both Palbocicliband WZ-4002 are structurally similar to Dasatinib (more than 60%), which is a cancer drug used to treatacute lymphoblastic leukemia.18 two drugs out of 25 FDA approved Breast cancer drugs  Gemcitabine and Palbociclib were also found as repurposed drugs from LINCS for breast cancer Luminal A (Fig. 18). Two genes from theLuminal A network pattern physically interact with four genes that involved in Histone deacetylases class(HDAC1, HDAC2, HDAC3 and HDAC8), which are target genes of Vorinostat (repurposed drug from LINCS). Vorinostat is a member of a larger class of compounds that inhibit histone deacetylases (HDAC) and it is usedto treat cutaneous T cell lymphoma (CTCL).Network pattern for each breast cancer subtype and the common interactions across Luminal Aand Luminal B. As shown in Fig. 8, one drug out of 25 FDA approved Breast cancer drugs, Gemcitabine, was proposed asrepurposed drug by the LINCS for breast cancer stage I. Furthermore, Gemcitabine is quite similar (tanimoto31similarity greater than 80%) with Clofarabine and Kinetin-riboside (repurposed drugs from LINCS). Clofarabineis also an anti-cancer, antineoplastic chemotherapy drug and is classified as an antimetabolite.One from the 25 FDAapproved Breast cancer drugs (Gemcitabine), was found in the top 20 drug list from LINCS from breast cancerstage IV (dark magenta). at the G2/M phase. Coconut milk contains kinetin riboside and is thought to have the potential to inhibit the progression of many cancers, including prostate, colon and breast cancer. One study found that carcinogen-inducedmammary tumors in mice were reduced by coconut oil too (http://foodforbreastcancer.com/). Moreover, in StageI, Sepantronium bromide (repurposed drug from LINCS) has been found similar with Vinblastine Breast cancerdrug and Idarubicin with Doxorubicin and Epirubicin respectively.",
      "Rapamycin has serious side effects, particularly as an immunosuppressor, and thus it is not suitable as an antiaging drug.As in sirtuins, however, these studies highlight the road from basic discovery on the biology of aging to antiaging interventions.Further studies of the TOR pathway and of repressors more specific of its downstream signaling pathway are ongoing.Whether rapamycin produces a change in another parameter related to energy uptake or utilization is unknown, and determining which of its effects modulate lifespan is an important unsolved question.Like resveratrol, TOR has attracted considerable attention from the pharmaceutical industry, particularly in the context of cancer (Meric-Bernstam and Gonzalez-Angulo, 2009).",
      "Hayes DF, Stearns V, Rae J, Flockhart D; 32 Consortium on Breast Cancer Pharmacogenomics.A model citizen?Is tamoxifen more effective than aromatase inhibitors if we pick the right patients?J. Natl Cancer Inst.100(9), 610-613 (2008)."
    ],
    [
      "Recent developments on the genetics of aging can be seen as several streams of effort.In general, humans show a relatively modest (<50%) heritability of life spans (results obtained from twin studies discussed below).The apoE polymorphisms are remarkable for their influence on both cardiovascular disease and Alzheimer disease.In contrast, rare mutant genes with high penetrance cause these same diseases but with early onset and a major shortening of the life span.Shortlived laboratory models (fruit flies, nematodes, mice) are yielding rapid advances, with the discovery of mutants that increase life spans in association with altered metabolism, which leads to questions on the physiological organization of aging processes.Although these early findings do not show that a conserved genetic program actually controls aging processes across animal phylogeny, it is striking how frequently findings of metabolic rate, insulin signaling, and free radicals have emerged from very different approaches to aging in nematodes and mammals, for example.These findings hint that the genetic control of life span was already developed in the common ancestor of modern animals so that subsequent evolution of life spans was mediated by quantitative changes in the control of metabolism through insulin and the production of free radicals.",
      "FUTURE DIRECTIONS: HIGHER RESOLUTION DATA VIA HIGHER THROUGHPUT ASSAYSOne inescapable conclusion of the aggregate results of genome-wide studies of aging to date (see summary Table 1) is that we have not come close to saturating the number of potentially lifespan-altering genes in any organism.This is in no small part because directly generating survival curves is a relatively time-consuming process in most model organisms using current methods.There are several possible ways to address this.One way that has been tried is by attempting to find surrogate phenotypes [72,73,126] that can be screened more rapidly, or even scored under selection.Another is mining candidates from the many whole-genome expression profiles.Results to date with these have been very fruitful, but have not suggested that these methods alone will rapidly saturate our search for lifespan-and healthspan-altering genes in tractable model organisms.",
      "Chromosome mapping of genes that were differentially expressed in mice of different ages and/or in response to CR revealed a wide distribution of genes with some physical clustering of responsive genes within the genome.The latter findings are consistent with the concept that aging is a complex process and that evolutionary adaptations to aging, if they exist, may or may not involve geographic clustering of functionally related genes.",
      "Geneticlinkage studies of long-lived human families identified alongevity locus while candidate gene approaches have beenused to identify and confirm the association betweenspecific variants in the FOXO3A gene and humanlongevity [37]. Genome-wide association studies havealso been used to identify the association of APOE with life123Aging Clin Exp Resspan and have yielded insights into potential biologicalpathways and processes related to aging. Despite thesesuccesses, several problems are inherent in humanlongevity studies including potentially high degrees ofenvironmental heterogeneity, genetic diversity, and lack ofbirth matched controls, among others [8].",
      "The aging process most certainly is under highly polygenic controls This should not discourage us from pursuing a search for those loci which may be of profound importance to human aging as it ordinarily occurs in most human beings.",
      "In most experimentally modified animal model systems, single-gene mutations in many different genes have major life extension effects (Fontana et al., 2010;Kenyon, 2010).However, natural human and animal longevity is presumed to be a complex trait (Finch & Tanzi, 1997).In humans, both candidate gene and genome-wide genetic association approaches have been applied in an attempt to identify longevity loci.The frequency of genetic variants has been typically compared between nonagenarian cases and young controls, revealing loci at which genetic variants may contribute to a higher or lower probability of survival into old age.The initial candidate gene studies aimed at finding human longevity genes were dominated by contradictory results (Christensen et al., 2006).The more consistent evidence obtained by repeated observation in independent cohort studies for association with longevity has so far only been observed for three loci, the apolipoprotein E (APOE) locus (Schachter et al., 1994;Christensen et al., 2006), the FOXO3A locus (Willcox et al., 2008;Flachsbart et al., 2009;Pawlikowska et al., 2009;Soerensen et al., 2010), and the AKT1 locus (Pawlikowska et al., 2009).Thus, despite the expectation that longevity would be influenced by many genetic variants with small effect sizes, the effect of variants has consistently been shown in only three genes.",
      "1993), andgene expression microarrays (Pletcher et al. 2002). Given the ambiguities and limitations of large-effect mutant studies of aging, discussed earlier, those publications do notprovide very useful evidence with respect to the question of the number of loci thataffect aging. At present, the best answer to the question of the number of genes controlling aging is many (Rose and Long 2002), in keeping with the original expectations ofevolutionary biologists. However, studies of the genetics of the experimental evolution of aging are nowamenable to the application of genomic methods.",
      "Accepted Article 2013 The Authors Aging Cell  2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland over 90 years and 1,955 controls between 55 and 80 years did not reveal genome-wide significant loci (Newman et al., 2010) and neither did the analyses of all-cause mortality and survival free of major disease in this cohort (Walter et al., 2011).A smaller Dutch study of 403 nonagenarians and 1,670 controls younger than 65 years identified the APOE gene as a mortality locus (Deelen et al., 2011), which was confirmed in a German study of 763 long-lived individuals and 1,085 younger controls (Nebel et al., 2011) and a longitudinal study of 1,606 Danes showed that the effect size of this association increases at the highest ages (Jacobsen et al., 2010).Apparently, the influence of the common genetic variation on longevity is small which requires large meta-GWA studies for identification.Alternatively, rare genetic variants may play a more important role in longevity.Since the previous linkage studies showed contradictory results potentially due to heterogeneity in the longevity phenotype, it is expected that longevity is influenced by many private rare variants.",
      "Ageing is complex and takes a long time to study -a lifetime in fact.This makes it difficult to discern its causes, among the countless possibilities based on an individual's genes, behaviour or environment.While thousands of regions in an individual's genetic makeup are known to influence their risk of different diseases, those that affect how long they will live have proved harder to disentangle.Timmers et al. sought to pinpoint such regions, and then use this information to predict, based on their DNA, whether someone had a better or worse chance of living longer than average.",
      "Several explanations are possible for the lack of genomewide significant findings.First, mortality is arguably 1 of the most complex phenotypes, and several trajectories toward extreme old age have been identified (Evert et al., 2003).Multiple genes could mediate the aging process but would have their effects through numerous different patho-physiological processes and diseases that act as intermediate factors on the pathway to death (de Magalhaes et al., 2010).Therefore, any common variation in genes associated with aging probably has a small effect.Second, the largely negative findings of this and other studies contrast with the intriguing animal studies of longevity.Very large effects of single genes on lifespan have indeed been observed in laboratory animals, but humans often have several homologues of these genes which might significantly differ in function or compensate for mutated genes through redundant mechanisms (Kuningas et al., 2008).This could explain why our top findings did not include genes in these pathways found in animal models.Animal models also represent genetically homogenous populations and are exposed to controlled environmental influences.The lack of replication of animal model findings in humans suggests that the use of knockout animals may not provide the optimal approach to understanding the variation in survival in humans as interactions with environmental factors may obscure the associations and prevent the identification of loci in humans.The lack of success in the identification of genes related to aging in humans may be due to the complexity of the phenotype.One approach to investigate aging and longevity is to compare frequencies of genetic variants between nonagenarians or centenarians and the general population.This approach led to the discovery of an association between APOE (Deelen et al., 2011;Ewbank, 2007;Gerdes et al., 2000) and more recently FOXO3A (Anselmi et al., 2009;Flachsbart et al., 2009;Li et al., 2009a;Pawlikowska et al., 2009;Willcox et al., 2008) and human aging and longevity.However, a recent genome-wide association study (GWAS) of individuals reaching the age of 90 or older failed to identify genome-wide significant variants (Newman et al., 2010).",
      "In addition to timing differences, a small proportion of genes (10%-15%) exhibit opposite trends of expression changes with age in humans and macaques (Supplemental Fig. S13).Interestingly, such differences are ;1.5 times more common in aging than in development, an observation consistent with the lower strength of purifying selection on the gene regulation at old age (discussed below).These differences could also reflect extreme shifts in developmental timing between species, as well as technical artifacts.Future studies, using additional species and alternative methodology, are needed to address this issue.",
      "1993), andgene expression microarrays (Pletcher et al. 2002). Given the ambiguities and limitations of large-effect mutant studies of aging, discussed earlier, those publications do notprovide very useful evidence with respect to the question of the number of loci thataffect aging. At present, the best answer to the question of the number of genes controlling aging is many (Rose and Long 2002), in keeping with the original expectations ofevolutionary biologists. However, studies of the genetics of the experimental evolution of aging are nowamenable to the application of genomic methods.",
      "The remarkable discoveries of the past 2 decades showing that single genes can regulate aging in model organisms demonstrate that aging can be genetically manipulated (Finch and Ruvkun, 2001;Kenyon, 2010).Hundreds of genes that modulate longevity have now been identified in model organisms (de Magalha es et al., 2009a).In some cases (e.g., in worms), mutations in single genes can extend lifespan by almost 10-fold (Ayyadevara et al., 2008).Nonetheless, aging is a complex process that derives not from single genes but from the interactions of multiple genes with each other and with the environment.Evidence from animal systems shows a major impact of the environment on aging, yet environmental manipulations of aging act through genes and proteins, usually by triggering signaling pathways and modulating gene expression.In fact, some genes have been shown in model organisms to have varying effects on lifespan depending on diet (Heikkinen et al., 2009).Genes that can regulate aging in model organisms cannot be directly applied to humans through genetic manipulations for numerous legal, ethical, and technical reasons.If we could understand how the environment modulates these aging-related genes, we might be able to create antiaging therapies applicable to humans, potentially through diet, lifestyle, and even pharmacological interventions.Therefore, understanding genome-environment interactions in the context of aging can be a powerful approach to identify attractive targets for drug design.",
      "TRANSLATION OF LONGEVITY MODEL ORGANISMS AND CORE AGING PATHWAYSGenetic studies on lifespan have proven to be challenging.While longevity is a defining trait for a given species, the lifespan of individuals is of limited heritability, making analyses more difficult.Exceptional human life span, although a rare phenotype, is likely multifactorial; refined analyses are required to obtain statistically robust genomic signatures of longevity (Zhang et al., 2020) and these have proven elusive.Unlike laboratory models, the effect of environmental variance cannot be controlled in human studies, potentially masking purely biological aging mechanisms.Even laboratory models cannot replicate the complex \"environment\" of humans; it includes psychosocial, economic, and cultural factors, rather than strictly biological.These human-specific confounders are difficult or impossible to target in traditional model organisms.Despite these limitations, experimentally tractable model organisms have proven invaluable in deciphering the purely genetic contribution to lifespan, including genes and pathways conserved across the tree of life.ANALYSIS OF HUMAN VARIATION IN THE GENETIC CONTROL OF LONGEVITYHeritability studies have convincingly demonstrated that at least some fraction of human lifespan is heritable.In tandem, large-scale genome-wide association studies (GWAS) have identified numerous loci associated with age-related traits (Buniello et al., 2019).While genetic studies have functionally shown an inverse effect of multiple age-related, diseaseassociated variants on lifespan regulation, the number of well-replicated longevity-conferring variants remains limited to variants in APOE (ApoE 2), and more recently, CDKN2A/B and IL6 (see Table 1).To date, studies in humans have been hampered by the specific phenotype definitions used, sample sizes of the extreme phenotypes, and modest heritability of the longevity-related traits (Breitbach et al., 2019).This is due to the complex interplay of biological and social factors involved in human aging, as well as the limited power of GWAS, which require sampling thousands of subjects to achieve statistical significance (Breitbach et al., 2019).Genetic studies of aging have also been hindered by an inconsistent use of definitions of aging (reviewed in Baghdadi et al., 2020).The two main ways of conducting research on the genetics of longevity in human populations are by studying (i) the lifespan (continuous trait, years lived) and (ii) the longevity (dichotomous trait, i.e., being among the longest-lived individuals within a specific population).These complexities have limited the resolution and capability of broad association studies of human longevity.Importantly, these genomic analyses focus on a shift of survival in a population; these variables may be genetically distinct from the mechanisms establishing potential for longevity overall (Figure 1A).We argue that an understanding of this shift in lifespan as well as genetic mechanisms of regulating a species specific 'set points' (Figure 1B) will aid in the conceptual distinction of aging and longevity in humans.",
      "With modern genomic technologies and largescale data analysis methods, it is possible to sift through the genes of populations to find the loci that act to postpone aging. [3]There are uncertainties with the comparison of populations with different rates of aging.However, it is superior to experimental designs that only consider age-dependence or dietary-response, without determining causal mechanisms.",
      "Most of the human candidate gene studies were performed in cross-sectional designs (Box 1 and Fig. 1), comparing allele frequencies of potential longevity loci between highly aged individuals and young controls.The candidate gene studies based on single genes have pointed a role for genes involved in, e.g., GH/insulin/IGF-1 signaling, immune regulation, and lipoprotein metabolism (Supporting Information Table S1), although most of these results have not (yet) been confirmed in sufficient independent studies.The most convincing human longevity loci today are APOE and FOXO3A which have frequently been associated with longevity in cross-sectional studies (see for a review [26]) and survival in prospective studies [27][28][29] (Fig. 3).APOE encodes the protein apolipoprotein E which seems to play a role in e.g., lipoprotein metabolism, cognitive function, and immune regulation [30].FOXO3A encodes the protein forkhead box O3 which acts as a transcription factor for many different genes involved in processes like apoptosis and oxidative stress [31].Conclusions and prospectsOver the past two decades the human aging field has built up the necessary resources to study the biology of aging and longevity by establishing human populations with a diversity of designs.Meta-analyses integrating genetic and phenotypic datasets have successfully identified variants associated with a range of age-related traits and diseases.Despite these accomplishments, the number of novel leads contributing to human lifespan regulation is limited.Although positive regions of linkage and suggestive GWAS hits have been reported, the field has not yet identified the loci that explain the clustering of longevity in families and the variation in biological aging rate in the population.As for animal models, down-signaling of the IIS and mTOR pathway appeared to be relevant in humans.These findings are being followed up by molecular and physiological profiling using skin, fat and muscle tissue of long-lived family members and controls.Human studies now also include the response of nutrient sensing systems to the application of dietary and physical challenges."
    ],
    [
      "Apoptosis, or controlled cell death [62], is another major stressed-cell response, and was also represented in our results (Fig. 9e).A large body of direct evidence points to apoptosis as one of the main routes of RPE degeneration in AMD [63].Induction of apoptosis upon stress is dictated by the action of master regulator p53, and it was recently shown that aging increases the activity of p53 in RPE cells and the likelihood for apoptotic cell death [64].Consistent with this evidence, we found association with pathways in Transcriptional regulation by TP53 group (Fig. 9d).In particular, Regulation of TP53 activity through methylation was among the top pathway in our association analysis (Table 1), suggesting that p53 modification by methylation and the closely related histone modifications [Protein lysine methyltransferases (PKMTs) methylate histone lysine in Fig. 9e] play important roles in RPE apoptosis regulation.In the intrinsic apoptotic pathway induced by oxidative stress, cytochrome c is released from mitochondria into the cytosol, binding and activating caspases, the main proteases central to apoptotic action.We found association in pathways involving 'inhibitor of apoptosis' (IAP) and its negative regulator 'second mitochondrial activator of caspases' (SMAC) [65], which suggests that disruption to regulatory mechanisms preventing apoptosis in RPE cells may play roles in AMD.",
      "ApoptosisPersistent DNA damage",
      "42ABSTRACT 18A MODULARIZED MODEL OF APOPTOSISHA Harrington, KHo, Sk Ghosh, KC Tung , CY Kao, and B AgudaImperial College London, Courant Institute of Mathematical Sciences New YorkUniversity, University of Texas at Arlington, University of Texas SouthwesternMedical Center, Mathematical Biosciences Institute, and Department ofMathematics, The Ohio State University Columbus, OH, USABackground: One of the key physiological mechanisms employed by the cell(during development and for maintenance of homeostasis) in multi-cellularorganism is apoptosis, which is characterized by a sequence of well-definedevents resulting in cell destruction.",
      "14Apoptosis is caused by the activation of the caspase cascade, which isinitiated by two signaling routes (stress-induced death and death-domainreceptor-induced death) (Domen 2001). This process can be prevented by antiapoptotic molecules, such as Bcl-2 (Domen and Weissman 2000). Directevidence for the involvement of apoptosis in HSC number regulation came fromthe findings that overexpression of the anti-apoptotic gene bcl-2 led to increasednumbers of Thy-1.1low, Sca-1+, c-kit+, Lin- cells, a population with long-termmulti-lineage repopulation potential (Domen et al. 2000).Several lines of evidence have indicated that apoptosis acts as animportant regulator of stem cells. First of all, expression of some apoptosisrelated genes were detected in human and/or murine HSCs (Domen 2001). Secondly, targeted disruption of some of these genes in null and dominantnegative mutant mice interfered with normal apoptotic processes in HSCs. Forexample, overexpression of Bcl-2, a negative regulator of apoptosis, increasednot only the numbers and competitive repopulation capabilities of HSCs, but alsothe resistance of HSCs to apoptosis induced by ionizing radiation (Domen andWeissman 2003).",
      "ApoptosisCell suicide, or apoptosis, is a well-studied biological phenomenon in multicellular organisms that allows specific cells to be removed during the development of complex tissues, or potentially dangerous damaged cells to be destroyed for the benefit of the whole organism.The lack of an apparent evolutionary benefit for such a process in a single-celled organism initially caused controversy about the presence of an apoptotic pathway in yeast.Today, however, a number of yeast orthologues to mammalian apoptosis genes have been discovered and apoptotic-like cell death has been linked to mating, colony formation, and aging (Buttner et al. 2006;Eisenberg et al. 2007;Frohlich et al. 2007).With respect to aging, both replicatively and chronologically aged cells that die have increased ROS and display apoptotic phenotypes (Fabrizio et al. 2004a;Herker et al. 2004;Laun et al. 2001).The importance of apoptosis in yeast aging has yet to be fully characterized.At the very least, yeast apoptosis provides a useful pathway for studying genetic interactions for age-related diseases that affect humans, such as cancer.Readers interested in further information related to yeast apoptosis are referred to several in-depth reviews (Buttner et al. 2006;Eisenberg et al. 2007;Frohlich et al. 2007).",
      "Early redistribution of plasma membrane phosphatidylserine is a generalfeature of apoptosis regardless of the initiating stimulus: inhibition by overexpression ofBcl-2 and Abl. J Exp Med 182: 1545-56. Mathew CG (2006). Fanconi anaemia genes and susceptibility to cancer. Oncogene 25:5875-84. McBride MW, Carr FJ, Graham D, Anderson NH, Clark JS, Lee WK et al (2003). Microarray analysis of rat chromosome 2 congenic strains. Hypertension 41: 847-53. Merino-Trigo A, Kerr MC, Houghton F, Lindberg A, Mitchell C, Teasdale RD et al(2004).",
      "When a cell harbors such severe DNA damage that it is beyond repair, it is disposed of through apoptosis.Alternatively, DNA damage can induce cellular senescence, the irreversible cessation of mitosis.Both processes are critically dependent on p53, which is known as the guardian of the genome [3] .DNA damage may also trigger autophagy, a cellular catabolic process that maintains homeostasis [4] .It should be noted that under normal conditions cells are rarely exposed to very high doses of DNAdamaging agents, which may be the explanation why we do not age and die because we run out of cells.However, aging is associated with some atrophy [1] and it is conceivable that at older ages bursts of DNA damage, for example from free radical reactions associated with inflammation, do occur and give rise to an increasingly high rate of apoptosis or cellular senescence.While there is some evidence for increased apoptosis and cellular senescence at old age, it is doubtful that under normal conditions this would lead to a significant loss of functional cells.",
      "Apoptosis, or programmed cell death, literally eliminates cells at risk for neoplastic transformation.Senescence, by contrast, permanently arrests their growth.Both processes are controlled by the p53 tumor suppressor protein (Amundson, Myers, & Fornace, 1998;Bringold & Serrano, 2000;Hickman, Moroni, & Helin, 2002;Itahana, Dimri, & Campisi, 2001).p53 is a transcriptional regulator that both transactivates and transrepresses target genes in response to stress (Prives & Hall, 1999;Ryan, Phillips, & Voudsen, 2001).These target genes, in turn, stimulate DNA repair, transient cell cycle arrest, permanent cell cycle arrest (senescence) or cell death (apoptosis), depending on cell type, degree and type of damage, and other variables.In contrast, cells that lack normal p53 regulation or function -for example, tumor cells -tend to die in response to telomere dysfunction.Some normal human cells, on the other hand, undergo a senescence growth arrest.In either case, when present, p53 is crucial for mediating the cellular response to telomere dysfunction (Yaswen & Stampfer, 2002) (Fig. 4).",
      "Cell death, and in particularapoptosis, can be caused by a number of mechanisms includingloss of growth factors and excitotoxicity (e.g. , Bhutta and Anand,2002; Nikolic et al. , 2013). It is of interest therefore, that proximalto the region of the QTL there are several genes that are relatedto growth factors including the latent transforming growth factorprotein 2 (ltbp2), placental growth factor (pgf), and transforminggrowth factor beta (Tgf beta).",
      "Apoptosis-related gene expression profiles",
      "Apoptosis.Programmed death of cells during embryogenesis and metamorphosis or during cell turnover in adult tissues.",
      "14Apoptosis is caused by the activation of the caspase cascade, which isinitiated by two signaling routes (stress-induced death and death-domainreceptor-induced death) (Domen 2001). This process can be prevented by antiapoptotic molecules, such as Bcl-2 (Domen and Weissman 2000). Directevidence for the involvement of apoptosis in HSC number regulation came fromthe findings that overexpression of the anti-apoptotic gene bcl-2 led to increasednumbers of Thy-1.1low, Sca-1+, c-kit+, Lin- cells, a population with long-termmulti-lineage repopulation potential (Domen et al. 2000).Several lines of evidence have indicated that apoptosis acts as animportant regulator of stem cells. First of all, expression of some apoptosisrelated genes were detected in human and/or murine HSCs (Domen 2001). Secondly, targeted disruption of some of these genes in null and dominantnegative mutant mice interfered with normal apoptotic processes in HSCs. Forexample, overexpression of Bcl-2, a negative regulator of apoptosis, increasednot only the numbers and competitive repopulation capabilities of HSCs, but alsothe resistance of HSCs to apoptosis induced by ionizing radiation (Domen andWeissman 2003).",
      "Fraction of cells displaying apoptosis",
      "It has been known that mitochondria play a central role in the life and death of cells (Kroemer & Reed, 2000).Apoptosis was observed in developmentally arrested embryos by 72 h, but not at 24 h after FCCP treatment, despite considerable telomere attrition at this early stage, suggesting that telomere attrition occurs prior to apoptosis and may serve as an intermediate step between mitochondrial dysfunction and apoptosis.These results also suggest that telomere shortening may signal apoptosis (Lee et al ., 1998;Karlseder et al ., 1999).",
      "Cell DeathA form of programmed cell death, apoptosis is necessary for normal cell turnover and is essential to a plethora of other biological processes.Apoptosis can be executed via Bcl-2 activation of caspases, via signals from the death receptor on the plasma membrane, or via induction by granzyme B secreted from cytotoxic T cells (Tc cells) [35].Endonucleases and proteases are activated by active caspases, eventually leading to the death of the cell.With age, however, apoptotic activity changes.In heart [36], kidney [37], skeletal muscle [38], and Tc cells [39], increased apoptosis has been reported, perhaps contributing to loss of cellularity in these tissues.This escalation across various tissues may be attributed to the increased production of free radicals [40] and furthermore exacerbated by the accumulation of DNA damage in the aged cells [41].As the risk increases for cells to turn cancerous and dysfunctional with advancing age, increased apoptosis in aged cells is argued to be a defense strategy.In other tissues, such as the colon, apoptosis appears to decrease with age perhaps contributing to the accumulation of senescent cells and age-associated carcinogenesis [42].",
      "The regulation and execution of apoptosis in endothelial cells is a complex process involving paracrine factors, membrane receptors, interaction of pro-and anti-apoptotic factors and cysteinyl aspartate-specific proteases (caspases).Recent studies suggest that in aging there is an imbalance in the expression of pro-and anti-apoptotic genes resulting in an enhanced apoptosis in the myocardium (19), central nervous system (24), skeletal muscle (10), lung (33), and liver (2,33).Yet, age-related alterations in the expression of pro-and anti-apoptotic genes in coronary arteries have not been elucidated.",
      "Apoptosis modulating genesApopotosis or programmed cell death is associated with alterations in cell morphology, particularly the nucleus, with endonucleatytic cleavage of DNA into nucleosomal length fragments.Apoptosis may result from withdrawal of growth signals."
    ],
    [
      "Indicative biological pathways associated with the candidate aging genesFig. 2 Significant biological processes associated with the candidate aging genesFollowing are examples of the identified genes and experimental or GWAS link between these genes and aging.On the list of the 25 top genes, NAP1L4 encodes a member of the nucleosome assembly protein (NAP) family, which interacts with both core and linker histones, and shuttles between the cytoplasm and nucleus, suggesting a role as histone chaperone.Histone protein levels decline during aging, and dramatically affect chromatin structure.Remarkably, the lifespan can be extended by manipulations that reverse the age-dependent changes to chromatin structure, indicating the pivotal role of chromatin structure in aging [32].In another example, gene expression of NAP1L4 increases with age in the skin tissue [33].Findings of GWAS link a number of the identified genes to age-related disorders, such as GAB2 and late onset Alzheimer's disease [86], and QKI and coronary heart disease/myocardial infarction [79].Interestingly, GWAS reports also link QKI to successful aging [87].",
      "Examples of biological candidate genes with pleiotropic functions, which are involved in aging in general and in musculoskeletal aging in particular, are numerous: (a) in addition to the IGF-1 and vitamin D genes, estrogen metabolism pathway genes, including estrogen receptors and aromatase (CYP19), are associated with fat-free mass (Walsh et al. 2005) and BMD (Shearman et al. 2004), prostate and breast cancer (Gallicchio et al. 2006), and cardiovascular disease risk (Shearman et al. 2003).",
      "In-depth analysis of the age-regulated genes revealed that multiple genes in the DNA damage response pathway were upregulated with age including those that function in non-homologous end-joining repair (mre11, rad50, Ku80 and mus308) and in translesion DNA synthesis (mus205 and DNApol-eta) [44][45][46].Genes that encoded enzymes with antioxidant properties, such as the thioredoxin reductase Trxr-1, and antioxidant genes involved in glutamate metabolism, such as GlnRS, isoQC and QC, were also upregulated with age [47][48][49][50].We also observed increased age-associated expression of chaperone genes (Cct1, Cct4, Cct5, Cct6, Hsc70-4) and the unfolded protein response transcription factor Xbp1, consistent with an induction of the unfolded protein response [51][52][53].Under stress conditions, there is a translational switch that favors production of stressrelated proteins while decreasing translation of other proteins [54].Paralogs of canonical translation factors such as NAT1 and Rack1, which were both upregulated, promote this switch to cap-independent translation [55,56].Notably, Rheb, which is downregulated with age, positively regulates ribosome production and capdependent translation by activating the mechanistic target of rapamycin (mTOR) kinase pathway [57].Thus, decreased Rheb levels during aging could decrease mTOR pathway activity, which extends lifespan and is protective against age-related pathology [58].Together, these data suggest that multiple genes are induced in aging photoreceptors to mitigate the effects of oxidative stress, protein misfolding and DNA damage.",
      "CellAge vs human orthologues of longevity-associated model organism genesTo understand how senescence is linked to the genetics of aging processes, we looked at the intersection of CellAge genes and the 869 genes in the human orthologues of model organisms' longevity-associated genes (LAGs) dataset, collected based on quantitative changes in lifespan [34].Like CellAge, where genes are classified based on whether their upregulation induces, inhibits, or has an unknown impact on CS, the longevity orthologues dataset also provides information on the effect of upregulation of its genes, namely whether it promotes (pro, 421) or inhibits (anti, 448) longevity (Additional file 1: Table S7; Additional file 2: Fig. S2).Using network biology, we implicated the CellAge genes in various processes, particularly cell division and immune system processes.We used network topology to identify potential regulators of CS and bottlenecks that could impact various downstream processes if deregulated.Indeed, we identified 11 genes that have already been shown to contribute towards CS, which will be added to future versions of CellAge.Finally, we experimentally verified 26 genes that induce CS morphology or biomarkers when knocked down in human mammary fibroblasts.Of these, 13 genes (C9orf40, CDC25A, CDCA4, CKAP2, GTF3C4, HAUS4, IMMT, MCM7, MTHFD2, MYBL2, NEK2, NIPA2, and TCEB3) were strong hits in inducing a senescent phenotype.Results: We develop CellAge (http://genomics.senescence.info/cells),a manually curated database of 279 human genes driving cellular senescence, and perform various integrative analyses.Genes inducing cellular senescence tend to be overexpressed with age in human tissues and are significantly overrepresented in anti-longevity and tumor-suppressor genes, while genes inhibiting cellular senescence overlap with pro-longevity and oncogenes.Furthermore, cellular senescence genes are strongly conserved in mammals but not in invertebrates.We also build cellular senescence protein-protein interaction and co-expression networks.Clusters in the networks are enriched for cell cycle and immunological processes.Network topological parameters also reveal novel potential cellular senescence regulators.Using siRNAs, we observe that all 26 candidates tested induce at least one marker of senescence with 13 genes (C9orf40, CDC25A, CDCA4, CKAP2, GTF3C4, HAUS4, IMMT, MCM7, MTHFD2, MYBL2, NEK2, NIPA2, and TCEB3) decreasing cell number, activating p16/p21, and undergoing morphological changes that resemble cellular senescence.Conclusions: Overall, our work provides a benchmark resource for researchers to study cellular senescence, and our systems biology analyses reveal new insights and gene regulators of cellular senescence.",
      "Genomics-a fundamental basis for understanding skin agingIn the last decade, genomic tools such as gene chips have been widely developed.This accomplishment has provided us with deeper insights into the molecular events underlying skin aging. 137Gene expression profiling has led to identification of pathways affected by aging, and this information has led to the development of new strategies to enable better skin repair and antiaging benefits. 138ene expression patterns were examined in sun-protected (buttocks) and sun-exposed skin (extensor forearm) from 10 young (age 19 to 20 years) and 10 older women (age 63 to 67 years) to examine gene expression profiles associated with chronologic skin aging and photoaging.Chronologic and photoaging were both associated with downregulation of the biologic process of lipid synthesis.In particular, genes involved in cholesterol and fatty acid synthesis were downregulated, as were genes associated with epidermal differentiation, including keratin filaments and cornified envelope components.An upregulation of the biologic processes of inflammatory response and wound healing, the molecular functions of cytokine activity and protease activity and the cellular component theme of extracellular matrix was also observed in both skin aging types.Elastin gene expression was upregulated with aging only in the photodamaged arm and remained unchanged in the sunprotected buttock.This finding corresponds to the histopathologic findings that show typical elastotic changes, the \"solar elastosis,\" in photoaged skin. 139urther studies conducted to investigate changes in gene expression during skin aging have been performed on naturally aged human foreskin obtained from children and elderly men.Some of the mechanisms proposed to be involved in the induction of aging comprise disturbed lipid metabolism, altered insulin and STAT3 signalling, upregulation of apoptotic genes partly due to the deregulation of FOXO1, downregulation of members of the jun and fos family, differential expression of cytoskeletal proteins (eg, keratin 2A, 6A, and 16A), extracellular matrix components (eg, PI3, S100A2, A7, A9, SPRR2B), and proteins involved in cell-cycle control (eg, CDKs, GOS2). 140Similar results have been presented by a study related to aging of skeletal muscle. 141n a previous study, we proposed that one of the factors significantly involved in the initiation of aging might be the physiologic decline of hormones occurring with age.Human SZ95 sebocytes in vitro treated with hormone levels that can be found in 60 year-old women produce less lipids than sebocytes treated with a hormone mixture representing that found in the serum of 20 year-old women. 6A differential gene expression between SZ95 sebocytes under the 20 and 60 year-old hormone mixture detected differentially expressed genes that are involved in biologic processes such as DNA repair and stability, mitochondrial function, oxidative stress, cell cycle and apoptosis, ubiquitin-induced proteolysis, and transcriptional regulation. 139,140A comparison of these results with data obtained from the aged kidney 142 identified key genes that may be of great importance for global aging.The most significantly altered signalling pathway was that of TGF-.A disturbed function of this cascade has been also  c-Fos, which heterodimerize to form the activator protein 1 (AP-1) complex.AP-1 is a key regulator of skin aging, because it induces the expression of the MMP family and inhibits type I procollagen gene expression through interference with TGF- signalling pathway.It has been postulated that MAP kinases may be activated by excess production of reactive oxygen species (ROS) that occurs with advanced age and may be superimposed by extrinsic factors such as ultraviolet irradiation.Excess ROS production also leads to accumulation of cellular damage, which includes oxidation of DNA resulting in mutations, oxidation of proteins leading to reduced function, and oxidation of membrane lipids resulting in reduced transport efficiency and altered transmembrane signalling.IL, interleukin; NF-B, nuclear factor-B; TGF-, transforming growth factor-; TSP-1, thrombospondin-1; TSP-2, thrombospondin-2; VEGF, vascular endothelial growth factor.associated with tumorigenesis, such as in pancreatic, prostate, intestine, breast, and uterine cancer.",
      "Analysis of prior research (Online Resource 5) shows that the revealed genes can be explicitly involved in other key biological processes in an organism whose role is known to be changing with aging.Specifically, ten genes (BAZ2B, HMGB4, NOC2L, RAI1, SIK1, SMARCA2, SPZ1, TBP, TRIP13, and ZKSCAN1) regulate transcription which is believed to be disrupted when an organism is getting older (Roy et al. 2002).The DBH, TPO, and LSS genes are involved in synthesis of catecholamine, thyroid, and vitamin D hormones, respectively.The GPER binds estrogen and HCRTR2 binds orexin-A and orexin-B neuropeptid hormones.Hormonal deregulation with aging is considered to be one of the major components of senescent processes in an organism (Barzilai and Gabriely 2010).Five genes (ATG2A, NEDD4L, PSMB1, UBXN4, and USP6) are involved in degradation of proteins through ubiquitin-proteasome and the lysosomal/autophagic system.Dysfunction of this system leads to accumulation of damaged proteins in an organism that is associated with aging (Koga et al. 2011).Protein degradation through ubiquitin-mediated proteolysis plays an important role in cell-cycle regulation (Reed 2003).The PSMB1, SIK1, TRIP13, and TTN genes in the revealed set coordinate cell cycle.Cell cycle is linked with the aging-related processes in humans through a gradual increase in cell division errors in all tissues in an organism (Ly et al. 2000).Five genes (EEF1A2, DBH, ITGB2, TUBB2C, and WRN) take part in regulation of apoptosis which plays an important role in the aging process and tumorigenesis (Salvioli et al. 2008).Seven genes (ABCA7, AZGP1, CD36, DEGS2, LSS, PI4KA, and SOAT2) are involved in lipid metabolism which plays one of the key roles in human longevity and healthy aging (Barzilai et al. 2003).",
      "Genes that are age-regulated in all tissues would reveal genes involved in core mechanisms that underlie cellular ageing.Zahn et al. [63] discovered genetic pathways that show common age regulation in human kidney, brain and muscle.They used microarrays to analyse expression in 81 skeletal muscle samples from patients aged 16 -86 years and found 250 age-regulated muscle genes [63].Similar to the ageing expression profile for the kidney, the overall expression behaviour of this set of age-regulated muscle genes correlated with the physiological as well as chronological age of the muscle sample.Next, they compared their muscle-ageing results to previously published data on kidney and brain ageing of similarly large sample size [56,60].Although most of the age-related changes were tissue specific, they found evidence for common age regulation of six genetic pathways in all three tissues.Specifically, there is an overall increase in expression of the extracellular matrix genes, the ribosomal genes, the cell growth genes and the complement activation genes in all three tissues.Increased overall expression of the extracellular matrix and complement activation gene sets with advancing age may contribute to widespread fibrosis and inflammation in the elderly.There is an overall decrease in expression of the chloride transport genes and the electron transport genes in all three tissues.Decreased overall expression of electron transport chain genes with age might support the mitochondrial free-radical theory of ageing [67], as free-radical generation by mitochondria would preferentially damage the electron transport chain protein complexes.Decreased expression of the electron transport genes (encoded in the nucleus) might be caused by feedback regulation from damage to the electron transport chain protein complexes [63].However, it is also possible that increased oxidative damage occurs as a consequence of the decreased expression of the electron transport chain genes.In addition, an increasing number of studies in model organisms have critically challenged the mitochondrial free-radical theory of ageing [68].",
      "DiscussionAging studies from model organisms such as yeast, worms, and flies have repeatedly shown that changes in the expression of certain genes have an effect upon longevity.Although similar aging processes are likely to operate across multiple species [30], it has been much more difficult to identify longevity candidate genes in human studies [30].A key question in human aging is to what extent a signature of aging may be detectable across tissues.Until now there has been a lack of large transcriptional profiles from the same human individuals in multiple tissues.The MuTHER study provides insight into the human aging process by interrogating the largest multiple human tissue gene expression resource to identify genes in which expression was affected by chronological age.The analysis of the skin and adipose tissues samples identified several hundred genes responsive to changes in chronological age.However, the 43 shared genes in skin and adipose tissue showed a single common identifiable pathway related to the stress response.From over 1,800 transcripts that have altered expression with age in skin and adipose tissues, 14 also had age-related differential expression in brain.The limited overlap in these two experiments may partly reflect the smaller sample size of the brain expression dataset, the differences in age range between the studies (16 to 83 years for brain samples; 39 to 85 years for MUTHER samples), or the inclusion of males in the brain samples.But it may also imply, as other studies have suggested, that the effects of age on gene transcription are tissue specific [6,31,32].This hypothesis was supported by the comparison with known related aging genes from the GenAge database, which identified an overlap for a small number of aging-related genes with our data.The GenAge database was the result of a meta-analysis using age-related expression profiles from human brain, kidney, and skeletal muscle, and several expression profiles from mouse and rat; no adipose tissue or skin samples were included (Additional file, Table 1 in [7]).The limited overlap between these datasets supports the idea that molecular signatures of aging reflect predominantly a tissue-specific transcriptional response.The lack of age-related genes in transformed LCLs, suggest that the transformation to immortalize a cell line may mask or even remove the age-related signatures in gene expression.The transformation of primary B lymphocytes into LCLs requires infection by the Epstein-Barr virus which has the effect of disrupting the p53 signaling pathway in order to induce growth and survival [33].Joehanes et al. [15] identified only five genes with age-associated expression in LCLs, including p53 itself (TP53).Although the authors attribute the lack of age-affected genes to their small sample size (n=50) and narrow age range, our analysis with a much larger sample size found even fewer age-related changes, suggesting a lack of detectable aging signature in LCLs.The analysis in the subset of fresh lymphocytes suggested an age influence in fresh lymphocytes may potentially be detectable with a larger sample size.",
      "Genes Whose Expression Decreased with Age.Of the 26 genes that decreased expression with age in control mice, 23% are involved in DNA replication and the cell cycle (Table 2).Most of these have a negative effect on cell growth and division.Among these, the product of phosphatase and tensin homolog (Pten) gene is a tumor suppressor that induces cell-cycle arrest through inhibition of the phosphoinositide 3-kinase pathway (28).B cell translocation gene 2 (Btg2) is a tumor suppressor that increases expression in response to DNA damage (29).The murine gene product of the amino-terminal enhancer of split (Aes) is a potent corepressor of gene expression and cellular proliferation (30).Calcium-binding protein A11 (S100a10) binds to and regulates the activity of annexin II, which is involved in the transduction of calcium-related mitogenic signals (31).Insulin-like growth factor (IGF) binding protein 1 (Igfbp1) plays an important role in the negative regulation of the IGF-1 system, a stimulator of mitogenesis (32).",
      "daf-16 dependent genesAmong the 52 genes that we have tested, 29 genes act almost completely in a daf-16 dependent manner, to regulate lifespan (Table 2).One of the genes identified was daf-2 (Y55D5A_391.b).This serves as a proof of principle that our screen is effective in identification of aging genes.",
      "Several of the genes we identify have previously been shown to influence lifespan in experiments on model organisms.For example, knockouts of the orthologs of APOE, LDLR, CDKN2B, and RBM38 in mice shortens their lifespan [24][25][26][27] , while knockout of IGF1R has the opposite effect 28 .Similarly, overexpression of the FOXO3 orthologue in Drosophila melanogaster 29 and the SNCA orthologue in Caenorhabditis elegans 30 have shown to extend their respective lifespans.Many of our genes are also enriched for pathways previously related to ageing in eukaryotic model organisms, including genomic stability, cellular senescence, and nutrient sensing 31 .For example, FOXO3 and IGF1R are well-known players modulating survival in response to dietary restriction 32 , but we also highlight genes involved in the response to DNA damage and apoptosis, such as CDKN2B, USP28, E2F2, and BCL3.In addition to hallmarks discovered in model organisms, our results suggest that haem metabolism may play a role in human ageing.This pathway includes genes involved in processing haem and differentiation of erythroblasts 33 .Although the enrichment is largely driven by genes linked to the LDLR locus, genes linked to other loci of interest (such as FOXO3, CDKN2B, LINC02513) are involved in similar biological pathways: myeloid differentiation, erythrocyte homeostasis, and chemical homeostasis.",
      "Hundreds of genes in several pathways act as regulators of ageing (1,32).However, analysis of DrugAge and other HAGR databases has revealed that the overlap between the targets of lifespan-extending drugs and known ageing related genes is modest (31).This indicates that most ageing-related pathways have yet to be targeted pharmacologically; DrugAge may aid in guiding further assays.This was recently demonstrated in one study where machine learning was used to predict whether a compound would increase lifespan in worms using data from Dru-gAge.The best model had 80% prediction accuracy and the top hit compounds could broadly be divided into compounds affecting mitochondria, inflammation, cancer, and gonadotropin-releasing hormone (33).",
      "Top 25genes co-expressed with aging related genesAging-related gene prediction and putative transcriptional mechanismsGeneFriends was used to identify genes related to aging.A seed list of genes known to be consistently overexpressed with age in mammals was used [18].In total, 1119 genes were co-expressed with the aging seed list at p <10 -6 ; Table 1 shows the top 25 genes.Many of these genes have been associated with age-related diseases.Several other genes that have been shown to play a role in aging such as lysosomal-associated membrane protein-2 Lamp2 [19] (p = 5.68 -30 ), Fas [20] (p = 2.70 -31 ) and growth hormone receptor Ghr [21] (p = 1.34 -19 ) also showed a significant co-expression.Anxa2, Anxa3 and Anxa4 also show a low p-value (p < 10 -25 ) as well as several S100 calcium binding proteins which have been shown to interact with annexins [22].",
      "Genetic studies have shown that aging can be slowed in mutants that are defective in a wide range of cellular processes (such as mitochondrial function, chromatin regulation, insulin signaling, transcriptional regulation, and genome stability).This indicates that aging is a complex process driven by diverse molecular pathways and biochemical events.As such, a powerful approach to study aging is to use systems biology, which allows a multitude of factors affecting aging to be analyzed in parallel.For example, DNA microarrays and gene expression chips have been used to perform a genome-wide analysis of changes in gene expres-sion in old age.Extensive studies in Caenorhabditis elegans and Drosophila melanogaster have identified hundreds of ageregulated genes (Hill et al. 2000;Zou et al. 2000;Lund et al. 2002;Pletcher et al. 2002;Murphy et al. 2003).Several studies have described age-regulated genes in the muscle and brain of mice (Lee et al. 1999(Lee et al. , 2000) ) and the retina and muscle of humans (Yoshida et al. 2002;Welle et al. 2003Welle et al. , 2004).These age-regulated genes may serve as markers of aging, enabling one to assess physiological age independently of chronological age.Analysis of the functions of these age-regulated genes has identified specific biochemical mechanisms that change toward the end of life.",
      "Age-Regulated Genes Involved in Reproductive Capacity.Decline in reproductive capacity is an age-related phenotype, and the reproductive system seems to play an important role in longevity (22).For example, signals from germ cells can affect lifespan in C. elegans (23).In our study, we observed decreased RNA levels for several genes involved in reproduction (Fig. 3).These include two genes that encode members of the Acp family.The Acp from male flies stimulates female egg-laying and facilitates storage of sperm in the female genital tract (24).In addition, two ESTs showing age-regulated decrease of transcript levels represent different genes with homology to Arabidopsis MALE STERIL-  In Northern analysis, the ratios were calculated by dividing mRNA levels at 25-, 40-, and 50-day time points by those at 3-day time points after normalization with mRNA levels of the control gene rp49.Ratios in microarray analysis are provided from each of the duplicate experiments for comparison.ITY 2 (MS2; ref. 25), a gene involved in gametogenesis.Furthermore, an EST with homology to peanut, a member of the septin family (26), is down-regulated in older flies.This downregulation may reflect a decrease in spermatogenesis."
    ],
    [
      "There are multiple definitions of the aging process.Aging may be perceived as the random, systemic loss of molecular fidelity that, after reproductive maturity, accumulates to levels that eventually exceed tissue repair, turnover, or maintenance capacity (Hayflick 2004).The underlying molecular mechanisms of aging remain a subject of debates (de Magalhaes et al. 2009): tissue deterioration might not be programmed, being just a function of increase in entropy (Hayflick 2004).No genes are necessary to drive a stochastic process; however, there are genes that act to prevent an organism from destruction and disorganization.It may be due to the absence of specific disease-causing alleles or due to the presence of favorable alleles (Halaschek-Wiener et al. 2009).These genes may inhibit entropy, regulate inflammation, maintain DNA repair (such as telomere maintenance factors), or provide antioxidant functions (e.g., antagonists of reactive oxygen species).As healthy cells adapt to degeneration, differential expression of genes with age may indicate a transcriptional response to aging rather than a deleterious mechanism of aging per se (de Magalhaes et al. 2009).It might be postulated that there exist alleles that confer a pleiotropic effect on structure and function during aging (Lunetta et al. 2007).These alleles should regulate the ability of an organism to withstand challenging endogenous and exogenous influences.",
      "Why does ageing evolve? The intrinsic decline in function that occurs during ageing appears to be caused by the accumulation of damage, particularly at the molecular level.As far as we know, no genes have evolved specifically because they cause damage to accumulate, and the evolution of ageing can therefore be understood only as a side-effect of other causes of evolutionary change.The mechanisms by which ageing can evolve were first elucidated by J.B.S. Haldane [14], P.B. Medawar [15] and G.C. Williams [16].Extrinsic hazards from disease, predation and accidents mean that even potentially immortal organisms will die.Genetic effects that become apparent only later in life encounter a reduced force of natural selection, because not all their bearers will survive to express them.Haldane pointed out that late-onset genetic diseases in humans, such as Huntington's disease, encounter only weak selection, because most reproduction is complete by the age of onset [14].Ageing could therefore result from the accumulation under mutation pressure of age-specific, deleterious mutations.In addition, if some mutations have pleiotropic effects, with beneficial effects in youth, such as high fecundity, but also with a higher subsequent rate of ageing, then they could be incorporated into the population by natural selection, which will act more strongly on the early, beneficial effect.Thus, variation in the rate of ageing would result from the readjustment of a tradeoff between youthful benefits and the subsequent rate of ageing.Both processes imply that faster ageing will evolve where the extrinsic hazard to adults is greatest, a hypothesis in general supported by the data [1,2,17].",
      "A. TheoriesIn looking back at the development of aging studies, we can see that it did not follow a straight or logical course.On the contrary, it can be compared with the flow of several convergent streams winding in their course.To date, numerous proposals have been made for the paradigm of aging.These include Hayflick's contributions (153) on programmed cellular incapacitation derived from flbroblast studies, a decrease in immunologic response, deleterious endocrinological changes, nuclear somatic gene mutation, mitochondrial somatic gene mutation, oxygen free radical damage to proteins and nucleic acids, molecular instabilities, molecular cross-linking, glycation reactions, and so on.There is little doubt that many of these factors contribute to the overall aging, but what are primary causes, and what are secondary outcomes?",
      "Ageing Is Adjusted by Genetic, Environmental, and Stochastic ProcessesEnough evidence suggests that ageing is the result of different events such as molecular damage, mutations, incomplete repair, genetic programs, and continued development, among others [16].These events, in turn, are caused by genetic factors, environmental conditions, and even stochastic factors, which are mentioned below in this chapter.Different stochastic theories of ageing focus on specific mechanisms that may lead to ageing.The catastrophic error theory poses that the accumulation of errors in protein synthesis causes damage in cell function.The theory of cross-linking holds this process between proteins and other macromolecules responsible for ageing, while the theory of free radicals suggests that ageing is the result of inadequate protection against cell and tissue damage by free radicals and oxidative stress throughout life.Finally, the wear-and-tear theory poses that the cumulative damage that eventually leads to ageing and death is, in fact, the result of the continuous functioning of vital processes, during which stochastic errors gradually arise.IntroductionAging is a natural and irreversible process characterized by a progressive decay in physiological, biochemical, and structural functions of individuals.Aging is a multifactorial process that can be affected by two main factors: environmental and genetic.Environmental factors are nutrition, pathologies, pollution exposure, physical activity, and microbiota, while genetic factors are issues that have been associated with antioxidant and DNA damage responses, the fidelity of genetic information transfer, the efficiency of protein degradation, the extent of cellular responsiveness to stress, the mechanisms of epigenetic regulation, and the ability to elongate telomeres.All of them can determine how fast we age.Traditionally, aging studies had used several model organisms, from yeast to mammals, especially rodents (rats and mice).Most of the studies are made under controlled conditions, where only a few variables are observed, and the subjects are members of the same strain with the same genetic backgrounds or the same mutations.The information that so far has been obtained about aging has helped us to describe different factors that influence this process and that are the fundamental concepts of the various theories of aging.However, these theories do not fully explain the aging process in the different models of aging study.This is the case of the study of aging in humans, where it is very difficult to control the environmental and genetic variables.That is why issues haven't been solved such as the following: How does time influence aging?When do we start to age?How do we know we are old?Is it possible to delay aging?Those and more questions are the cornerstones for aging studies.Biological aging has been associated with the decrease in the repair and regeneration capacity of tissues and organs; it is a time-dependent process.This reduction can be observed by an increase in the acquisition of diseases and functional and reproductive disability, which eventually lead to death.On the other hand, it has been observed that in humans, people with the same chronological age exhibit different trajectories in the decrease of physiological functions associated with biological aging and what complicates the understanding of the molecular and physiological phenomena that drive the complex and multifactorial processes that underlie biological aging in humans.",
      "The underlying cause of aging remains one of the central mysteries of biology.Recent studies in several different systems suggest that not only may the rate of aging be modified by environmental and genetic factors, but also that the aging clock can be reversed, restoring characteristics of youthfulness to aged cells and tissues.This Review focuses on the emerging biology of rejuvenation through the lens of epigenetic reprogramming.By defining youthfulness and senescence as epigenetic states, a framework for asking new questions about the aging process emerges.",
      "Aging does not happen in a vacuum.Aging must be the result of changes that occur in molecules that have existed at one time with no age changes.It is the state of these pre-existing molecules that governs longevity determination.The pre-existing state is, as I have already described, maintained by repair and turnover systems that themselves eventually succumb to irreparable age changes.Longevity determination is the state of all molecules prior to succumbing to irreparable loss of molecular structure.Biological aging is more than simply the occurrence of random changes in molecules.It also includes the role of the many repair systems found within cells.Thus, a more complete, but less concise, explanation of the first causes of aging in biological systems is the following:",
      "Understanding the deleterious processes that cause aging has been a human endeavor ever since we figured out that we grew old and that we didn't like it.Many hypotheses have been proposed to explain the root cause of aging (1).One broad-based hypothesis is that generalized homeostatic failure leads to age-related decline.Although notions of time-and use-related deterioration may be applicable to mechanical objects, they fall short as analogies to biological systems because energy input should theoretically maintain living systems indefinitely.Yet, despite the regenerative potential of biological organisms, progressive deterioration accompanies postmaturational aging.That the organism's repair capabilities cannot keep up with wear and tear is, according to evolutionary theory, explained by the inevitable declining force of natural selection with age.According to this reasoning, there is no selective advantage to maintaining somatic cells in perfect order much beyond reproductive maturation (1).Hence, a long life depends on the timing of maturation and the quality of somatic cell maintenance.Wear and tear on the DNA often has been touted as a possible basis for our progressive age-related decline.Supporting this notion is the work of de Boer et al. (2) reported on page 1276 of this week's issue.They reveal important evidence for imperfect genome maintenance of DNA damage as a possible causal factor in aging.Harman, with his \"free radical theory of aging\" (3), was the first to propose that metabolic by-products called reactive oxygen species (ROS) continually damage cellular macromolecules, including DNA.Incomplete repair of such damage would lead to its accumulation over time and eventually result in age-related deterioration.A number of observations support the free radical theory, including the discovery that dietary restriction delays aging and extends life-span in a wide range of rodents and other species, possibly by reducing free radical damage.The notion that genomic DNA could be a major target of continual free radical attack over time is supported by the recent observation that genetic lesions accumulate with age and that dietary restriction reduces this accumulation in rodents (4).In addition, deletion of p66 shc , a signaling protein that maintains oxidant levels, increases resistance to oxidative damage and extends the life-span of mice (5).",
      "Instead, aging is expected tobe a pervasive failure of adaptation across most, if not all, of the physiological mechanismsthat sustain survival and reproduction among young individuals. For this reason, evolutionary biologists have generally been skeptical of proposals that attribute the cause ofaging to any one physiological mechanism or gene for aging or programmed death. Although common genetic pathways might be identified that contribute to aging among avariety of organisms (cf.",
      "BackgroundAging is a complex process characterized by the progressive degeneration of a healthy phenotype and correlated with a decline in the ability to withstand cellular stress and damage.The subject of investigation for decades, the underlying molecular genetic causes of and responses to aging remain an area of active study.Research from model systems has characterized a range of physiological and molecular phenotypes associated with aging.These include genomic instability caused by accumulation of DNA damage, dysregulation of repair mechanisms, and telomere attrition; epigenetic alterations; dysregulation of transcription; loss of proteostasis; cellular senescence; and deregulated nutrient sensing, metabolic pathways, and energy use (reviewed in [1]).Separating causation from correlation between these phenotypes and aging remains a challenge, however.",
      "IntroductionUnderstanding what actually causes ageing remains admittedly a fundamental and fascinating problem in biology [1].Experimental data accumulated in the last three decades have led to the identification of various environmental and genetic factors, as well as chemical substances that influence lifespan in divergent eukaryotic species [1,2].Organisms normally age faster and hence live shorter under stress conditions that can lead to the generation of DNA mutations and, often as a consequence of mutations, damaged cytoplasmic constituents (including injured proteins, lipids, carbohydrates and organelles).Such types of damage can interfere with cellular functioning; thereby, they should be eliminated by effective repair and self-cleaning mechanisms to maintain cellular homeostasis.These mechanisms include DNA repair pathways, molecular chaperons, as well as the proteasome-ubiquitin system and lysosome-mediated autophagy, the main forms of cellular self-degradation [3].This has led to the attractive model that the gradual, lifelong accumulation of unrepaired cellular damage drives the ageing process and determines the incidence of age-related fatal diseases [4,5].",
      "In conclusion, aging may not be primarily due to damage accumulating from the basic biochemical reactions that make up life but rather the result of the developmental program or of changes brought about by it.Our hypothesis is that the timing of development regulates the rate of aging among mammals, with a subset of developmental mechanisms determining the pace and causing most agerelated changes.Maybe people change as they grow old due to the same mechanisms that drive changes throughout the earlier stages in life.",
      "Instead, aging is expected tobe a pervasive failure of adaptation across most, if not all, of the physiological mechanismsthat sustain survival and reproduction among young individuals. For this reason, evolutionary biologists have generally been skeptical of proposals that attribute the cause ofaging to any one physiological mechanism or gene for aging or programmed death. Although common genetic pathways might be identified that contribute to aging among avariety of organisms (cf.",
      "In 2021, Science published a special issue entitled \"125 Questions: Exploration and Discovery.\" One of these 125 questions was \"Can we stop ourselves from aging? \"The U.S. National Institute on Aging (NIA) at the National Institutes of Health (NIH) states that \"aging is associated with changes in dynamic biological, physiological, environmental, psychological, behavioral, and social processes.\" Although geneticists and epidemiologists have long debated the relative importance of the role played by genotype or the environment in the development of age-related diseases, it is apparent that both can play substantial roles in this process [6,7].However, most etiological studies have concentrated on the role of genotype and have considered the environment to play a secondary role.Nevertheless, an analysis of GBD data showed that nearly 50% of deaths worldwide are attributable to environmental exposure, primarily exposure to airborne particulates (including household air pollution and occupational exposure; 14% of all deaths), smoking and secondhand smoke (13%), plasma sodium concentrations (6%), and alcohol consumption (5%) [8].In contrast, a recent analysis of 28 chronic diseases in identical twins showed that the genetic-related risks of developing one of five age-related diseases were 33.3%, 10.6%, 36.3%, 19.5%, and 33.9% for AD, PD, CAD, COPD, and T2DM, respectively, with a mean of only 26% [9].The results of over 400 genome-wide association studies (GWASs) have also elucidated that the heritability of degenerative diseases is only approximately 10% [10,11].Consequently, nongenetic drivers, such as environmental factors, are now recognized as major risk factors for age-related diseases.The contributions of environmental factors to the development of age-related diseases can be revealed by analyses of all of the factors to which individuals are exposed in their life and the relationships between these exposures and age-related diseases [12,13].",
      "IntroductionThe fundamental manifestation of the aging process is a progressive decline in the functional maintenance of tissue homeostasis and an increasing propensity to degenerative diseases and death [1].It has attracted significant interest to study the underlying mechanisms of aging, and many theories have been put forward to explain the phenomenon of aging.There is an emerging consensus that aging is a multifactorial process, which is genetically determined and influenced epigenetically by environment [2].Most aging theories postulate a single physiological cause of aging, and likely these theories are correct to a certain degree and in certain aspects of aging.",
      "Many factors contribute to aging, including genes.This is the first article in a 10-part series that highlight some of what is known about the influence of genes on aging and emerging treatment options that may slow down or potentially reverse the aging process.The series will address \\genes, adducts, and telomeres, decreased immune defenses, oxidation and inefficient mitochondria, toxins and radiation, glycosylation, caloric intake and sirtuin production, neurotransmitter imbalance, hormone mechanisms, reduced nitric oxide, and stem cell slowdown.Underpinning these factors are wear and tear on cells and aging as a result of inability to repair or replace these affected cells.These topics have been addressed in research, health magazines, and even by talk show hosts.There is even a LongevityMap website addressing significant and nonsignificant genetic association studies in aging across the human genome (http://genomics.senescence.info/longevity/).The series will address a scientific and clinical approach to genome-related aging topics.",
      "Trying to explain aging in terms of a singular process would be in conflict with evolutionary theory.Even if loss of genome sequence integrity was the most conserved cause of aging, already active in the first replicators (Vijg, 2007), natural selection would allow a multitude of mutations with late adverse effects to accumulate in the germline, many of which would be positively selected for because of their beneficial effects early in life (Williams, 1957), In this respect, somatic mutation accumulation could be a conserved, inevitable cause of aging but superposed on multiple other processes that usually cause the earlier demise of an individual."
    ]
  ],
  "task_id": [
    "2C477A3C76794C27A1FBBF437CFF75EE",
    "CAD6C6C2AB42AA66BFDD65F0F11932B2",
    "78A0CD7E12AFEF6865583142603EE039",
    "DA98AC2EA5D1F776D3F04FCBC7F01339",
    "117299AD06C2B147F49E9C9BC036CEA4"
  ]
}