about summary refs log tree commit diff
import asyncio
import io
import uuid
from datetime import datetime
from unittest.mock import AsyncMock, MagicMock, Mock

import pytest
from fastapi import UploadFile

from r2r.base import (
    Document,
    DocumentInfo,
    R2RDocumentProcessingError,
    R2RException,
    generate_id_from_label,
)
from r2r.main import R2RPipelines, R2RProviders
from r2r.main.services.ingestion_service import IngestionService


@pytest.fixture(scope="session", autouse=True)
def event_loop_policy():
    asyncio.set_event_loop_policy(asyncio.DefaultEventLoopPolicy())


@pytest.fixture(scope="function")
def event_loop():
    loop = asyncio.get_event_loop_policy().new_event_loop()
    yield loop
    loop.close()
    asyncio.set_event_loop(None)


@pytest.fixture(scope="session", autouse=True)
async def cleanup_tasks():
    yield
    for task in asyncio.all_tasks():
        if task is not asyncio.current_task():
            task.cancel()
            try:
                await task
            except asyncio.CancelledError:
                pass


@pytest.fixture
def mock_vector_db():
    mock_db = MagicMock()
    mock_db.get_documents_overview.return_value = []  # Default to empty list
    return mock_db


@pytest.fixture
def mock_embedding_model():
    return Mock()


@pytest.fixture
def ingestion_service(mock_vector_db, mock_embedding_model):
    config = MagicMock()
    config.app.get.return_value = 32  # Default max file size
    providers = Mock(spec=R2RProviders)
    providers.vector_db = mock_vector_db
    providers.embedding_model = mock_embedding_model
    pipelines = Mock(spec=R2RPipelines)
    pipelines.ingestion_pipeline = AsyncMock()
    pipelines.ingestion_pipeline.run.return_value = {
        "embedding_pipeline_output": []
    }
    run_manager = Mock()
    run_manager.run_info = {"mock_run_id": {}}
    logging_connection = AsyncMock()

    return IngestionService(
        config, providers, pipelines, run_manager, logging_connection
    )


@pytest.mark.asyncio
async def test_ingest_single_document(ingestion_service, mock_vector_db):
    try:
        document = Document(
            id=generate_id_from_label("test_id"),
            data="Test content",
            type="txt",
            metadata={},
        )

        ingestion_service.pipelines.ingestion_pipeline.run.return_value = {
            "embedding_pipeline_output": [(document.id, None)]
        }
        mock_vector_db.get_documents_overview.return_value = (
            []
        )  # No existing documents

        result = await ingestion_service.ingest_documents([document])

        assert result["processed_documents"] == [
            f"Document '{document.id}' processed successfully."
        ]
        assert not result["failed_documents"]
        assert not result["skipped_documents"]
    except asyncio.CancelledError:
        pass


@pytest.mark.asyncio
async def test_ingest_duplicate_document(ingestion_service, mock_vector_db):
    try:
        document = Document(
            id=generate_id_from_label("test_id"),
            data="Test content",
            type="txt",
            metadata={},
        )
        mock_vector_db.get_documents_overview.return_value = [
            DocumentInfo(
                document_id=document.id,
                version="v0",
                size_in_bytes=len(document.data),
                metadata={},
                title=str(document.id),
                user_id=None,
                created_at=datetime.now(),
                updated_at=datetime.now(),
                status="success",
            )
        ]

        with pytest.raises(R2RException) as exc_info:
            await ingestion_service.ingest_documents([document])

        assert (
            f"Document with ID {document.id} was already successfully processed"
            in str(exc_info.value)
        )
    except asyncio.CancelledError:
        pass


@pytest.mark.asyncio
async def test_ingest_file(ingestion_service):
    try:
        file_content = b"Test content"
        file_mock = UploadFile(
            filename="test.txt", file=io.BytesIO(file_content)
        )
        file_mock.file.seek(0)
        file_mock.size = len(file_content)  # Set file size manually

        ingestion_service.pipelines.ingestion_pipeline.run.return_value = {
            "embedding_pipeline_output": [
                (generate_id_from_label("test.txt"), None)
            ]
        }

        result = await ingestion_service.ingest_files([file_mock])

        assert len(result["processed_documents"]) == 1
        assert not result["failed_documents"]
        assert not result["skipped_documents"]
    except asyncio.CancelledError:
        pass


@pytest.mark.asyncio
async def test_ingest_mixed_success_and_failure(
    ingestion_service, mock_vector_db
):
    try:
        documents = [
            Document(
                id=generate_id_from_label("success_id"),
                data="Success content",
                type="txt",
                metadata={},
            ),
            Document(
                id=generate_id_from_label("failure_id"),
                data="Failure content",
                type="txt",
                metadata={},
            ),
        ]

        ingestion_service.pipelines.ingestion_pipeline.run.return_value = {
            "embedding_pipeline_output": [
                (
                    documents[0].id,
                    f"Processed 1 vectors for document {documents[0].id}.",
                ),
                (
                    documents[1].id,
                    R2RDocumentProcessingError(
                        error_message="Embedding failed",
                        document_id=documents[1].id,
                    ),
                ),
            ]
        }

        result = await ingestion_service.ingest_documents(documents)

        assert len(result["processed_documents"]) == 1
        assert len(result["failed_documents"]) == 1
        assert str(documents[0].id) in result["processed_documents"][0]
        assert str(documents[1].id) in result["failed_documents"][0]
        assert "Embedding failed" in result["failed_documents"][0]

        assert mock_vector_db.upsert_documents_overview.call_count == 2
        upserted_docs = mock_vector_db.upsert_documents_overview.call_args[0][
            0
        ]
        assert len(upserted_docs) == 2
        assert upserted_docs[0].document_id == documents[0].id
        assert upserted_docs[0].status == "success"
        assert upserted_docs[1].document_id == documents[1].id
        assert upserted_docs[1].status == "failure"
    except asyncio.CancelledError:
        pass


@pytest.mark.asyncio
async def test_ingest_unsupported_file_type(ingestion_service):
    try:
        file_mock = UploadFile(
            filename="test.unsupported", file=io.BytesIO(b"Test content")
        )
        file_mock.file.seek(0)
        file_mock.size = 12  # Set file size manually

        with pytest.raises(R2RException) as exc_info:
            await ingestion_service.ingest_files([file_mock])

        assert "is not a valid DocumentType" in str(exc_info.value)
    except asyncio.CancelledError:
        pass


@pytest.mark.asyncio
async def test_ingest_large_file(ingestion_service):
    try:
        large_content = b"Large content" * 1000000  # 12MB content
        file_mock = UploadFile(
            filename="large_file.txt", file=io.BytesIO(large_content)
        )
        file_mock.file.seek(0)
        file_mock.size = len(large_content)  # Set file size manually

        ingestion_service.config.app.get.return_value = (
            10  # Set max file size to 10MB
        )

        with pytest.raises(R2RException) as exc_info:
            await ingestion_service.ingest_files([file_mock])

        assert "File size exceeds maximum allowed size" in str(exc_info.value)
    except asyncio.CancelledError:
        pass


@pytest.mark.asyncio
async def test_partial_ingestion_success(ingestion_service, mock_vector_db):
    try:
        documents = [
            Document(
                id=generate_id_from_label("success_1"),
                data="Success content 1",
                type="txt",
                metadata={},
            ),
            Document(
                id=generate_id_from_label("fail"),
                data="Fail content",
                type="txt",
                metadata={},
            ),
            Document(
                id=generate_id_from_label("success_2"),
                data="Success content 2",
                type="txt",
                metadata={},
            ),
        ]

        ingestion_service.pipelines.ingestion_pipeline.run.return_value = {
            "embedding_pipeline_output": [
                (documents[0].id, None),
                (
                    documents[1].id,
                    R2RDocumentProcessingError(
                        error_message="Embedding failed",
                        document_id=documents[1].id,
                    ),
                ),
                (documents[2].id, None),
            ]
        }

        result = await ingestion_service.ingest_documents(documents)

        assert len(result["processed_documents"]) == 2
        assert len(result["failed_documents"]) == 1
        assert str(documents[1].id) in result["failed_documents"][0]
    except asyncio.CancelledError:
        pass


@pytest.mark.asyncio
async def test_version_increment(ingestion_service, mock_vector_db):
    try:
        document = Document(
            id=generate_id_from_label("test_id"),
            data="Test content",
            type="txt",
            metadata={},
        )
        mock_vector_db.get_documents_overview.return_value = [
            DocumentInfo(
                document_id=document.id,
                version="v2",
                status="success",
                size_in_bytes=0,
                metadata={},
            )
        ]

        file_mock = UploadFile(
            filename="test.txt", file=io.BytesIO(b"Updated content")
        )
        await ingestion_service.update_files([file_mock], [document.id])

        calls = mock_vector_db.upsert_documents_overview.call_args_list
        assert len(calls) == 2
        assert calls[1][0][0][0].version == "v3"
    except asyncio.CancelledError:
        pass


@pytest.mark.asyncio
async def test_process_ingestion_results_error_handling(ingestion_service):
    try:
        document_infos = [
            DocumentInfo(
                document_id=uuid.uuid4(),
                version="v0",
                status="processing",
                size_in_bytes=0,
                metadata={},
            )
        ]
        ingestion_results = {
            "embedding_pipeline_output": [
                (
                    document_infos[0].document_id,
                    R2RDocumentProcessingError(
                        "Unexpected error",
                        document_id=document_infos[0].document_id,
                    ),
                )
            ]
        }

        result = await ingestion_service._process_ingestion_results(
            ingestion_results,
            document_infos,
            [],
            {document_infos[0].document_id: "test"},
        )

        assert len(result["failed_documents"]) == 1
        assert "Unexpected error" in result["failed_documents"][0]
    except asyncio.CancelledError:
        pass


@pytest.mark.asyncio
async def test_file_size_limit_edge_cases(ingestion_service):
    try:
        ingestion_service.config.app.get.return_value = 1  # 1MB limit

        just_under_limit = b"x" * (1024 * 1024 - 1)
        at_limit = b"x" * (1024 * 1024)
        over_limit = b"x" * (1024 * 1024 + 1)

        file_under = UploadFile(
            filename="under.txt",
            file=io.BytesIO(just_under_limit),
            size=1024 * 1024 - 1,
        )
        file_at = UploadFile(
            filename="at.txt", file=io.BytesIO(at_limit), size=1024 * 1024
        )
        file_over = UploadFile(
            filename="over.txt",
            file=io.BytesIO(over_limit),
            size=1024 * 1024 + 1,
        )

        await ingestion_service.ingest_files([file_under])  # Should succeed
        await ingestion_service.ingest_files([file_at])  # Should succeed

        with pytest.raises(
            R2RException, match="File size exceeds maximum allowed size"
        ):
            await ingestion_service.ingest_files([file_over])
    except asyncio.CancelledError:
        pass


@pytest.mark.asyncio
async def test_document_status_update_after_ingestion(
    ingestion_service, mock_vector_db
):
    try:
        document = Document(
            id=generate_id_from_label("test_id"),
            data="Test content",
            type="txt",
            metadata={},
        )

        ingestion_service.pipelines.ingestion_pipeline.run.return_value = {
            "embedding_pipeline_output": [(document.id, None)]
        }
        mock_vector_db.get_documents_overview.return_value = (
            []
        )  # No existing documents

        await ingestion_service.ingest_documents([document])

        # Check that upsert_documents_overview was called twice
        assert mock_vector_db.upsert_documents_overview.call_count == 2

        # Check the second call to upsert_documents_overview (status update)
        second_call_args = (
            mock_vector_db.upsert_documents_overview.call_args_list[1][0][0]
        )
        assert len(second_call_args) == 1
        assert second_call_args[0].document_id == document.id
        assert second_call_args[0].status == "success"
    except asyncio.CancelledError:
        pass