aboutsummaryrefslogtreecommitdiff
ELF>X@f@8	@BBPPP>>


0$ 
 
 
888$$PtdI
I
I
QtdRtd


GNU6=[ӎl<jW=ABgl 
I	_ 

	
z
m""g.<
			Ms	:!

Y
R
	*Y83
|-Ao 
X
r'
	:dN	
iD
B	a7p
,
	pd	(	T	_<jPA
	#
4	zd8 0
	&
CSR"m
aLt	P
23__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Py_NoneStructPyBaseObject_TypePyExc_TypeErrorPyErr_FormatPyDict_NextPy_EnterRecursiveCallPy_LeaveRecursiveCallPyErr_OccurredPyObject_CallPyExc_SystemErrorPyErr_SetStringPyObject_GetAttrmemcpy_Py_DeallocPyExc_DeprecationWarningPyErr_WarnFormatPyLong_AsLongPyExc_OverflowErrorPyLong_TypePyObject_GC_UnTrackPyObject_GC_IsFinalizedPyObject_CallFinalizerFromDeallocPyObject_GetAttrStringPyDict_SetItemStringPyExc_AttributeErrorPyErr_ExceptionMatchesPyErr_ClearPyDict_GetItemStringPyModule_GetNamePyExc_ImportErrorPyCapsule_IsValidPyCapsule_GetNamePyCapsule_GetPointerPyThreadState_GetPyInterpreterState_GetIDPyModule_NewObjectPyModule_GetDictPyExc_ValueErrorPyDict_GetItemWithErrorPyExc_KeyErrorPyErr_SetObjectPyTuple_PackPyOS_snprintfPyErr_WarnExPyList_TypePyLong_FromSsize_tPyObject_SetItemPyFloat_TypePyObject_RichCompare_Py_TrueStruct_Py_FalseStructPyObject_IsTrue_PyType_LookupPyTuple_TypePyObject_GetItemPyBytes_FromStringAndSizePyUnstable_Code_NewWithPosOnlyArgsPyUnicode_InternFromStringPyUnicode_DecodePyUnicode_FromStringAndSizePyObject_HashPyException_GetTracebackPyExc_RuntimeErrorPyUnicode_TypememcmpPyErr_GivenExceptionMatchesPyException_SetTracebackPyDict_NewPyImport_ImportModuleLevelObjectPyTuple_NewPySlice_NewPyUnicode_Compare_PyThreadState_UncheckedGetPyExc_StopIterationPyErr_NormalizeExceptionPyCFunction_TypePyType_IsSubtypePyVectorcall_FunctionPyObject_VectorcallDictPyUnicode_FromStringPyUnicode_ConcatPyImport_GetModule_PyObject_GetDictPtr_PyDict_GetItem_KnownHashPyObject_NotPyFrame_NewPyTraceBack_HerePyCode_NewEmptyPyUnicode_FromFormatPyUnicode_AsUTF8memmovePyMem_ReallocPyObject_SetAttrPyObject_GenericGetAttr_PyObject_GenericGetAttrWithDictPyMem_MallocPyDict_SetItemPyMethod_TypePyNumber_AddPyNumber_InPlaceAddPyNumber_IndexPyLong_AsSsize_tPyExc_IndexErrorPyList_NewPyObject_GetIterPyDict_SizePySequence_ContainsPyFloat_AsDoublePyObject_SizePyExc_NameErrorPyLong_FromLong_Py_EllipsisObjectPyObject_IsInstancePyUnicode_New_PyUnicode_FastCopyCharactersPyObject_FormatPyImport_AddModulePyObject_SetAttrStringPy_VersionPyFloat_FromDoublePyLong_FromStringPyImport_GetModuleDictPyGC_DisablePyType_ReadyPyGC_EnablePyCapsule_NewmallocfreePyImport_ImportModulePyCapsule_TypePyExc_ExceptionPyType_ModifiedPyCMethod_New_PyDict_NewPresizedPyDict_CopyPyEval_SaveThreadPyEval_RestoreThreadPyNumber_LongPyDict_TypePyNumber_MultiplyPyList_AsTuplePySequence_ListPyList_AppendPySequence_TuplePyNumber_InPlaceTrueDividePyNumber_SubtractPyBool_TypePyUnicode_FormatPyNumber_RemainderPyInit_mtrandPyModuleDef_Initlogexplog1pexpflog1pfpowsqrtpowflogfsqrtfexpm1floor__isnanacosfmodmemsetceillibm.so.6libc.so.6GLIBC_2.14GLIBC_2.2.550?ui	J+ui	J
3
3

ȴ
[


 
(
m[8
Rx
`
`:



04 
FH
`
X



4

A
7`
߹h

ߴ

ʴ

!ȷ



 


  
2(
8
@
H
 X
@`
h
@x


0



`
ȸ
0ظ
 
Ѹ



`
@ 
<(
P^8
@
VH
lX
`
*h
"x

]

 |
,

r
ȹ
кع
g


@_


`O 
C(

8
@D@
LH
0{X
 8`
h
Уx
*

s


P!
@
Ⱥ
غ
 
s
p

R

  
(
8
@
<H
@X
`
ch
x

]


k
Pl
 
Ȼ
`ػ


`
`
a
g
r 
@(
Pd8
`h@
H
X
\`
lh
Zx
@R
ȸ

 C

P
5
ȼ
ؼ
+

py

b
@s
@ 
](
68
@
H
mX
`
h
x



`
2
<

Ƚ
)ؽ
 
w
z
  
v(
[8
@
H
`_X
 `
h
cx


Z
`

 
`
kx
k
}
}







( 
0(
10
28
3@
OH
RP
SX
V`
Xh
_p
g
r
u
w
x
z
~

ȯ
Я
د





 
(
0
8
@
H
P
	X
`
h
p
x









Ȱ
а
ذ


 
!
"
#
$
%
& 
'(
)0
*8
+@
,H
-P
.X
/`
4h
5p
6x
7
8
9
:
;
<
=
>
?
@ȱ
Aб
Bر
C
D
E
F
G
H
I
J
K 
L(
M0
N8
P@
QH
SP
TX
U`
Wh
Yp
Zx
[
\
]
^
`
a
b
c
d
eȲ
fв
hز
i
j
l
m
n
o
p
q
s 
t(
v0
y8
{@
|H
P
X
`
h
p
x









ȳ
г
س








 
(
0
8
@
H
P
X
`
h
p
HHE_
Ht{H5_
%_
@%_
h%_
h%_
h%_
h%_
h%_
h%_
h%_
hp%_
h`%_
h	P%_
h
@%_
h0%_
h %z_
h
%r_
h%j_
h%b_
h%Z_
h%R_
h%J_
h%B_
h%:_
h%2_
h%*_
hp%"_
h`%_
hP%_
h@%
_
h0%_
h %^
h%^
h%^
h%^
h %^
h!%^
h"%^
h#%^
h$%^
h%%^
h&%^
h'p%^
h(`%^
h)P%^
h*@%^
h+0%^
h, %z^
h-%r^
h.%j^
h/%b^
h0%Z^
h1%R^
h2%J^
h3%B^
h4%:^
h5%2^
h6%*^
h7p%"^
h8`%^
h9P%^
h:@%
^
h;0%^
h< %]
h=%]
h>%]
h?%]
h@%]
hA%]
hB%]
hC%]
hD%]
hE%]
hF%]
hGp%]
hH`%]
hIP%]
hJ@%]
hK0%]
hL %z]
hM%r]
hN%j]
hO%b]
hP%Z]
hQ%R]
hR%J]
hS%B]
hT%:]
hU%2]
hV%*]
hWp%"]
hX`%]
hYP%]
hZ@%
]
h[0%]
h\ %\
h]%\
h^%\
h_%\
h`%\
ha%\
hb%\
hc%\
hd%\
he%\
hf%\
hgp%\
hh`%\
hiP%\
hj@%\
hk0%\
hl %z\
hm%r\
hn%j\
ho%b\
hp%Z\
hq%R\
hr%J\
hs%B\
ht%:\
hu%2\
hv%*\
hwp%"\
hx`%\
hyP%\
hz@%
\
h{0%\
h| %[
h}%[
h~%[
h%[
h%[
h%[
h%[
h%[
h%[
h%[
h%[
hp%[
h`%[
hP%[
h@%[
h0AVIAUIHATUSDgHt@H;cV
HuE1tHLL@AHEx2HHEu)HHkV
AH8tE1[D]A\A]A^AWIAVIH5ZAUIATUSHAPHHLHIHu(LlLH57HHU
H81xLHqu9L5LH*IMLHHU
H57H81f0LLiHHtHExHHEuHx1HZ[]A\A]A^A_AWIAVIH5YAUIATUSHAPHHLHIHu(LrLH5h7HHT
H81xLHwu9L;LH0IMLHH%T
H5N7H81l0LLoHHtHExHHEuH~1HZ[]A\A]A^A_AVAUIATUQCHx:HX
HuHX
E1H5#H9tHT
H56E1H8L%Fu
MtA$A$H5WLuIHu1HHIxHIuLHtHIHAH
OWHLHMWxfAH
>WLLH:WixCAH
+WLLH*WFx E1H
WLLHW&y
HIZL]A\A]A^AVIHAUIATUDSHHfIHH@u#HR
LLH56H81OML$(ID$ Mt
ILLIL9v#HQ
ILLH55H81AuHH9sCHl$RLIPMH;6H1H11Y^yLE1HL[]A\A]A^AWIAVA1AUAH=*VATE1USHLD$L$qHPHD1$$1DP$$$$$$LL$HAQLD$XAAPE1AWfH`IHExHHEuH&HL[]A\A]A^A_UH\a
H
a
SHEHD$HHD$H=a
HD$0H)	HD$8H-a
HD$XHQHD$`Ha
H$H	H$Ha
H$H@	H$H`
HD$AHD$ fD$(D$*HD$@HD$HfD$PD$RHD$h&HD$pfD$xD$zHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$H$HH$H-`
H$Hޛ	H$H`
H$ H	H$(H$PHAH$pHmH$xHAH$Hj	H$HAH$HHDŽ$>HDŽ$fDŽ$Ƅ$HDŽ$	HDŽ$fDŽ$Ƅ$HDŽ$0HDŽ$8fDŽ$@Ƅ$BHDŽ$XHDŽ$`fDŽ$hƄ$jHDŽ$$HDŽ$fDŽ$Ƅ$HDŽ$H$HqH$HA H(H$H
	HH$H$HAH$8HH	H$@HAH$`HM	H$hHAH$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$
HDŽ$ HDŽ$(fDŽ$0Ƅ$2HDŽ$H!HDŽ$PfDŽ$XƄ$ZHDŽ$pHDŽ$xfDŽ$Ƅ$H$HZ	H$HA H$H_	H$HA(H$H	H$HA0H$HiH$HA8H$(H	H$0HA@H$PHӏ	H$XHAHHDŽ$"HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$"HDŽ$fDŽ$Ƅ$HDŽ$#HDŽ$fDŽ$ Ƅ$"HDŽ$8HDŽ$@fDŽ$HƄ$JHDŽ$`H$xHZ	H$HAPH$H?	H$HAXH$H	H$HA`H$Hi	H$HAhH$H	H$ HApHDŽ$hfDŽ$pƄ$rHDŽ$"HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$'HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$HDŽ$(!HDŽ$0fDŽ$8Ƅ$:H$@Hc	H$HHAxH$hH	H$pHH$HJ}H$HH$H	H$HH$H|H$HH$Hp|H$HHDŽ$P"HDŽ$XfDŽ$`Ƅ$bHDŽ$x"HDŽ$fDŽ$Ƅ$HDŽ$$HDŽ$fDŽ$Ƅ$HDŽ$,HDŽ$fDŽ$Ƅ$HDŽ$*HDŽ$fDŽ$Ƅ$HDŽ$-H$0H4{H$8HH$XH	H$`HH$H؊	H$HH$HzH$HH$H	H$HHDŽ$ fDŽ$(Ƅ$*HDŽ$@%HDŽ$HfDŽ$PƄ$RHDŽ$hHDŽ$pfDŽ$xƄ$zHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$$HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$H$H.	H$HH$ H	H$(HH$HH2	H$PHH$pH	H$xHH$HxH$HH$HXxH$HHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$0HDŽ$8fDŽ$@Ƅ$BHDŽ$XHDŽ$`fDŽ$hƄ$jHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$(HDŽ$fDŽ$Ƅ$HDŽ$%H$H	H$HH$H	H$HH$8H 	H$@HH$`HvH$hHH$HdvH$H HDŽ$fDŽ$Ƅ$HDŽ$!HDŽ$fDŽ$Ƅ$
HDŽ$ HDŽ$(fDŽ$0Ƅ$2HDŽ$H HDŽ$PfDŽ$XƄ$ZHDŽ$p(HDŽ$xfDŽ$Ƅ$HDŽ$,HDŽ$fDŽ$Ƅ$H$Hv	H$H(H$HtH$H0H$HtH$H8H$(H\	H$0H@H$PHtH$XHHH$xH	H$HPHDŽ$'HDŽ$fDŽ$Ƅ$HDŽ$(HDŽ$fDŽ$Ƅ$HDŽ$#HDŽ$fDŽ$ Ƅ$"HDŽ$8 HDŽ$@fDŽ$HƄ$JHDŽ$`#HDŽ$hfDŽ$pƄ$rHDŽ$ H$H	H$HXH$H&	H$H`H$H	H$HhH$	Hʅ	H$ 	HpH$@	H	H$H	HxHDŽ$fDŽ$Ƅ$HDŽ$!HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$	 HDŽ$	fDŽ$	Ƅ$	HDŽ$(	HDŽ$0	fDŽ$8	Ƅ$:	HDŽ$P	HDŽ$X	fDŽ$`	Ƅ$b	H$h	H^	H$p	HH$	H	H$	HH$	HpH$	HH$	H	H$	HH$
HfoH$
HH$0
HkH$8
HHDŽ$x	HDŽ$	fDŽ$	Ƅ$	HDŽ$		HDŽ$	fDŽ$	Ƅ$	HDŽ$	>HDŽ$	fDŽ$	Ƅ$	HDŽ$	HDŽ$	fDŽ$
Ƅ$
HDŽ$
GHDŽ$ 
fDŽ$(
Ƅ$*
HDŽ$@
LH$X
H	H$`
HH$
Hn		H$
HH$
H	H$
HH$
HJ	H$
HH$
H	H$HHDŽ$H
fDŽ$P
Ƅ$R
HDŽ$h

HDŽ$p
fDŽ$x
Ƅ$z
HDŽ$
!HDŽ$
fDŽ$
Ƅ$
HDŽ$
HDŽ$
fDŽ$
Ƅ$
HDŽ$
HDŽ$
fDŽ$
Ƅ$
HDŽ$HDŽ$fDŽ$Ƅ$H$ H	H$(HH$HH	H$PHH$pHd	H$xHH$H\	H$HH$H&	H$HHH$H+	H$HDŽ$0HDŽ$8fDŽ$@Ƅ$BHDŽ$XHDŽ$`fDŽ$hƄ$jHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$H$HBH$8H	H$@HBH$`H
	H$hHBH$H	H$HB H$HjH$HB(H$HDŽ$fDŽ$Ƅ$
HDŽ$ HDŽ$(fDŽ$0Ƅ$2HDŽ$H HDŽ$PfDŽ$XƄ$ZHDŽ$p0HDŽ$xfDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$&HDŽ$fDŽ$Ƅ$H$H	H$HB0H$
H}	H$
HB8H$(
H^	H$0
HB@H$P
H#	H$X
HBHH$x
Hh	H$
HBPH$
H	H$
HBXHDŽ$5HDŽ$fDŽ$Ƅ$HDŽ$
HDŽ$
fDŽ$ 
Ƅ$"
HDŽ$8
HDŽ$@
fDŽ$H
Ƅ$J
HDŽ$`
HDŽ$h
fDŽ$p
Ƅ$r
HDŽ$
	HDŽ$
fDŽ$
Ƅ$
HDŽ$
H$
H$	H$
HB`H$
H	H$
HBhH$HЅ	H$ HBpH$@H	H$HHBxH$hHx	H$pHHDŽ$
fDŽ$
Ƅ$
HDŽ$
HDŽ$
fDŽ$
Ƅ$
HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$(HDŽ$0fDŽ$8Ƅ$:HDŽ$PHDŽ$XfDŽ$`Ƅ$bHDŽ$xHDŽ$fDŽ$Ƅ$H$H}	H$HH$H	H$HH$HI	H$HH$H8	H$HH$0Hۅ	H$8HH$XH4	H$`HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$ fDŽ$(Ƅ$*HDŽ$@HDŽ$HfDŽ$PƄ$RHDŽ$hH$HHH$H	H$H$HBH$HƁ	H$HBH$ H	H$H(H$H$(HDŽ$pfDŽ$xƄ$zHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$0	HDŽ$8fDŽ$@Ƅ$BH$PHB H$pHdH$xHB(H$Hq|	H$HB0H$H{	H$HB8H$H'	H$HB@H$Hւ	H$HBHHPH$HHZHHXHDŽ$X	HDŽ$`fDŽ$hƄ$jHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$
HDŽ$ H$8H	H$@H$hHBH$H(H$HBH$HaH$HBH$H~	H$`H$HDŽ$(fDŽ$0Ƅ$2HDŽ$HHDŽ$PfDŽ$XƄ$ZHDŽ$pHDŽ$xfDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$(HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$H$HB(H$(H}	H$0HB0H$PH4z	H$XHB8H$xH_H$HB@H$H{	H$H$HBPH$HH$HàHDŽ$HDŽ$fDŽ$ Ƅ$"HDŽ$8HDŽ$@fDŽ$HƄ$JHDŽ$`HDŽ$hfDŽ$pƄ$rHDŽ$4HDŽ$fDŽ$Ƅ$HDŽ$
HDŽ$fDŽ$Ƅ$HDŽ$
H$H'H$HBXH`H$HrxH|	H$ H$HHBH$hHH$pHBH$H}	H$HBH$@HDŽ$fDŽ$Ƅ$HDŽ$6	HDŽ$fDŽ$Ƅ$HDŽ$(HDŽ$0fDŽ$8Ƅ$:HDŽ$PHDŽ$XfDŽ$`Ƅ$bHDŽ$x
HDŽ$fDŽ$Ƅ$HDŽ$
HDŽ$fDŽ$Ƅ$H$Hv	H$HB H$Ht	H$HB(H$Hu	H$HB0H$0H}	H$8HB8H$XH'v	H$`HB@H$H4}	H$HBHHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$ fDŽ$(Ƅ$*HDŽ$@HDŽ$HfDŽ$PƄ$RHDŽ$hHDŽ$pfDŽ$xƄ$zHDŽ$H$Hs[H$HBPH$H[H$HBXH$Hy	H$HB`H$ H|	H$(H$PHBpH$HHHDŽ$fDŽ$Ƅ$HDŽ$%HDŽ$fDŽ$Ƅ$HDŽ$3HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$0HDŽ$8fDŽ$@Ƅ$BHDŽ$XHDŽ$`fDŽ$hƄ$jH$pHy	H$xH$HH$HXy	H$H$HH˜H$Hu	HH$H$@HBH$HƨH$HH$8HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$
HDŽ$ 
HDŽ$(fDŽ$0Ƅ$2HDŽ$H
H$`H?^	H$hHBH$Hv	H$HBH$H
y	H$HB H$Hv	H$HB(H$Hw	H$HB0HDŽ$PfDŽ$XƄ$ZHDŽ$paHDŽ$xfDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$ Ƅ$"H$(Hzv	H$0HB8H$PH5r	H$XHB@H$xHju	H$HBHH$Hv	H$HBPH$H\w	H$HBXH$Hu	H$HB`HDŽ$8HDŽ$@fDŽ$HƄ$JHDŽ$`HDŽ$hfDŽ$pƄ$rHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$
HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$H$Hu	H$ HBhH$@Ho	H$HH$pHBxH$HH$HH$H*v	H$hHH$HDŽ$fDŽ$Ƅ$HDŽ$(	HDŽ$0fDŽ$8Ƅ$:HDŽ$PHDŽ$XfDŽ$`Ƅ$bHDŽ$xHDŽ$fDŽ$Ƅ$HDŽ$
HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$H$HH$H'H$HH$0HBs	H$8HH$XHs	H$`HH$HMq	H$HH$H r	H$HH$HưHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$ fDŽ$(Ƅ$*HDŽ$@HDŽ$HfDŽ$PƄ$RHDŽ$hHDŽ$pfDŽ$xƄ$zHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$H$Hq	H$H$HH$ H^H$(HH$HHq	H$PHH$pHs	H$xHH$HǠHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$0HDŽ$8fDŽ$@Ƅ$BHDŽ$XHDŽ$`fDŽ$hƄ$jHDŽ$HDŽ$fDŽ$Ƅ$H$H
m	H$H$HH$H_H$HH$H}q	H$HHH$8Hh	H$@H$hHBH$H H$`HDŽ$
HDŽ$fDŽ$Ƅ$HDŽ$
HDŽ$fDŽ$Ƅ$HDŽ${HDŽ$fDŽ$Ƅ$
HDŽ$ HDŽ$(fDŽ$0Ƅ$2HDŽ$HHDŽ$PfDŽ$XƄ$ZHDŽ$pH$H|k	H$H$HBH$HNH$HB H$Hl	H$HB(H$(Hm	H$H(H$0HDŽ$xfDŽ$Ƅ$HDŽ$
HDŽ$fDŽ$Ƅ$HDŽ$
HDŽ$fDŽ$Ƅ$HDŽ$uHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$ Ƅ$"HDŽ$8HDŽ$@fDŽ$HƄ$JH$XHB8H$xHIH$HB@H$Hi	H$HBHH$H:n	H$HBPH$H(g	H$H$ HB`H$PHhH$H`HDŽ$`HDŽ$hfDŽ$pƄ$rHDŽ$!HDŽ$fDŽ$Ƅ$HDŽ$
HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$(H$@HYoH$HHBhH$hHem	H$pHBpH$Hj	H$HBxH$Hj	H$HH$Hkk	H$HHDŽ$0fDŽ$8Ƅ$:HDŽ$PnHDŽ$XfDŽ$`Ƅ$bHDŽ$xHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$H$HTe	H$HH$0H9j	H$8HH$XHj	H$`HH$Hi	H$HH$Hk	H$HH$Hj	H$HHDŽ$HDŽ$ fDŽ$(Ƅ$*HDŽ$@HDŽ$HfDŽ$PƄ$RHDŽ$hHDŽ$pfDŽ$xƄ$zHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$H$Hbe	H$HH$ H\f	H$(HH$HHwh	H$PHH$pHf	H$xHH$He	H$HHDŽ$fDŽ$Ƅ$HDŽ$
HDŽ$fDŽ$Ƅ$HDŽ$0	HDŽ$8fDŽ$@Ƅ$BHDŽ$XHDŽ$`fDŽ$hƄ$jHDŽ$	HDŽ$fDŽ$Ƅ$HDŽ$	HDŽ$fDŽ$Ƅ$H$H<c	H$HH$H>h	H$HH$ Hd	H$ HH$8 Hf	H$@ H$h HH$ H<h	H$ HH$` HHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$ fDŽ$ Ƅ$
 HDŽ$  	HDŽ$( fDŽ$0 Ƅ$2 HDŽ$H HDŽ$P fDŽ$X Ƅ$Z HDŽ$p HDŽ$x fDŽ$ Ƅ$ HDŽ$ H$ Hd	H$ HH$ HWg	H$ H H(H$!Hf	H$!H$0!HBH$P!Hc	H$(!H$X!HDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$!HDŽ$!fDŽ$ !Ƅ$"!HDŽ$8!HDŽ$@!fDŽ$H!Ƅ$J!HDŽ$`!HDŽ$h!fDŽ$p!Ƅ$r!H$!HBH$!H<	H$!HB H$!H0e	H$!HB(H$!H`	H$!HB0H$"H_	H$ "HB8H$@"Hb	H$H"HB@H$x!HHDŽ$!HDŽ$!fDŽ$!Ƅ$!HDŽ$!
HDŽ$!fDŽ$!Ƅ$!HDŽ$!HDŽ$!fDŽ$!Ƅ$!HDŽ$"HDŽ$"fDŽ$"Ƅ$"HDŽ$("HDŽ$0"fDŽ$8"Ƅ$:"HDŽ$P"H$h"HdBH$p"HBHH$"H\	H$"HBPH$"Ha	H$"HBXH$"Hc	H$"HB`H$#H0^	H$#HBhHDŽ$X"fDŽ$`"Ƅ$b"HDŽ$x"THDŽ$"fDŽ$"Ƅ$"HDŽ$"HDŽ$"fDŽ$"Ƅ$"HDŽ$"HDŽ$"fDŽ$"Ƅ$"HDŽ$"HDŽ$"fDŽ$#Ƅ$#HDŽ$#HDŽ$ #fDŽ$(#Ƅ$*#H$0#Hb	H$8#H$`#HBxH$#H3b	H$#HH$#H\	H$#HH$#H^^	H$#H$$HH$X#HƸH$#HǨHDŽ$@#HDŽ$H#fDŽ$P#Ƅ$R#HDŽ$h#HDŽ$p#fDŽ$x#Ƅ$z#HDŽ$#HDŽ$#fDŽ$#Ƅ$#HDŽ$#HDŽ$#fDŽ$#Ƅ$#HDŽ$#	HDŽ$#fDŽ$#Ƅ$#HDŽ$$	H$ $HVH$($HH$H$H&\	H$P$H$x$HH$$HDH$$HHH$$H[	H$p$HèH$$HDŽ$$fDŽ$$Ƅ$$HDŽ$0$pHDŽ$8$fDŽ$@$Ƅ$B$HDŽ$X$
HDŽ$`$fDŽ$h$Ƅ$j$HDŽ$$
HDŽ$$fDŽ$$Ƅ$$HDŽ$$HDŽ$$fDŽ$$Ƅ$$HDŽ$$
HDŽ$$fDŽ$$Ƅ$$H$$HBH$%Ha7H$%HBH$8%H_	H$@%HBH$`%H_	H$h%HB H$%HPW	H$%HB(H$%H^	H$$H$%HDŽ$$
HDŽ$%fDŽ$%Ƅ$
%HDŽ$ %HDŽ$(%fDŽ$0%Ƅ$2%HDŽ$H%HDŽ$P%fDŽ$X%Ƅ$Z%HDŽ$p%	HDŽ$x%fDŽ$%Ƅ$%HDŽ$%HDŽ$%fDŽ$%Ƅ$%HDŽ$%H$%HB8H$&H,<H$&HB@H$(&HR	H$0&HBHH$P&H]	H$X&HBPH$x&H3X	H$&HBXH$%HHDŽ$%fDŽ$%Ƅ$%HDŽ$%HDŽ$%fDŽ$%Ƅ$%HDŽ$&#HDŽ$&fDŽ$ &Ƅ$"&HDŽ$8&HDŽ$@&fDŽ$H&Ƅ$J&HDŽ$`&HDŽ$h&fDŽ$p&Ƅ$r&HDŽ$&
HDŽ$&fDŽ$&Ƅ$&H$&HY	H$&HB`H$&H\	H$&H$&HBpH$'H;V	H$ 'H$H'HH$h'H'H$p'HH$&HpH$@'HDŽ$&	HDŽ$&fDŽ$&Ƅ$&HDŽ$&HDŽ$&fDŽ$&Ƅ$&HDŽ$'HDŽ$'fDŽ$'Ƅ$'HDŽ$('HDŽ$0'fDŽ$8'Ƅ$:'HDŽ$P'HDŽ$X'fDŽ$`'Ƅ$b'HDŽ$x'QH$'H-R	H$'H$'HH$'HH$'HH¨HH$(HX[	H$(H$8(HBH$'HH$0(HDŽ$'fDŽ$'Ƅ$'HDŽ$'HDŽ$'fDŽ$'Ƅ$'HDŽ$'HDŽ$'fDŽ$'Ƅ$'HDŽ$'HDŽ$'fDŽ$(Ƅ$(HDŽ$(HDŽ$ (fDŽ$((Ƅ$*(HDŽ$@(HDŽ$H(fDŽ$P(Ƅ$R(H$X(H_Y	H$`(HBH$(H?Y	H$(H$(HB H$(HY	H$(HB(H$(HQ	H$)H$()HB8H$(HxH$ )HxHDŽ$h(	HDŽ$p(fDŽ$x(Ƅ$z(HDŽ$(HDŽ$(fDŽ$(Ƅ$(HDŽ$(HDŽ$(fDŽ$(Ƅ$(HDŽ$(HDŽ$(fDŽ$(Ƅ$(HDŽ$)HDŽ$)fDŽ$)Ƅ$)HDŽ$0)H$H)HEH$P)HB@H$p)HQ	H$x)HBHH$)HV	H$)H$)HBXH$)HO	H$)HB`H$)HxHDŽ$8)fDŽ$@)Ƅ$B)HDŽ$X)
HDŽ$`)fDŽ$h)Ƅ$j)HDŽ$)
HDŽ$)fDŽ$)Ƅ$)HDŽ$)HDŽ$)fDŽ$)Ƅ$)HDŽ$)HDŽ$)fDŽ$)Ƅ$)HDŽ$)HDŽ$*fDŽ$*Ƅ$
*H$*HnV	H$*H$@*HBpHxH$`*HNM	H$h*H$*HBH$*HkH$*HBH$*HP	H$8*HøH$*H$*HDŽ$ *HDŽ$(*fDŽ$0*Ƅ$2*HDŽ$H*HDŽ$P*fDŽ$X*Ƅ$Z*HDŽ$p*HDŽ$x*fDŽ$*Ƅ$*HDŽ$*HDŽ$*fDŽ$*Ƅ$*HDŽ$*HDŽ$*fDŽ$*Ƅ$*HDŽ$*
H$+HB H$(+HH$0+HB(H$P+HS	H$X+H$+HB8H$+HH$+HB@H$+HH$x+HHDŽ$*fDŽ$*Ƅ$*HDŽ$+
HDŽ$+fDŽ$ +Ƅ$"+HDŽ$8+p
HDŽ$@+fDŽ$H+Ƅ$J+HDŽ$`+HDŽ$h+fDŽ$p+Ƅ$r+HDŽ$+HDŽ$+fDŽ$+Ƅ$+HDŽ$+HDŽ$+fDŽ$+Ƅ$+H$+HRT	H$+HBHH$+HP	H$+H$ ,HBXH$@,HJR	H$H,HB`H$h,HH$p,HBhH$,H]1H$,HBpH$,HHDŽ$+HDŽ$+fDŽ$+Ƅ$+HDŽ$,HDŽ$,fDŽ$,Ƅ$,HDŽ$(,HDŽ$0,fDŽ$8,Ƅ$:,HDŽ$P,HDŽ$X,fDŽ$`,Ƅ$b,HDŽ$x,'HDŽ$,fDŽ$,Ƅ$,HDŽ$,"H$,HK	H$,HBxH$,H:I	H$,HH$-H\H	H$-HH$0-HO	H$8-HH$X-H(	H$`-HHDŽ$,fDŽ$,Ƅ$,HDŽ$,
HDŽ$,fDŽ$,Ƅ$,HDŽ$,HDŽ$,fDŽ$-Ƅ$-HDŽ$-HDŽ$ -fDŽ$(-Ƅ$*-HDŽ$@-HDŽ$H-fDŽ$P-Ƅ$R-HDŽ$h-HDŽ$p-fDŽ$x-Ƅ$z-H$-HM	H$-HH$-HLQ	H$-H$-HH$-HF	H$.HHH$ .HQN	H$(.H$P.HBH$-HðH$H.HDŽ$-	HDŽ$-fDŽ$-Ƅ$-HDŽ$-HDŽ$-fDŽ$-Ƅ$-HDŽ$-HDŽ$-fDŽ$-Ƅ$-HDŽ$.HDŽ$.fDŽ$.Ƅ$.HDŽ$0.HDŽ$8.fDŽ$@.Ƅ$B.HDŽ$X.H$p.HH$x.HBH$.HI	H$.H$.HB H$.H 	H$.HB(H$/HL	H$/HB0H$.HHDŽ$`.fDŽ$h.Ƅ$j.HDŽ$.HDŽ$.fDŽ$.Ƅ$.HDŽ$.HDŽ$.fDŽ$.Ƅ$.HDŽ$.HDŽ$.fDŽ$.Ƅ$.HDŽ$.HDŽ$/fDŽ$/Ƅ$
/HDŽ$ /HDŽ$(/fDŽ$0/Ƅ$2/H$8/HJ	H$@/H$h/HB@H$/H[	H$/HBHH$/HPF	H$/HBPH$/HM	H$/HBXH$0HL	H$`/HH$0HDŽ$H/HDŽ$P/fDŽ$X/Ƅ$Z/HDŽ$p/HDŽ$x/fDŽ$/Ƅ$/HDŽ$/	HDŽ$/fDŽ$/Ƅ$/HDŽ$/HDŽ$/fDŽ$/Ƅ$/HDŽ$/HDŽ$/fDŽ$/Ƅ$/HDŽ$0H$00HBhH$P0HH$X0HBpH$x0H)H$0HBxH$0HB	H$0HH$0H>	H$0HH$(0HǰHDŽ$0fDŽ$ 0Ƅ$"0HDŽ$80HDŽ$@0fDŽ$H0Ƅ$J0HDŽ$`0
HDŽ$h0fDŽ$p0Ƅ$r0HDŽ$0#HDŽ$0fDŽ$0Ƅ$0HDŽ$0HDŽ$0fDŽ$0Ƅ$0HDŽ$0HDŽ$0fDŽ$0Ƅ$0H$0HJ	H$0HH$1HvI	H$ 1H$H1HH$h1H>	H$p1HH$1HE	H$1HH$1HI	H$1HHH$@1HÈHDŽ$1HDŽ$1fDŽ$1Ƅ$1HDŽ$(1HDŽ$01fDŽ$81Ƅ$:1HDŽ$P1HDŽ$X1fDŽ$`1Ƅ$b1HDŽ$x1HDŽ$1fDŽ$1Ƅ$1HDŽ$1HDŽ$1fDŽ$1Ƅ$1HDŽ$1H$1HI	H$1H$2HBH$02HG	H$82HBH$X2H9	H$`2HBH$2HF	H$2H$2HDŽ$1fDŽ$1Ƅ$1HDŽ$1HDŽ$1fDŽ$2Ƅ$2HDŽ$2HDŽ$ 2fDŽ$(2Ƅ$*2HDŽ$@2HDŽ$H2fDŽ$P2Ƅ$R2HDŽ$h2qHDŽ$p2fDŽ$x2Ƅ$z2HDŽ$2HDŽ$2fDŽ$2Ƅ$2H$2HB(H$2HÜH$2HB0H$2HgF	H$3H$(3HB@H$H3H	H$P3HBHH$p3H]E	H$2HxH$ 3HH$x3HDŽ$2HDŽ$2fDŽ$2Ƅ$2HDŽ$2vHDŽ$2fDŽ$2Ƅ$2HDŽ$3HDŽ$3fDŽ$3Ƅ$3HDŽ$03HDŽ$83fDŽ$@3Ƅ$B3HDŽ$X3(	HDŽ$`3fDŽ$h3Ƅ$j3HDŽ$3H$3HBXH$3H?	H$3H$3HBhH$4HH$4HBpHxH$84H_?	H$3HǰH$3HøH$@4HDŽ$3fDŽ$3Ƅ$3HDŽ$3HDŽ$3fDŽ$3Ƅ$3HDŽ$3HDŽ$3fDŽ$3Ƅ$3HDŽ$3HDŽ$4fDŽ$4Ƅ$
4HDŽ$ 4HDŽ$(4fDŽ$04Ƅ$24HDŽ$H4HDŽ$P4fDŽ$X4Ƅ$Z4H$h4HBH$4HH$4HBH$4H=	H$4HBH$4HrD	H$4H$5HB(H$(5H>C	H$05HB0H$`4H$5HHDŽ$p4HDŽ$x4fDŽ$4Ƅ$4HDŽ$4HDŽ$4fDŽ$4Ƅ$4HDŽ$4HDŽ$4fDŽ$4Ƅ$4HDŽ$4HDŽ$4fDŽ$4Ƅ$4HDŽ$5HDŽ$5fDŽ$ 5Ƅ$"5HDŽ$85H$P5H(B	H$X5HB8H$x5H?	H$5H$5HBHH$5HH$5HBPH$5HA	H$5HBXH$5HƠHDŽ$@5fDŽ$H5Ƅ$J5HDŽ$`5HDŽ$h5fDŽ$p5Ƅ$r5HDŽ$5	HDŽ$5fDŽ$5Ƅ$5HDŽ$5	HDŽ$5fDŽ$5Ƅ$5HDŽ$5 
HDŽ$5fDŽ$5Ƅ$5HDŽ$6HDŽ$6fDŽ$6Ƅ$6H$6HK>	H$ 6HB`H$@6H?	H$H6HBhH$h6H>	H$p6HBpH$6Hi;	H$6HBxH$6H=	H$6HH$6H%@	H$6HDŽ$(6HDŽ$06fDŽ$86Ƅ$:6HDŽ$P6HDŽ$X6fDŽ$`6Ƅ$b6HDŽ$x6HDŽ$6fDŽ$6Ƅ$6HDŽ$6
HDŽ$6fDŽ$6Ƅ$6HDŽ$6	HDŽ$6fDŽ$6Ƅ$6HDŽ$6H$7HH$07H9@	H$87HH$X7H2>	H$`7H$7HH°H$7H>	H$7HhH$7HhH$7HDŽ$6fDŽ$7Ƅ$7HDŽ$7HDŽ$ 7fDŽ$(7Ƅ$*7HDŽ$@7HDŽ$H7fDŽ$P7Ƅ$R7HDŽ$h7HDŽ$p7fDŽ$x7Ƅ$z7HDŽ$7HDŽ$7fDŽ$7Ƅ$7HDŽ$7HDŽ$7fDŽ$7Ƅ$7H$7HBH$7H8	H$8HBH$ 8H>	H$(8H$P8HB H$p8HH$x8HB(H$8H6	H$7H$H8HpH$8HDŽ$7HDŽ$7fDŽ$7Ƅ$7HDŽ$8
HDŽ$8fDŽ$8Ƅ$8HDŽ$08HDŽ$88fDŽ$@8Ƅ$B8HDŽ$X8HDŽ$`8fDŽ$h8Ƅ$j8HDŽ$8wHDŽ$8fDŽ$8Ƅ$8HDŽ$8H$8HB8H$8H8	H$8H$9HBHH$89H|H$@9HBPH$`9H;	H$8HƘH$9HǠH$h9HDŽ$8fDŽ$8Ƅ$8HDŽ$8HDŽ$8fDŽ$8Ƅ$8HDŽ$8
HDŽ$9fDŽ$9Ƅ$
9HDŽ$ 9
HDŽ$(9fDŽ$09Ƅ$29HDŽ$H9@HDŽ$P9fDŽ$X9Ƅ$Z9HDŽ$p9HDŽ$x9fDŽ$9Ƅ$9H$9HB`HhH$9H-9	H$9H$9HBH$:HH$:HBH$(:H;	H$0:HBH$P:H_:	H$9HàH$9H$X:HDŽ$9HDŽ$9fDŽ$9Ƅ$9HDŽ$9HDŽ$9fDŽ$9Ƅ$9HDŽ$9HDŽ$9fDŽ$9Ƅ$9HDŽ$:HDŽ$:fDŽ$ :Ƅ$":HDŽ$8:HDŽ$@:fDŽ$H:Ƅ$J:HDŽ$`:H$:HB(H$:H5	H$:HB0H$:HG:	H$:HB8H$:H':	H$:HB@H$;H:	H$ ;HBHH$x:HDŽ$h:fDŽ$p:Ƅ$r:HDŽ$:HDŽ$:fDŽ$:Ƅ$:HDŽ$:
HDŽ$:fDŽ$:Ƅ$:HDŽ$:HDŽ$:fDŽ$:Ƅ$:HDŽ$;HDŽ$;fDŽ$;Ƅ$;HDŽ$(;	HDŽ$0;fDŽ$8;Ƅ$:;H$@;H8	H$H;HBPH$h;H3	H$p;HBXH$;H1	H$;H$;HBhH$;HH$;HBpH$<H/	H$;H$<HDŽ$P;HDŽ$X;fDŽ$`;Ƅ$b;HDŽ$x;HDŽ$;fDŽ$;Ƅ$;HDŽ$;HDŽ$;fDŽ$;Ƅ$;HDŽ$;HDŽ$;fDŽ$;Ƅ$;HDŽ$;A
HDŽ$;fDŽ$<Ƅ$<HDŽ$<H$8<HH$X<H(H$`<HH$<H0	H$<H$<HH$<HH$<HH¨HxH$0<HHH$<HHDŽ$ <fDŽ$(<Ƅ$*<HDŽ$@<HDŽ$H<fDŽ$P<Ƅ$R<HDŽ$h<6HDŽ$p<fDŽ$x<Ƅ$z<HDŽ$<HDŽ$<fDŽ$<Ƅ$<HDŽ$<HDŽ$<fDŽ$<Ƅ$<HDŽ$<HDŽ$<fDŽ$<Ƅ$<H$<H.	H$=H$(=HBH$H=HH$P=HBH$p=H0	H$x=H$=HB H$=HcH$=HB(H$ =H$=H HDŽ$=HDŽ$=fDŽ$=Ƅ$=HDŽ$0=HDŽ$8=fDŽ$@=Ƅ$B=HDŽ$X=zHDŽ$`=fDŽ$h=Ƅ$j=HDŽ$=HDŽ$=fDŽ$=Ƅ$=HDŽ$=HDŽ$=fDŽ$=Ƅ$=HDŽ$=H$=Hj3	H$=H$>HB8H$8>H'	H$@>HB@H$`>H7bH$h>HBHH$>H4	H$>HBPH$>H HDŽ$=fDŽ$=Ƅ$=HDŽ$=HDŽ$>fDŽ$>Ƅ$
>HDŽ$ >HDŽ$(>fDŽ$0>Ƅ$2>HDŽ$H>HDŽ$P>fDŽ$X>Ƅ$Z>HDŽ$p>!HDŽ$x>fDŽ$>Ƅ$>HDŽ$>HDŽ$>fDŽ$>Ƅ$>H$>Hj0	H$>HBXH$>Hw/	H$>HB`H$?H3	H$?HBhH$(?H+	H$0?HBpH$P?H_H$X?HBxH$x?H23	H$?HHDŽ$>HDŽ$>fDŽ$>Ƅ$>HDŽ$>	HDŽ$>fDŽ$>Ƅ$>HDŽ$?HDŽ$?fDŽ$ ?Ƅ$"?HDŽ$8?HDŽ$@?fDŽ$H?Ƅ$J?HDŽ$`?HDŽ$h?fDŽ$p?Ƅ$r?HDŽ$?H$?Hx1	H$?HH$?HQ1	H$?HH$?H.	H$?HH$@H1	H$ @HH$@@HXH$H@HHDŽ$?fDŽ$?Ƅ$?HDŽ$?HDŽ$?fDŽ$?Ƅ$?HDŽ$?	HDŽ$?fDŽ$?Ƅ$?HDŽ$@HDŽ$@fDŽ$@Ƅ$@HDŽ$(@HDŽ$0@fDŽ$8@Ƅ$:@HDŽ$P@SHDŽ$X@fDŽ$`@Ƅ$b@H$h@H*	H$p@H$@HH$@HLH$@HH$@H/	H$@HH$AH0	H$AHH$0AH-	H$8AHH$@HǸHDŽ$x@HDŽ$@fDŽ$@Ƅ$@HDŽ$@HDŽ$@fDŽ$@Ƅ$@HDŽ$@
HDŽ$@fDŽ$@Ƅ$@HDŽ$@HDŽ$@fDŽ$AƄ$AHDŽ$AHDŽ$ AfDŽ$(AƄ$*AHDŽ$@AH$XAH,	H$`AHH$AHw,	H$AHH$AH!-	H$AHH$AHl+	H$AH$BHH$AHðHDŽ$HAfDŽ$PAƄ$RAHDŽ$hAHDŽ$pAfDŽ$xAƄ$zAHDŽ$AHDŽ$AfDŽ$AƄ$AHDŽ$AHDŽ$AfDŽ$AƄ$AHDŽ$AHDŽ$AfDŽ$AƄ$AHDŽ$BHDŽ$BfDŽ$BƄ$BH$ BH;H$(BHH$HBH*	H$PBHH$pBH*	H$xBHH H$BH)	H$BH$BHBH$BHK.H$BHBHDŽ$0BHDŽ$8BfDŽ$@BƄ$BBHDŽ$XBHDŽ$`BfDŽ$hBƄ$jBHDŽ$BHDŽ$BfDŽ$BƄ$BHDŽ$B	HDŽ$BfDŽ$BƄ$BH$BHDŽ$B	HDŽ$BfDŽ$BƄ$BHDŽ$B
H$CHL+	H$CH$@CHB H$`CHH$hCHB(H$CH	+	H$CH$CHB8HDŽ$CfDŽ$CƄ$
CHDŽ$ CHDŽ$(CfDŽ$0CƄ$2CH$8CHDŽ$HCHDŽ$PCfDŽ$XCƄ$ZCHDŽ$pCkHDŽ$xCfDŽ$CƄ$CHDŽ$CHDŽ$CfDŽ$CƄ$CH$CHDŽ$CHDŽ$CfDŽ$CƄ$CH$CHy&	H$CHB@H$DH>'	H$DH$0DHBPH$PDHH$XDHBXH$xDHH%	H$DHB`H$DH*	H$DHBhHDŽ$C	HDŽ$CfDŽ$CƄ$CHDŽ$DHDŽ$DfDŽ$ DƄ$"DH$(DHDŽ$8DHDŽ$@DfDŽ$HDƄ$JDHDŽ$`D
HDŽ$hDfDŽ$pDƄ$rDHDŽ$D
HDŽ$DfDŽ$DƄ$DHDŽ$DH$DHH$DHBpH$DH	H$DHBxH$EHG'	H$ EHH$@EH(	H$HEH$pEHH$hEH\$HDŽ$DfDŽ$DƄ$DHDŽ$D/HDŽ$DfDŽ$DƄ$DHDŽ$EHDŽ$EfDŽ$EƄ$EHDŽ$(EHDŽ$0EfDŽ$8EƄ$:EHDŽ$PEHDŽ$XEfDŽ$`EƄ$bEHDŽ$xEHDŽ$EfDŽ$EƄ$EH$EHH$EHDŽ$EHDŽ$EfDŽ$EƄ$EHDŽ$EHDŽ$EHDŽ$EHDŽ$EfDŽ$EƄ$EH+HteC 
C!H{Hst5{"tfHE0HSHHt
1HE"HEHyHEH}HtR~H(HE1[]ATE1UQH5*	zHtN1HHIHu }HuH
	H5CH8czHExHHEuHyLZ]A\AVIAUATUV"|HH5	HIHHH5	H|IHu
HEy6EH;	L;-	u	L;-	uL}tHHEuHx1L{^HtWHExHHEuHxI$x"HI$uLx{Ht{YL]1A\1A]A^nzZL]A\A]A^AWAVAUATUSH8L=	Mt)1I9YH	H5H8xYH=w	t$~H	HHtEH=wHHt	tEH-\	HH=wHHt	tEH-7	HH	H=	H5mtwH%	H0HHu1GzH	HHux}HHHl$`ARHHAL
RHPHP1|xH 1Hvy1AvA1#
1H=5vH[	HH1H=|HB	HH腃y1AvA1WxxH	Ht#	_xH	Ht#	FxH	Ht#	-xH~	Ht1JxHs	Hu0xHa	H[11H=`|HI	H;HwH8	H"=	uvHH	6H\	H5	H=	xy1AvAH5HyHtH=z	JH	HtO5Hx	H5HsyE11AvAEH=s	FJHg	Hu1AvAH=+	JH/	HtH=	IH	HtH=	IHtH=	IH	HtH=	IH	HsH=	IH	HWH=z	IHBH=	pIHa	H&H=q	TIH=	H
H5	1zHb	Hu1AvA
H5	1zH3	HtH5w	1kzH	HtH5	1LzH	HtH51	1-zH	HhH	H5	1zH	H>H5<	1yH	HH5	1yH	HH5	1yH	HH5c	1wyHh	HH	H5		1MyHF	HH	H5W	1#yH$	H^L%	1LLLxH	H2H`	H5	1xH	HHF	H5/	1xH	HH5	1xH	HH5i	1]xH	HH56	1:xHk	HuH5	1xHP	HRH5	1wH5	H/H5	1wH	HH5	1wH	HH5	1wH	HH5	1hwH	HH5	1EwH	HH5	1"wH	H]H5	1vHx	H:H5	1vH]	HH5
	1vHB	HH5	1vH'	HH5	1svH	HH5	1PvH	HH5		1-vH	HhH5&	1
vH	HEH5	1uH	H"H5	1uH	HLLLtHw	HH5	1uHL	HH	H5	1YuH*	HH5	16uH	HqH5	L1uH	HKH5I	1tH	H(H5	1tH	HH5	1tH	HH	H5	1}tH~	HH	H5	1StH\	HH5l	10tHA	HkH	H5	1tH	HAL	H
	AQMQh5p	52	APAPPxH@H	HLE	H
F	W11QMh5]	5	APAPAPxH@H	HHy	H5	1>sH_	HyL	H
	VQMh5	5k	APAPP-xH@H.	H(H	H5	1rH	HLT	H
U	R1QMh5		5	APAPPwH@H	HL	H
	P1QMh
5;	5	APAP5[	bwH@Hs	H]E1AvA1ZE1AvA1DE1AvA1.1AvA1E1AvA1E1AvA1E1AvA1E1AvAH	H
H
F	H	HLfHnfHnH'OH	flH	Hv	)w	HRH=	HqL	H92HDHPHI	1H5 AvAH81}oHEOL=OH=	tUH=	ttH
DDH=[rH=	HtAH	Hx/HHu'Pi lHuH%	H5H8i1H=l	jJHuAH t7HHHh	L1H5dAvAH81nH'iH=P	H
	jH%	ÅtXmy1AvAH=	11H	mHHt5HH5	HwmxHEx3HHEu*H*h HAv1AMKHI	E1LPHA~HtHLcHcHkHIJAHD$Dt$M;uKDHHHuILLH;T$tH:u5IHt$(HT$ LD$WHT$ Ht$(LD$HHBHH9tHHuTLct$H5@E11KDAHHHHPH]	H81lLAveMM7iLoeH	H5a	H=	i	H=RjIHAHHzH5%{qH	HI$xHI$uL;fH=iIHA HH>H5qH	H]I$xHI$uLeH==iIH)A HHH5apHI	HI$xHI$uLweH=shIHA`HHSH5FUpH	HAH
LH(H5$pH	HhA0LHH5oH	H7APLHH5oHt	HALHH5oHK	HALHH5Q`oH"	HALHeH5 /oH	HsALH.H5nH	HBALHH5nH	HALHH5nH~	HALHH5\knHU	HALHH5+:nH,	H~ALH_H5	nH	HMALH7H5mH	HALHH5mH	HI$xHI$uLgbH=eIHA`HHVH5EmHW	HA@LHH5|mH.	Ht\HHtKALHmH5>lH	HtI$x7HI$u.La$E1LE1AvGAH= dIHt~H
!H2	HH5hx]H
H		LH5hx<H
H	LH5hxI$x4HI$u+L`!LE1Av\FAH=%dIHH
"H	HH5/iH
H	LH5p
iH
جHi	LH5XhnH
H<	LH5@hIH
H	LH5'h$H
iH	LH5
vhH
DH	LH5QhH
H	LH5,hH
H[	LH5hI$xHI$uLC_H=bIH\H
H	HH5wg:H
'H	LH5cgH
fH	LH5qggH
5H^	LH5VBgH
XH1	LH5=gH
[H	LH5.fH
VH	LH5fx`H
MH	LH5fx?H
,H	LH5fxI$x7HI$u.L]$E1LE1AvFCAH=	
IH6.H5	H=	Hb0.IxHIuL^]H=7	IH.H5	H=	H`b.IxHIuL][IH.H,	tH	ID$LHH=#	1,SIH-I$xHI$uL\H5	L(dIH-H5	H=	Ha-I$xHI$uLU\IxHIuL>\H=_	IH-H5/	H=	H@a-IxHIuL[wZIHy-H\	tHM	IGLHH=	
RIHT-IxHIuL[H5	LcIH:-H5	H=	H`5-IxHIuL7[I$xHI$uL[HD$8HD$@HD$HHD$PHD$XHD$`YHL$HHT$@HxhHt$8I(JH=,^IHH5HAZIIxHIuLZMHW	I9D$t<H	H5H8
[I$oHI$bL9ZU1L_Hs	I$xHI$uL
ZHS	HuH?	H5H8Z=	H%	t&	H55H	H81r_H	w*
H5IHȶ	H816_ÅuH	H5?H8YntH	H5RH8YQH|$8>H|$@HD$8>H|$HHD$@>H	ZIH*H(	L0IE`HuAZA:L`M9uAH
ZH=uaHL$`HT$XLHt$PYIFHI^1H9~M;dtHE1L9mKtI9yID$A$@tHFHs^@tUI$XHtHJ1H9~5H;tHLHH9HuH;5}	I]s
LIL'XIT$tpA$@tes_A@tUI$XHt$HJ1H9lL;t{HMtM$M9u_L;5ڴ	R3LLW:H5h	H=	1:IHt=HMI$xHI$uLVAAAtAAAHL$HI}hE1HT$@Ht$8AiJH|$P;H|$X;H|$`;1;DDH
rH=ACw^UHS	H5	LH%[(IxHIuLUH=	XH	tH4	H=	WHt$hH?)D$`2[IH'H5	H=	HZ'IxHIuLQUH=	,IH'H5	H9IH'I$xHI$uLUH5n	H=g	LZe'IxHIuLTH=!	4,IHG'H59	Hi9IH?'IxHIuLTH5	H=	LY'I$xHI$uLOTH=	+IH'H5	H8IH&I$xHI$uLTH5	H=e	LY&IxHIuLSH=	2+IH&H5	Hg8IH&IxHIuLSH5	H=	LX&I$xHI$uLMSH=	*IHy&H5N	H7IHt&I$xHI$uLSH5	H=c	LXQ&IxHIuLRH=	0*IH3&H5e	He7IH+&IxHIuLRH53	H=	LW	&I$xHI$uLKRH=	)IH%H5T	H6IH%I$xHI$uLQH5 	H=a	LW%IxHIuLQH=	.)IH%H5	Hc6IH%IxHIuLQH5	H=	LV%I$xHI$uLIQH=	(IHe%H5	H5IH`%I$xHI$uLPH5n	H=_	LV=%IxHIuLPH=	,(IH%H5y	Ha5IH%IxHIuL~PH5G	H=	LU$I$xHI$uLGPH=	'IH$H5	H4IH$I$xHI$uLOH5	H=]	LU$IxHIuLOH=	*'IH$H5	H_4IH$IxHIuL|OH5e	H=޼	LTk$I$xHI$uLEOH=	&IHQ$H5>	H3IHL$I$xHI$uLNH5
	H=[	LT)$IxHIuLNH=	(&IH$H5	H]3IH$IxHIuLzNH5k	H=ܻ	LS#I$xHI$uLCNH=	%IH#H5	H2IH#I$xHI$uLMH5h	H=Y	LS#IxHIuLMH=	&%IH#H53	H[2IHy#IxHIuLxMH5	H=ں	LRW#I$xHI$uLAMH=	$IH=#H5	H1IH8#I$xHI$uLLH5	H=W	LR#IxHIuLLH=	$$IH"H5	HY1IH"IxHIuLvLH5	H=ع	LQ"I$xHI$uL?LH=	#IH"H5X	H0IH"I$xHI$uLKH5$	H=U	L
Q"IxHIuLKH=	"#IHm"H5	HW0IHe"IxHIuLtKH5	H=ָ	LPC"I$xHI$uL=KH=	"IH)"H5	H/IH$"I$xHI$uLJH5	H=S	LP"IxHIuLJH=
	 "IH!H5}	HU/IH!IxHIuLrJH5K	H=Է	LO!I$xHI$uL;JH=	!IH!H5	H.IH!I$xHI$uLIH5	H=Q	L	Ow!IxHIuLIH=	!IHY!H5#	HS.IHQ!IxHIuLpIH5	H=Ҷ	LN/!I$xHI$uL9IH=	 IH!H5	H-IH!I$xHI$uLHH5	H=O	LN IxHIuLHH=		 IH H5Y	HQ-IH IxHIuLnHH5'	H=е	LM I$xHI$uL7HH=	IH H5	H,IH I$xHI$uLGH5̿	H=M	LMc IxHIuLGH=	IHE H5߿	HO,IH= IxHIuLlGH5	H=δ	LL I$xHI$uL5GH=	IH H5~	H+IHI$xHI$uLFH5J	H=K	LLIxHIuLFH=	IHH5	HM+IHIxHIuLjFH5	H=̳	LKI$xHI$uL3FH=	IHwH5	H*IHrI$xHI$uLEH5x	H=I	LKOIxHIuLEH=	IH1H5;	HK*IH)IxHIuLhEH5		H=ʲ	LJI$xHI$uL1EH=	IHH5ҽ	H)IHI$xHI$uLDH5	H=G	LIIxHIuLDH=	IHH5	HI)IHIxHIuLfDH5_	H=ȱ	LI}I$xHI$uL/DH=	IHcH5	H(IH^I$xHI$uLCH5	H=E	LH;IxHIuLCH=	IHH5g	HG(IHIxHIuLdCH55	H=ư	L~HI$xHI$uL-CH=~	IHH5F	H'IHI$xHI$uLBH5	H=C	LGIxHIuLBH=	IHH5ݼ	HE'IHIxHIuLbBH5	H=į	L|GiI$xHI$uL+BH=|	IHOH5t	H&IHJI$xHI$uLAH5@	H=A	LF'IxHIuLAH=	IH	H5	HC&IHIxHIuL`AH5ٻ	H=®	LzFI$xHI$uL)AH=z	IHH5	H%IHI$xHI$uL@H5n	H=?	LEIxHIuL@H=	IHH5	HA%IHwIxHIuL^@H5	H=	LxEUI$xHI$uL'@H=x	IH;H5	H$IH6I$xHI$uL?H5L	H==	LDIxHIuL?H=	
IHH5'	H?$IHIxHIuL\?H5	H=	LvDI$xHI$uL%?H=v	IHH5	H#IHI$xHI$uL>H5	H=;	LCIxHIuL>H=	IHkH5m	H=#IHcIxHIuLZ>H5;	H=	LtCAI$xHI$uL#>H=t	IH'H5,	H"IH"I$xHI$uL=H5	H=9	LBIxHIuL=H	11H=`	>IHH5	H=	HBIxHIuLJ=H	11H=	=IHH5	H=	HABIxHIuL<H3	11H=p	[=IHnH5h	H=1	HAcIxHIuL<H۳	11H=	=IH:H5е	H=٩	HA/IxHIuLB<H	11H=	<IHH5	H=	H9AIxHIuL;5p:IHHE	tIGH2	HH@	tIGH-	HPHZ	tIGHG	HPH	tIGHq	HPH~	tIGHk	HP H	tIGH	HP(HJ	tIGH7	HP0HD	tIGH1	HP8H^	tIGHK	HP@Hh	tIGHU	HPHHj	tIGHW	HPPH\	tIGHI	HPXH^	tIGHK	HP`Hh	tIGHU	HPhH*	tIGH	HPpH	tIGHy	HPxH	tIGHs	HH}	tIGHj	HHԯ	tIGH	HH˯	tIGH	HH	tIGH߯	HH	tIGH	HH	tIGH	HH	tIGH	HHv	tIGHc	HHm	tIGHZ	HHl	tIGHY	HHs	tIGH`	HH	tIGH	HH	tIGH	HH	tIGH	HH	tIGH	HH	tIGH{	HH	tIGHr	HH	tIGHq	HH	tIGHp	HH°	tIGH	H Hɰ	tIGH	H(H	tIGH	H0H	tIGH	H8H	tIGH	H@H	tIGH	HHH	tIGHٰ	HPH	tIGHа	HXHڰ	tIGHǰ	H`HѰ	tIGH	HhHH	tIGH5	HpHo	tIGH\	HxHv	tIGHc	HHm	tIGHZ	HH|	tIGHi	HH	tIGH	HH	tH	IGH=	HH5	LJ:0IxHIuL4-A;IHHv	H5	H9	H	H5a	L9Hڧ	H5	L9H	H5M	L9H	H5O	L9H	H5ѣ	Li9H	H5	LK9H<	H5ݢ	L-9Hv	H5	L9H0	H5Q	L8HB	H5C	L8HL	H5-	L8zH	H5O	L8mH`	H5	Ly8`H	H5	L[8SH	H5
	L=8FHN	H5	L89HЩ	H51	L8,Hڤ	H5	L7H|	H5	L7Hά	H5G	L7H	H5I	L7H	H5K	Lk7Hĩ	H5	LM7H	H5	L/7H	H5i	L7Hڦ	H5	L6H	H5	L6H	H5	L6H	H5	L6Hj	H5	L{6H	H5E	L]6vH^	H5	L?6iH	H5	L!6\Hr	H5#	L6OH	H55	L5BHެ	H5	L55H8	H5	L5(H	H5s	L5H	H5u	Lm5Hv	H5g	LO5H@	H5A	L15H	H5˞	L5H	H5	L4Hf	H5	L4H5	H=	L4IHHI<Lb//1AvALAvE1Al1AwATLAwE1A8E11A
wALAAw1AwALAAw1A"wAA$wA1A.wA1A3wAuLAA6w\LAA8wC1ALwA0LANwE1A1AdwALAfwE1AE11ApwALAArwAuwA1AwA1AwALE1AwAwE11AwAaLAAwMAwA<1AwA)1AwALE1AwAE11AwALAAwAwA1AwA1AwALE1AwAE11AwAqLAAw]AwAL1AwA91AwA&LE1AwAE11AwALAAwAwA1AwA1AwALE1AwAE11AxALAAxmAxA\1AxAI1AxA6LE1AxAE11A$xA	LAA&xA)xA1A3xA1A5xALE1A8xAE11ABxALAADx}AGxAl1AQxAY1ASxAFLE1AVxA/E11A`xALAAbxAexA1AoxA1AqxAοLE1AtxA鷿E11A~xA顿LAAx鍿AxA|1AxAi1AxAVLE1AxA?E11AxA)LAAxAxA1AxA1AxA޾LE1AxAǾE11AxA鱾LAAx靾AxA錾1AxAy1AxAfLE1AxAOE11AxA9LAAx%AxA1AxA1AxALE1AxA׽E11AxALAAx魽AxA霽1AyA鉽1AyAvLE1A
yA_E11AyAILAAy5AyA$1A#yA1A%yALE1A(yAE11A2yAѼLAA4y齼A7yA鬼1AAyA陼1ACyA醼LE1AFyAoE11APyAYLAARyEAUyA41A_yA!1AayALE1AdyAE11AnyALAApyͻAsyA鼻1A}yA驻1AyA閻LE1AyAE11AyAiLAAyUAyAD1AyA11AyALE1AyAE11AyALAAyݺAyA̺1AyA鹺1AyA馺LE1AyA鏺E11AyAyLAAyeAyAT1AyAA1AyA.LE1AyAE11AyALAAyAyAܹ1AyAɹ1AyA鶹LE1AyA韹E11AzA鉹LAAzuA	zAd1AzAQ1AzA>LE1AzA'E11A"zALAA$zA'zA1A1zAٸA3zAȸ1A=zA鵸A?zA餸1AIzA鑸AKzA逸1AUzAmAWzA\1AazA
IAczA
81AmzA%A{AA1A{AA{AA{߷AA{ηAA{齷AA{鬷AA{雷AA{銷AA{yAA {hAA!{WAA"{FAA#{5AA${$AA%{AA&{AA'{AA({AA){϶AA*{龶AA+{魶AA,{霶AA-{鋶AA.{zAA/{iAA0{XAA1{GAA2{6AA3{%AA4{AA5{AA6{AA7{AA8{еAA9{鿵AA:{鮵AA;{靵AA<{錵AA={{AA>{jAA?{YAA@{HAAA{7AAB{&AAC{AAD{AAE{H8[]A\A]A^A_H=g	fH=y	Hr	H9tH{	Ht	H=I	H5B	H)HH?HHHtHE|	HtfD=		u/UH=.|	HtH=:y	$h	]{f.Lq{	GPHGXAtALff.ATIUHSHHHt	HՅu!H1Ht[LH]A\[]A\ff.HuC10Ht.H
z	Hh	HPHHHtD։HHz	H5z	18AVAUATIUSHHHGH$ILl$HD$tFHHOH$Hy	LH5ZH81/"H1[]A\A]A^1LLH t4H$H@uHy	LH5ZZH81!1@uH$HuH[]A\A]A^fDAUIATIUHSHHGHHt]H=NZu:LLHIJMtHL[]A\A]IHt"HE1[L]A\A]fH[]A\A] Hzx	H5YH8fHGHHtfDS!AWL~AVAUATUSHL$M~qHG LHIHD$HMH$H|$L#H$HLIL4LHHLHHLL)IuL5x	AtAHL[]A\A]A^A_HtHx	HHtf.Kff.UHSHHtJHtH}Hx	HHtH]H1[]DH]H1[]fDHw	uUHGHL@t3Hw	LH}XH81; AHEu&]fDHv	HHH5XH81*HEx
HHEt1]@HH1@ATUHHGHGHvnHHH)HH~HOHcAH9tQHu)Hu@HYv	H5rXH8jAfH)‹GHHcAH9uHD]A\GWHH	HHcAH9uHD]A\f.GWHH	HcAH9dHD]A\fH@`HtuHHtiHHt_Hu	H9Eu6@HAHEFHHE8H+HH5%}HHuHHt	H5.yAH8*DUHGHHu~HVH}HtHEHx	HHtEHHtHDžHx	HHtHEH]H@Df[uHUHXH9B0`HfP]ff.H9t+HXHt/HJH~F1fHH9t7H9tuf.HH9tHu1H;5t	f1ff.fHHHx	HHt)Hjs	H5SWH81HHt$HT$ff.@ATUHHIHttA$HL]A\HuHEHuHr	H8ǿ1IHHtHHr	H8oHExHHEuH5AUATIUHSHHGH;=s	HXpHtNH{tGHIHLHHSIUxHIUH[]A\A]fDH@hHH@(H~HLH[]A\A]@HWHA$HH:tA$HuHL"Hx	HHt+H[]A\A]LD$4D$b#ΐHIHt LHHIU(fDH9tCHGH;q	u>HOHt
1tDȃfHHu1@fH;p	tgUHHH~H;q	H;-p	u,H;-p	t#HSHUx
HHUt1H]f1H*f.GE@HD$D$뽸AVAUIATIUHLwLHHtKH@HHtHLLH]A\A]A^DEtEHH]A\A]A^fDHYp	LH8~ff.ATUHSHHGH;bp	H;mo	t[HXpHH{tHIH#HHSI$xKHI$uALHD$HD$-@Ht	HyHGtH;Es}HDtH[]A\fDHXhHtWHCHtNHyutHH[]A\Ht	HyHGtH9EvHUH‹u@H IHtHHHI$e@HHtHt$HHt$HxHHCd12Hbn	Ht$H8t,HCHt$2ff.SH@LMt	L;1n	u'HHuHHH[LAtAIPHtL
H[DLGAtALGLfATASHH9uHm	H9GH9FHWH9VHGHNH9AHAt
HDO DF DD8u}A +H8A 5Hv8ȃ=DA9uBHHt1Au&1@Hl	H9ut1AH[A\H9uuD/IHH;|l	L;%:l	uI9uFI$xHI$uLD$D$1AH[A\LxfDD@HO(H8A@HEHN(H8A@HEDf.LVIIM1fHI9tM9Duf.1fDITHBtv@tmL9tIXHt,HqH~S1HH9t?H;TufDLDHH9xHuH;k	ffDHI9k1HHtGHH9t.HXHtRHJH~q1DHH9t_H;tuHfDHi	H5nH8j
1HHDHH9tHuH;5`j	tfDHi	HNH5&OHWH81(1@HG@t~HFHtt@tkH9t.HXHt*HJH~A1DHH9t/H;tufHH9tHu1H;5i	f1Dct@ATIUHHLHMtIx	HItHMtI$x
HI$tAHtHEx
HHEt
H]A\fHH]A\AL8fDL(fDUSHHH-h	HEHktPEHtHxHHthEHHtEHtHx	HHt*H1[]ÐHtHyHH@
H1[]f{
fAUIATIUHHHt
H9J(I}`IU`HtHx	HHtZMtI$x
HI$tKHtHEx
HHEtH]A\A]f.HH]A\A]		럐L	fDHHHT$HT$WfDAUIATIUSH
HtdH5v	LALHH
IHEx
HHEtHL[]A\A]fDH8	HL[]A\A]f.HE1[L]A\A]ff.@AUATUHHH@u~@tz1IHtR1HH6IIEx
HIEtyMt+IL$@tvLHI$x
HI$t9]A\A]H]A\A]{He	]H5aKA\A]H8D]LA\A]+L zHye	HH5JH81
uAWAVAUATUSHLgMJHIH1HI9tH9\uIH[]A\A]A^A_DHC(E1H$DJtH9{Hse	H9CH9FHSH;VHFH{H9AHAt
HDK DF DD@@8uhA "H{8A /Hv8DA2A5DDE9u)HE1HA@IM9H1[]A\A]A^A_f.L-d	L9uuL9uuHߺHHtH;c	H;=c	uL9u=DHx	HHtQEpEtKH[]A\A]A^A_@H|$	H|$AH{8A@HE<$fLN(H8A@IEDDDDf.AWAVAUATUSHHHWLbpMID$HHHtH1H[]A\A]A^A_DEL=b	E1HH3Hb	L
IMtIxHIuLMtYLHAT$IIxHIuLHL[]A\A]A^A_DHb	HRH5GH81D
E11DL$H4$XH4$DL$HIItH7EuHa	H-HIHtHHa	LH	IMtIy4IEHIELL`HIuLAWIAVIAUN,ATIUSHHHG1HL$HHD$0LL$HD$0HD$8HD$@HD$(HtHx
HHHD$0HtzHD$8I9FIILHHD$8HT$0IUHL$(HttLHPHHt[H9
uHT$0Ht$L)HD$(HD$0HHuHL$HT$(Ht$8L'IUHL$(HutHT$0tHt$(HFIEHtJLDHEHHt3H8HFH9Guq1HEHHt$(HuΐM9u&BfDHFH9G
IM9!IH8H9uH+_	HT$HH5,EH81jH|$(HtHx
HH7H|$0HtHx
HH#HH[]A\A]A^A_f.KHt$H|$0HL)H<H}Ht$("HHHHt
H|$0HfD3H+ x_Ht$(IM9H^	HT$HH5>H81TH]	HT$H5>H812HHt$(sPFH|$(Ht*Hx	HHt4H|$0HtHx	HHt1HH[]A\A]A^A_1H|$(HuSLX`Mt	I{Hu1[@H]	HH2H9u.HC`IxHIuL1f.HW@HVH@HXLHt*HJ1H~@H;tgHH9u[HH9GHuH;5\	I2fDstL[`HC`M1ttff.fAUIATIUHSHH(H`HC`HD$HD$H|$Ht!HWHT$tH|$HD$HT$Ht$H|$MH{`Ht$Ht%H|$HT$Ht	tHT$Ht	tHD$HttHD$HT$IUHT$I$HUHShH*HH|$HtHx	HHt>H|$HtHx	HHt4HtHEx
HHEt-H(1[]A\A];f+fHfDH|$IEI$HEHtHx	HHtNH|$HtHx	HHtTH|$HtHx	HHt*H([]A\A]f.f{fkfUHHHWtHEHv/HHH)HHtkHtUH]H¸H)ЋUHHUx
HHUt	H]HHD$HD$H]ËEUHH	뾐EUHH	HfDHB`Ht_HHtSHHtIHPH;6Y	H5`HyHHuCHdDH@kHuHwX	H5\H8HPDHGt{HGHv)HHH)HHt=HtfH)‹GHDGWHH	f.GWHH	HAVH?AUIATIUHHHuzHH5OX	H9t
HUBLjE1 uLeH=8+1.LAIM
HL]A\A]A^HuRHH5W	H9t	Mt9HUBt.MuE1Lj uLeH=8LfHHtHLLH1]A\A]A^HLLH1]A\A]A^DH@HuHEL-f	LMtnH=7(u11LHAIMIHtHE1]LA\A]A^HU	H5K7H8KHLH1]A\A]A^ff.AWAVAUIATUHSHHGHHtIMt"HL[]A\A]A^A_[IMuH	V	H8QuHU	LH5:ZH81[HCHHtHHtH5gh	HIHLHIHtrH8HIx	HIt?Ix	HIt9HEx
HHEtHMIfHHL>L411f.AWAVAUATAUSH8H|$H$H=xd	IHLh`H@`M'MuAtAIm(HtEtEH=-d	xH5h	H&HVH8IHHS	I9tL;T	tL#tE1Mt
I9m(I`Mo`HtHx
HHuMtIx
HIfHtHExHHE4AEtEAH5u	H
Du	Dǃ'HcHD9t
1f}0H9})HcHTD9~߉9|A9A9HHHD9pL A$tA$Hb	1LLnHHX(HI$xHI$uLHExHHHEH8[]A\A]A^A_DMG`IG`MMhAEtAEIh(HtEtELD$E8Ht$H<$hLD$IMQMt
I9h(I`MG`HtHx
HHMtIExHIEHtHExHHEkH=2s	EHD-s	D5HcHD9t1U9)HcHDD9~׉I$HI$LH8[]A\A]A^A_PHt$1DH6H=ULD$HIHHD$LL$LD$HHH<$LL$LD$IIlHI_LL$L$Jf.1E1fDG1A9A9HcHHD9q5D9-q	&DAH$)PIcHHHHHA9INHAHA9INLDHIHLH$ADqL!D-%q	A$Dq	A92Dh@IcHHHsD-p	HcD-p	HHp	HD9*LLHT$HT$tHz`HB`HN	H5c	E1H=^	f.1E1LL$L$Mt"IExHIEuLL$L$MtIxHIuLHHLV1HL`w;H=]	HGHH;M	@1HHH|$H|$Hx
HHHM	H9M	vHH.Ho	DpHn	L A$nmHLtRHcHHLHL$QL$ HHHL	IHD$LT$JLT$HD$H9L!HHHHHHHHL	LHB`H|L`M9^IBHIL$A$@A@I$XHt>Hq1L;THH9fLK	HK	DdM$M9MuL;K	8HMZ1M;d{HI91I9xItI9YLHT$HL$(L\$ LT$OHT$0HL$(L\$ LT$Hff.fAWHf	AVAUATUHSHHHL
i	L-J	HD$ HHD$(HD$0LL$Ll$HIL4H
HPHoHHeOIH
ROH\OHIHHEJ	I?SIH50H8L
SA1yXiLZH
$OH=0z1HH[]A\A]A^A_fHH<H\MLA$tA$H\	HHu Hvh	AUH=}ALjRPjRLPj5e	j	HPHFI$ZHI$LLHD$HD$HH[]A\A]A^A_oLVLy)D$MLL$<@LyM(Hd	LLIH-IHD$M~`Hhe	LL]IHHD$IfDLVLT$LLL$f.LLyLL$MLT$DMHL$HT$ ILL
AMLx]LL$fDI$xHI$uLHD$HD$ZH
MLHD$H=w.RHD$XLfDHbSLHLLvAVHd	AUfHnATUHHHSfHnHflHPfo&f	L
f	HD$@HE	HD$HHf	HD$ )D$0)T$HkIL,HHHLLqLL$MH]c	LLjHHHD$IMtHEc	LL:HaHD$ I.fDHVHFHVLLqHD$ HT$LL$MoLL$HT$LT$ H
qF	LA$tA$HHuHH=AQLj5Y	5d	j5b	RLj5Z^	g	HPH/I$xHI$!HP[]A\A]A^@H~4HH+H
E	ILLL$Af.HuJLVH
E	LT$ HVHT$LqM+LT$ H
gE	f.H
JAHHE	H"JH5+SL
bNH818XKZH
IH=+9HP1[]A\A]A^f.H
D	IhLHD$#HD$HP[]A\A]A^ÐHVHLqHT$HD$HH
KIHMIIHII?IA+fDLL$fDH
YD	IfHq\	LLIHHD$I@HL$HT$0ILL
HLjKI$xHI$uLHD$HD$
H
HKHD$H=g*HD$+HfKWHBK7HVKAVH^	AUfHnATUHHHSfHnHflHPfoa	L
}a	HD$@Hq@	HD$HHia	HD$ )D$0)T$HiIL,HHHLLqLL$MH3^	LLHHHD$IMrH^	LLH_HD$ I,@HVHFHVLLqHD$ HT$LL$MoLL$HT$LT$ H
A	LA$tA$HHu H=vAQLj5tT	5.`	j5^]	RLj5:Y	tb	HPH/I$xHI$!HP[]A\A]A^@H~4HH+H
"A	ILLL$Af.HuJLVH
@	LT$ HVHT$LqM+LT$ H
@	f.H
qEAHH`@	HEH5'SL
IH81XIZH
CEn
H=^'HP1[]A\A]A^f.H
A@	IhLHD$HD$HP[]A\A]A^ÐHVHLqHT$HD$HH
DHDIHII?IA+fDLL$fDH
?	IfHQW	LLIHHD$I@HL$HT$0ILL
TDLjkII$xHI$uLHD$yHD$
H
CIHD$H=%2HD$HhXIWkHBfI7KHX_IAWHZ	AVAUATUHSHH8L-f>	HD$ HD$(Ll$HIL<HZHHHAHT$HLA$tA$HHuHE1LHP	L
\	AUjH=
PAQjPAQjP^	HPHzI$HI$LHD$HD$H8[]A\A]A^A_HHHH#BH
BHIHHBH?L
{FHLIL@HH<	SH BH5#H81,XGEZH
AH=$-1H8[]A\A]A^A_@LqMLHHT$HY	LLHHHD$IFh@HT$ HL$ILL
lALHT$A9EEf.I$x
HI$tNcH
@~EHD$H=9#LHD$fHr4ELHD$3HD$ff.AWHP	AVIAUATIUSHxHD$@HHD$HH HD$PHXHD$XH;	HD$ HD$(HD$0HD$`HD$8HLHHEHJcHHFHD$8HFHD$0HFL}HD$(HHD$ I/IMxIHO	LHL$,HD$(HHUL$IL-S	H1fDHCH9{HL;luIHD$0HIM~vHV	LHL$L$HUHD$8IM~EHL$ HT$@MLL
!?Hy"$C!IuMDLL$ HL$(HT$0LT$8IEtEH59	IvHH=jA5R	RLj5N	QHj5N	yZ	HPH<HUxHHU.Hx[]A\A]A^A_HHIH
=H=AHMEIHH8	H>H5ATL
(BH81X8CZH
=H= Hx1[]A\A]A^A_fDLVLT$8HVoHNLHT$0)D$ HLyHD$ LyHeM	LHL$HD$ HL$IaIHH$|H$Hx[]A\A]A^A_f1Ld$IHHIE(L$ItHD$I9DH)8	I9EH9FC;IUH;VHFI}H9AHAt
HEU DN DD@@8ZA I}8A |Hv8DAADDE9H+HLL$Ld$Hم	HD$0vHHHz6	H
j;H54jL
?AH;H81Y^CL;-q6	uukH;5d6	uu^LHHiH;F6	H;=6	u	H;=&6	ulHx
HHDHCH9HItI9
LL$Ld$HIUfLH|$H|$GH?HHK5	AH5jL
>H
%:H8Ho:1u_CAXqDD#CZHUxHHUH
9qoCH$H=V9H$D$GD$L$L$HCLV(H8A@IEsI}8A@HE|$RDDqHH$H$ZH
'9AHOCxCnDAWHP	AVfHnAUATUHHxXHSfHnHflHXL-4	HD$@HR	HD$HD$HHD$Ll$ )D$0HIL4HHPHLLyLL$MHD$LT$ LA$tA$HHuHLLAUH=Aj5.F	5Q	j5O	Pj5gO	1T	HPHI$xHI$HX[]A\A]A^A_HHFLLyHD$ HFLL$HD$MLL$,DHHtHZHHX7H
H7AHOL
87EH;LOODh@HN	LyLHIHD$IHH
6AL
6HtA?H
6AL
<;HH1	H7H5sSH81XAZH
6mH=FHX1[]A\A]A^A_HiM	LLHuHD$IMHM	LLH(HD$ Izf.MLLL$LVLT$ HFHD$@LHD$kHD$HX[]A\A]A^A_HFHLyHD$HT$ZfDLL$LT$ :MHL$HT$0ILL
}6LIAI$xHI$uLHD$HD$H
)5AHD$H=zHD$"HjAGHA'AWHWL	AVAUATIUSHH8H-/	HD$ HD$(Hl$HIL4HJHHHAHT$HM$AEtAEHIt$HIE1UH=LjUUjUUjUCP	HPHvIUHIULHD$oHD$H8[]A\A]A^A_HHHH3H
3HIHH3H?L
7HLIL@HHm.	SH3H5&H81X?ZH
W3iH="1H8[]A\A]A^A_@LyMHHHT$HJ	LLHHHD$IGx@HT$ HL$ILL
	3LHT$Qu?Ef.IUx
HIUtNH
{2?HD$H=AHD$f+Hrp?LHD$HD$ff.AWHI	AVAUATIUSHH8H-&-	HD$ HD$(Hl$HIL4HJHHHAHT$HM$AEtAEHIt$HIE1UH=LjUUjUUjUM	HPHvIUHIULHD$HD$H8[]A\A]A^A_HHHH0H
0HIHH0H?L
K5HLIL@HH+	SH1H5vH81XY*ZH
0AH=1H8[]A\A]A^A_@LyMHHHT$HG	LLHHHD$IGx@HT$ HL$ILL
i0LHT$QK*Ef.IUx
HIUtNgH
/*HD$H=HD$f{HrF*LHD$HD$ff.AWHWF	AVAUATUHSHHHL
I	L-o*	HD$ HHD$(HD$0LL$Ll$HIL4H
HPHoHH.IH
.H5/HIHH)	I?SIH5nH8L
3A1X)ZH
.H=1HH[]A\A]A^A_fHH<H\MLA$tA$H5<	HHuHHG	AUH=ALjRPjRLPj5D	J	HPHFI$ZHI$LLHD$GHD$HH[]A\A]A^A_oLVLy)D$MLL$<@LyM(HdD	LLIH-IHD$M~`HD	LLIHHD$IfDLVLT$LLL$f.LLyLL$MLT$DMHL$HT$ ILL
-Lx]LL$fDI$xHI$uLHD$	HD$;H
q,)HD$H=HD$)fDHb)H)vAWHC	AVAUATIUSHH(HD$H'	HD$HD$HHL<HHL.HALl$HID$H5A	LHHdHHFaIHUH5B	LHHEL%H6	HHH=1LLHI)MpHExHHE"IHILJDHHHH*H
{*HIHHl*H?L
.HLIL@HHU%	SH*H5H81XK(ZH
?*H=
E1H(L[]A\A]A^A_LqMIlL.Ll$XHA	LHvIHHD$IF @H@A}(HExHHE5Ix
HID溾E1H
o)H=3DLLHRIHFfDA~(Ay(HHEx HHEuHA{(pcA{(UDLPCHL$HT$ILL
)HyLl$=(Ef[HBH#	H5H8'Hf.Hz8(AWH?	AVAUATUHSHH8L-6#	HD$ HD$(Ll$HIL4H2HHHAHT$HkLA$tA$H=Hu MLC	HoI$HI$LHD$HD$H8[]A\A]A^A_@HHHH'H
'HIHH&H?L
s+HLIL@HH!	SHa'H5H81$X'ZH
&H=Z
%1H8[]A\A]A^A_@LyMLHHT$H>	LLHHHD$IG@HT$ HL$ILL
&L	HT$i'EfI$x
HI$tNH
%'HD$H=	LHD$fHz'LHD$3HD$ff.AWH=	AVAUIATUHSH(HD$HD$HD$HIL<HHCL6HALt$HvIEH5[<	LHH8HHH	H9ELeMA$LmtA$AEtAEHExHHEfInfInHl$Afl)D$L21LHLH>IMtI$xHI$^MIExHIEIx
HIHL	tnH([]A\A]A^A_@HH	Hp$H5UL
#AH
a$H81X+!ZH
#H=v1H([]A\A]A^A_HuL6Lt$WDH;	LHHYIHD$HCM(HG!|DkIHD$H5	Lt$H}H9t
-HUBLl$HZE1 uLeH=膿>LLIIM]}HuHA	H5H8fIExHIEm!H
g"H="H(1[]A\A]A^A_@IAHl$E1fL訿L蘿H舿KLxY!qfDHLHIHL$HT$ILL
#"LqxLt$]I !ff.AVAUATUHHHHHEH52	HH%HHH$IH#H	H53	HHEL5+	LM*H=~uzLLHAIMtAHExHHEIExHIEHL]A\A]A^fD;HuH	H5H8耾A HExHHEyIExHIEVH
 DH=cHE1]LA\A]A^ÐA LXHL]A\A]A^fH8LLHIHAHHm	E1E1RL
#HH8H
H51XZLH]A\A]A^Hy1H5HğHHA DHEx@HHEu6HA PL@H3zfDA ff.fAVAUATIUHHGH5/.	HHwHHzHEH5.2	HHHIHEMyxHHEOI|$H5-	HGHHIMqID$H51	LHHHI$HxHI$H=+	H觺IHHExHHEH5~+	LvHHrI$xHI$HL)IHHExHHEIExHIEA$MtA$I$xHI$HL]A\A]A^@H@L0H &LGAS AHExHHEH
XDDH=rMiME1HfL訹HL]A\A]A^fL船Hx蛿HHH
9 E1H=HL]A\A]A^A; A#CIUHH H
bMH=xE1ZIIJ I$xHI$uL虸軾H>AM AsP 뮐AUATUHSHHtH{Hx
HH/HkHEHH5)	HH]IM`H5L耺xH5L詽IHAoEHC AoMK0IE HC@HC HCHHCPHHHx
HHHEH5,	HHHHHHHx	HHt|H	HtI$x
HI$t3H[]A\A]fDgfDLHD$ӶHD$H[]A\A]軶zfDۼIMH
"H=ObH1[]A\A]DH-4	L-3	HEHHH=r1HLHȹHHHEx
HHEtu"H
mH=Ⱦ1+H"fD"@ۻHG"@H舵~H1LHHKf."V蜸HuH`	H5H8"'fAWH+	fAVfHnAUIHHXATIUSHhHD$PH#	)D$ fHnflHD$0HD$X)D$@HqHL<HHHKHHIHD$ HL51+	H1@HCH9HL;tuIHT$(HHYHLL$ LT$0L	NHFHFHIHD$0HFHD$(HHD$ HwLL$ HT$(LT$0Ly	IEtEHH=TIuHHAPAj5$	5/	j5O*	RLj5&	2	HPHHUxHHUjHh[]A\A]A^A_HHLVL	LT$0oHVL)T$ >HIH%	LHH$H$HHD$ HUHOH
)AHH	HH5ATL
yH81OXDZH
H=}PHh1[]A\A]A^A_HH
HAHMEIvL	MH),	LHH}HD$0HKHH$H$Hh[]A\A]A^A_ÐHVHHYHT$(HD$ {fDE1IF(JtHD$I9fDH	I9FH9FC;IVH;VHFI~H9AHAt
HE^ DF DD@@8zA I~8A Hv8DAADDE97HKLL$HH$H$LL$HD$(ӳH{HH
	H
H5jL
8AHtH81Y^DDL
	M9uL9uu{LLD$LL$H$HHH[H;
	H$H;=O
	LL$uLD$L9Hx
HHfDIAL9IJtI9K$HL$ HT$@MLL
H衫bDLL$HL$H<$5LL$HL$H<$XI~8A@HE|$DmDHUxHHUH
LDH$H=虷H$VLL$D$H$螮LL$D$H$@ӱH
DL^(H8A@IEeDDv虱Hu4H
AwHH$&H$CDD8}D~fDAWH 	fAVfHnAUIHxHxATIUSHhHD$PH		)D$ fHnflHD$0HD$X)D$@HtHL<HHHNHHIHD$ HL5	H1HCH9HL;tuIHT$(HHYHLL$ LT$0L
	NHFHFHIHD$0HFHD$(HHD$ HwLL$ HT$(LT$0LY
	IEtEHH=tIuHHAPAj5	5(	j5	RLj5	*	HPHHUxHHUjHh[]A\A]A^A_HHLVL		LT$0oHVL)T$ >HIH	LHH$ޣH$HHD$ HUHLH
	AHH	HGH5ATL
YH81/XkBZH

H=0Hh1[]A\A]A^A_HH

H
AHMEIvL	MH	%	LHH}HD$0HKHH$ĪH$Hh[]A\A]A^A_ÐHVHHYHT$(HD$ {fDE1IF(JtHD$I9fDHi	I9FH9FC;IVH;VHFI~H9AHAt
HE^ DF DD@@8zA I~8A Hv8DAADDE97HKLL$HH$ЫH$LL$HD$(賬H{HH	H
H5qjL
AHH81Y^MBDL	M9uL9uu{LLD$LL$H$(HH[H;u	H$H;=/	LL$uLD$L9Hx
HHfDIAL9IJtI9K$HL$ HT$@MLL
H聤bYBLL$HL$H<$LL$HL$H<$XI~8A@HE|$KBmDHUxHHUH
,
BH$H=yH$VLL$D$H$~LL$D$H$@質H
TBL^(H8A@IEeDDvyHu4H
|	AwHH$H$CDD8CB~fDAWHG 	fAVfHnAUIHhHATIUSHhHD$PH	)D$ fHnflHD$0HD$X)D$@HqHL<HHHKHHIHD$ HL5	H1@HCH9HL;tuIHT$(HHYHLL$ LT$0L	NHFHFHIHD$0HFHD$(HHD$ HwLL$ HT$(LT$0L9	IEtEHH=IuHHAPAj5	5!	j5	RLj5#	#	HPHHUxHHUjHh[]A\A]A^A_HHLVL	LT$0oHVL)T$ >HIH	LHH$辜H$HHD$ HUHOH
AHH	HH5ATL
9H81X'MZH
_H=Hh1[]A\A]A^A_HH
lHnAHMEIvL	MH	LHޛH}HD$0HKHH$褣H$Hh[]A\A]A^A_ÐHVHHYHT$(HD$ {fDE1IF(JtHD$I9fDHI	I9FH9FC;IVH;VHFI~H9AHAt
HE^ DF DD@@8zA I~8A Hv8DAADDE97HKLL$HH$谤H$LL$HD$(蓥H{HHH
H5QjL
AHIH81Y^	MDLM9uL9uu{LLD$LL$H$HH[H;UH$H;=LL$uLD$L9Hx
HHfDIAL9IJtI9K$HL$ HT$@MLL
WHabMLL$HL$H<$LL$HL$H<$XI~8A@HE|$MmDHUxHHUH
^MH$H=YH$VLL$D$H$^LL$D$H$@蓣H
ML^(H8A@IEeDDvYHu4H
\AwHH$H$CDD8L~fDAWHw	fAVfHnAUIHPHPATIUSHhHD$PH)D$ fHnflHD$0HD$X)D$@HqHL<HHHKHHIHD$ HL5	H1@HCH9HL;tuIHT$(HHYHLL$ LT$0LiNHFHFHIHD$0HFHD$(HHD$ HwLL$ HT$(LT$0LIEtEHH=Iu HAPAj5	5w	j5	RLj5;		HPHHUxHHUjHh[]A\A]A^A_HHLVLqLT$0oHVL)T$ >HIH	LHH$螕H$HHD$ HUHOH
AHHHH5rATL
H81XFZH
H=Hh1[]A\A]A^A_HH
LHNAHMEIvLqMH	LH辔H}HD$0HKHH$脜H$Hh[]A\A]A^A_ÐHVHHYHT$(HD$ {fDE1IF(JtHD$I9fDH)I9FH9FC;IVH;VHFI~H9AHAt
HE^ DF DD@@8zA I~8A Hv8DAADDE97HKLL$HH$萝H$LL$HD$(sH{HHwH
gH51jL
AH.H81衠Y^FDLqM9uL9uu{LLD$LL$H$HH[H;5H$H;=LL$uLD$L9Hx
HHfDIAL9IJtI9K$HL$ HT$@MLL
<HAbFLL$HL$H<$՝LL$HL$H<$XI~8A@HE|$FmDHUxHHUH
-	FH$H=9H$VLL$D$H$>LL$D$H$@sH
FL^(H8A@IEeDDv9Hu4H
<AwHH$ƘH$CDD8F~fDAWH		fAVfHnAUIHPHATIUSHhHD$PH)D$ fHnflHD$0HD$X)D$@HqHL<HHHKHHIHD$ HL5Y		H1@HCH9HL;tuIHT$(HHYHLL$ LT$0LINHFHFHIHD$0HFHD$(HHD$ HwLL$ HT$(LT$0LIEtEHH=dIuHHAPAj5	5W	j5w	RLj5		HPHHUxHHUjHh[]A\A]A^A_HHLVLQLT$0oHVL)T$ >HIH-	LHH$~H$HHD$ HUHOH
AHHHuH5RATL
H81ϛX)ZH
zH=ОHh1[]A\A]A^A_HH
,H.AHMEIvLQMH	LH融H}HD$0HKHH$dH$Hh[]A\A]A^A_ÐHVHHYHT$(HD$ {fDE1IF(JtHD$I9fDH	I9FH9FC;IVH;VHFI~H9AHAt
HE^ DF DD@@8zA I~8A Hv8DAADDE97HKLL$HH$pH$LL$HD$(SH{HHWH
GH5jL
AHH81聙Y^(DLQM9uL9uu{LLD$LL$H$ȓHH[H;H$H;=LL$uLD$L9Hx
HHfDIAL9IJtI9K$HL$ HT$@MLL
%H!b(LL$HL$H<$赖LL$HL$H<$XI~8A@HE|$(mDHUxHHUH
>)H$H=H$VLL$D$H$LL$D$H$@SH
(L^(H8A@IEeDDvHu4H
AwHH$覑H$CDD8(~fDAWAVAUATIUHSH(HWHBpHtH@HtH(H[]A\A]A^A_HBhH#HxHI9D$ID$HAI)AD$LIXHUH;H;LbpMtQI|$tIL衒IHHHAT$IUxHIUH([]A\A]A^A_DLbhMID$HuML@MGHULH9GHUH‹t@HH;}H5.	|1H詏IHLd$I}HD$H;=tH5FfDIUBLt$Lb1 uImH=蚎LHAHD$HD$HIUMHELI9s0JDxIDHUJ*ILȐIHHH衏I$1HI$#LHD$蚎HD$ۑHuHUH;uH;IDHELI1fLXIHtHxII(HILHƹHH)HH3HAD$AL$HH	H;I5H;L踎Ht$1LH9fLHD$cHD$LLtI~`IF`r褏HUHHRH56H81Ԓ1HHH2蛍t)ID$L`YHH5LH81莒1Cr}LIEl$AD$II	II$H;HHEIID$ HHIMMIH3L(IF`HL`M9IEHIT$A$@A@}I$XHt!HJ1L;llHH9oM$M9MMuL;-[;GHUG10軎HuHH5HD$H:HD$lIHH8eO舍ID$M}1M;dHI91I9ItI9Lq~HAWAVAUATUSH8H9IHI~H5	HGHHIMHI9E/ImH"EI]tEtIExHIEHD$(H5,H{Hl$ H9t	衏t]HSBtRL|$ LjE1 uLcH=_LLAIYMHEy5H踊HHt$ 1ɺHIHExHHEMH$1E1E1E1HD$A!fH5=)D$ I}H9t
貎jIUB[HZ1 uImH=n1HILgM
Hx
HH:IGHH9vIWHxIG MgH$IG(HD$A$tA$H$D$tHt$D$tIx
HIG赆IHyH	t	H	IGHL-_HHH5LLLHAIHExHHE?IM
x
HIH5c	LHHWtEHExHHEIExHIEH$H@H;ZTH9HXpHH{1IH	H<$HSIIHILˆfDHt$ 1ɺH\I)@L踇HHt$(11LLIfDHhH@hH{H@HnH<$1IMIHLhA$tA$Mg IFLH5HHIM{FIHH;H5HLIEH5)HHH=Ht$谄Ht$LLHHIExHIEDIx
HI IHEtEfHnfInI](flAEI$xHI$H$MHxH$HHH|$tHL$Hx
HHHtHExHHEH8L[]A\A]A^A_fHhLX/E1LMBH$HuHjH$HHYHL@H\HgLH$H@L(AEAEH訃>L蘃L舃BHxHHE1E1RL
7HH8H
MH5o1XZH$LhAE[fDHyh1H5MHfOE1`@IZ1E1A!HD$H$E1MtIEx
HIEtUMtIx	HIt`H
DH=JMI$xHI$E1LDT$T$/DT$T$@LDT$T$DT$T$@KHuHH5H8萂HEI݅xHHEuHÁH$L1E1E1E1E1HD$A!Hx	HHt@MIHILDT$T$NDT$T$HDT$T$/T$DT$@H;A#LIHIx
HIIELHIHLH$HLHD$HLH跀IETHIEFLm9AT"1Ix	HItE1HfLDT$T$T$DT$@HFHx.HHH
MHEH<H5H81蓅HD$E111H$A!E1E1RD1E1A/"IEH-HHH=~1HLxf.E1E11A4"A7"aLL~IWHIGHHL H@H$HD$RDHH5H81cfDLL
HH'AU"AH"E11AP"sIWAF"y1AR"fDSH:HH5H8~1IHH<$H~IIkfDAU"1;fDE1AY""D軀AU"HHpH5DT$T$H8}T$DT$f.E111A4"fE1AF">L|1HLSIHRLHx
HH)HH5H81NL4$MLLl$1E1A"HD$H$HD$E111H$E1A"E1E1IExHIE-|u1IHLH
RH5-HEH:H81蘁LH$1E1A"E1HD$iE1AvL4$AgL{pHz{LH$1E1HD$E1E1A!fDAWAVAUATIUHSHHSEtEHEHrIT$H5~LHHHbIMdHI9D$M|$MAMt$tAAtAI$xHI$HD$H5I~L<$H9"Lm{H,H1ɺLIIx
HIMMAAz=HIMT~IHH5HH~VIFL=;LMH=$xLLLAI}MIxHIuLZyI$xHI$uL@yHEx
HHEtHL[]A\A]A^A_@HyfDfH5)$I|$H9t7~u.LyH
Ht$11LMI@IT$BtLrE1 uMl$H=wv1LAIM|MI!HILLxIVBH$LjE1 uMfH=BwHLAI{MaItLwPHIvH1H5LZE1mAAZ=DDE1H
H=
P+A=IAx
HIPI$xHI$uL.w@L wH1ɺLzIfDLLLj|IHlfDA=kDID$L-DHH}H=-u1LL	f|IAAf=|IYAA=IHILAA=vsLu3yHHH5tH8tvyHHH5DH8Dv}xHuHH5H8vIMHHI;LEu.AA=L1LMzIAWAVAUATIUHSHHSEtEHEHrIT$H5LHHHbIMdHI9D$M|$MAMt$tAAtAI$xHI$HD$H5[I~L<$H9"yL=uH,H1ɺLIIx
HIMMAA<HIM$xIHH5HHxVIFL=LMH=rLLLAIvMIxHIuL*sI$xHI$uLsHEx
HHEtHL[]A\A]A^A_@HrfDfH5)$I|$H9t7Zxu.LsH
Ht$11LMI@IT$BtLrE1 uMl$H=qv1LAIMuMI!HILrIVBH$LjE1 uMfH=oqHLAIiuMaItLqPHIUpH1H5LTE1mAA<DDE1H
H= z+A=IAx
HIPI$xHI$uLp@LpH1ɺLtIfDLLL:vIHlfDA=kDID$L-HH}H=o1LL	f{vIAA<SvIYAA<IHILAA=osLosHHH5DH8DprHHH5H8p}rHuHnH5H8oIMHHI;Lo.AA=L1LMotIAWAVAUATUSHH(HGH5HHHHHH9E%L}MALetAA$tA$HExHHEL|$L5bHD$I|$L9tLstkIT$Bt_Ht$HjE1 uMl$H=Ht$)mLHt$IqMFIy;f.LnHHt$1ɺLIIx
HIM ffL5})D$H}L9tLr7HUB(LbE1 uLmH=Ml1LAIIpMII$xHI$H=,H5EHGHH!IMH-,H\$HD$H}L9qL)raHmHt$1HHHHHtI9D$M|$MsAMt$tAAtAI$xHI$rfInfHnHl$Afl)D$Ll1LHLHHMtIx
HI*Hx
HHHIx
HIHLjHIUxHIUHUxHHUaH([]A\A]A^A_f.HUBHt$HZE1 uL}H=~Ht$jHt$u;LHvnHznHuHH5]H8]kDIE\HIENALjI$2HI$$L^jfHHjmHpHt$1ɺLmIy@H(kHHt$11HII_fDLi{mHgHD$H\$I|$L9tL@otlIT$Bt`L|$Lr1 uIl$H=hHLAHlHHx	HHt.MfDME1Hl$A6f.MDHieLhdLhbHHD$hHD$H([]A\A]A^A_LHD$hHD$JfLhLxhIEx
HIEtHHEAxHHEDH
H=qH(1[]A\A]A^A_LAhHEyfD#nHHAAIEAxHIErLgemIjHuHH5 H8 hILxHIELfDHEAfH(gHEL-LMH=)fu1LHADIEMxHIEuA8A5DiHRHH5<H8<g7iHuHH5H8gHxRHMHi1:fAL1HkIHILfIEA pff.ff.HGHH;Fu1eAVAUATUSHHtIMt%HL[]A\A]A^DkIfDkdHHQLC`H(MtIxH9HEHHW@@HXHtYHJHN1HH96H;luHC`IHILdHH9tHuH;-OtHeLC`HC`MLmM1	HI9tH;|u_E1JtH9tH|$WH|$uIM9u`DAWHAVAUATIUSHHHHD$(HD$0HD$8HUHL4HHL.HILl$(H
IEH 'u3
H-|H9H;.L`pMI|$
1eIH
HLAT$IIx
HIM
H5pL9gHI9D$H9FIT$H;VID$HNH9@H@t
HED$ ~ D8A ML$8@ Hv8ȃHA	>9OHLE1H>dAI$xHI$Eu@HH-H H5ATL
AH
H81WgX&ZH
7H=E1UjHHL[]A\A]A^A_HuL.Ll$(DH5L9bqH5H=1&EIHJHXI$xHI$#mW&qDLyL-}1M1	HL9cL;luM,Ll$(M	IOH5ALaHAEE1tAEIEH5LHH5
IM
ID$L5HH
H=?_
1LLHcHI$xHI$HH9EHcf.
HExHHECXIELH5>HHf
HH@
HEL5ELM
H=Νq^
1LHAIbM
HExHHE
ID$ID$HH)AD$HHcЉH9$1I$xHI$	H{kPLH5DHGHH(
Ѕ	HIătIExHIEMIHIL!^@H@hH;H@H.1LILM9uu
L9t{I$xHI$UH5H=1AIHHTI$xHI$?
t&H
޿H=vE16fLLD$]IHH;ۺAH;DdLD$M9VLaAI4
E&sE11E1E1I$xHI$dHtHExHHEaMtIx
HIH
H=E1PeME1I}}IEL A$RA$IL(\EYfDI}5MeA$uHHH)HHHAD$AT$HH	HcЉH9H)H5BH8:\^H:fI$	_IHIEH9H;HhpHt@H}t91]IHHLUHIx7HIu.LZ$H@hHcH@HV1LHHH5\HL_IHExHHEc^HH*1ҾLHIHbH5+HH_Ix
HIT1ҾLGIHH5HH2_Ix
HIH5HL_HExHHEL]H	HZME1,I}IEH(EEfLXYIE(E1HD$@JtI9H+I9EH9FIUH;VHFI}H9AHAt
HEU DF DD@@8upA I}8A Hv8DAJA~DDE9u1HLL$HZLL$IM9fDLѵM9uuL9uuLLD$LL$PXLL$LD$HHt^H;H;=UL9LL$H|$[LL$H|$Hx
HHTLy(HD$(ZH%O,I}ImEuH(WLW=HD$WD$^LHZHcЉH9H0ZH"3DIEHILVE11E1&vLT$dVT$LT$LVT$HT$4VT$H5H=1#:IHHLI$xHI$^q&nf.1WIHHLVIIHL$(HT$0MLL
HQLl$(1LLZHH[E1('}\fDH
s&E1H=%]HTLT>LTF'H
8H=НE1]K1LHZIHrHExE1~8'f.&vE1E1E1v1ҾLAIHH5!HLRxIx
HI1ҾLAIHaH5[HL@RYIx
HIA$mA$MM%1iUIHHLBTHIQL@SUL0S;}&'Sf;YIHR=AD$AT$HH	HHcЉH9
)flA&ED$UD$HHE[E1}+'f&wE1E1E1E1E1&wn('}E11Z@~6'Sf;XHE1E1&wE1E1E1&vUIHHخH5Y('H8TR}f.HI$LzQD&wE1E1TfDD$LL$:QD$LL$@E1E1&wA[THzHH5H8Q_&vE1E1E1LV(H8A@IEI}8A@HE|$ME1x&LPlG&HN(H8@HEIL$(ML$8A@LEDDL/PMMLP0A	>DD{LOLO;A	>%9LOHIf.My&M&MyE11E1Mz'M'MzE11E1p;'~E11\H@`HHHtLIHtrH٬I9Fu2L5IHILNLH504IHu#E11E1&sQHHH5"H8"OH
߰v&H=m0WH
q&H=KWH
}+'E1H=&VH
v~8'H=V{H
Tt&H=VKH
2mS&H=V)ff.AWH7AVAUATIUSHHXL-HD$0H`	HD$ HD$8HD$@Ll$(HHL4HHHzHHxH
hAHOL
XEHϳIHLOHHAH>SH5H81RXcGZH
+2	H=U1HX[]A\A]A^A_H>HbLVLT$(LLL$ (foLVHI)D$ HVLL$ I$EtEHHHHYAUH=lIt$HAjRPjRLPj5HPH7HU4HHU&HH$KH$HX[]A\A]A^A_fDLyLE1MdfHL9twL;DuMLL$ MBIM&LT$(
MLLyLL$ M~H8LH-CIHHD$(IOE1I@(JtHD$I9fDH٨I9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA UIx8A 2Hv8DA]A`DDE9u7L$HtHLL$HLLLL$L$DIM9JtI9O`@M9uuL9uuLǺLL$L$IHHtsH;AL$H;=LL$L9LL$LD$H<$gMLL$LD$H<$Hx
HH=PHD$ gLH
oAL
aHGG7HL$ HT$0ILL
EH!ExLL$ noSGfDHUxHHUH
	GH$H=QQH$KHbNGD$LL$L$.HD$LL$L$L^(H8A@IEIx8A@HE|$HH$GH$MDDDDDAWHAVAUATIUSHHXL-FHD$0HHHD$ HD$8HD$@Ll$(HHL4HHH|HHH
AHOL
EHIHLOHHsHwSH5,H81LX@ZH
]H=HO1HX[]A\A]A^A_fH>H`LVLT$(LLL$ (foLVHI)D$ HVLL$ I$EtEH׶HHHAUH=eIt$HAjRPjRLPj5HPH7HU2HHU$HH$EH$HX[]A\A]A^A_fDLyL1MdfHL9twL;DuMLL$ MBIM&LT$(
MLLyLL$ M~HhLH]=IHHD$(IOE1I@(JtHD$I9fDH	I9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA UIx8A 2Hv8DA]A`DDE9u7L$HtHLL$H|FLL$L$DIM9JtI9O`@M9uuL9uuLǺLL$L$ DHHtsH;qL$H;=+LL$L9LL$LD$H<$GLL$LD$H<$Hx
HH=PHD$ FH
AL
H@5HL$ HT$0ILL
|HQ?xLL$ no@fDHUxHHUH
4g'AH$H=KH$EHb@D$LL$L$^BD$LL$L$L^(H8A@IEIx8A@HE|$HH$BH$MDDDDDAWHoAVAUATIUSHHXL-vHD$0HHD$ HD$8HD$@Ll$(HHL4HHHzHHأH
ȣAHOL
EH/IHLOHHHSH5ZH81FXEZH
fH=I1HX[]A\A]A^A_H>HbLVLT$(LLL$ (foLVHI)D$ HVLL$ I$EtEHHHHټAUH=kIt$HAjRPjRLPj5HPH7HU4HHU&HH$@H$HX[]A\A]A^A_fDLyL}1MdfHL9twL;DuMLL$ MBIM&LT$(
MLLyLL$ M~HLH7IHHD$(IOE1I@(JtHD$I9fDH9I9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA UIx8A 2Hv8DA]A`DDE9u7L$HtHLL$H@LL$L$DIM9JtI9O`@M9uuL9uuLǺLL$L$P>HHtsH;L$H;=[LL$L9LL$LD$H<$ALL$LD$H<$Hx
HH=PHD$ @H
ϟAL
HE7HL$ HT$0ILL
H9xLL$ noEfDHUxHHUH
d-FH$H=vEH$@HbED$LL$L$<D$LL$L$L^(H8A@IEIx8A@HE|$HH$H<H$MDDDDDAWHǬAVAUATIUSHHXL-HD$0H`	HD$ HD$8HD$@Ll$(HHL4HHHzHHH
AHOL
EH_IHLOHHјHSH5H81AXHZH

H=D1HX[]A\A]A^A_H>HbLVLT$(LLL$ (foLVHI)D$ HVLL$ I$EtEH7HHHAUH=\It$HAjRPjRLPj5:HPH7HU4HHU&HH$I:H$HX[]A\A]A^A_fDLyLժ1MdfHL9twL;DuMLL$ MBIM&LT$(
MLLyLL$ M~HȳLH1IHHD$(IOE1I@(JtHD$I9fDHiI9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA UIx8A 2Hv8DA]A`DDE9u7L$HtHLL$H:LL$L$DIM9JtI9O`@M9uuL9uuLǺLL$L$8HHtsH;ѕL$H;=LL$L9LL$LD$H<$;LL$LD$H<$Hx
HH=PHD$ :H
AL
HH7HL$ HT$0ILL
H3xLL$ noHfDHUxHHUH
i
HH$H=ր?H$;:HbHD$LL$L$6D$LL$L$L^(H8A@IEIx8A@HE|$HH$x6H$MDDDDDAWHAVAUATIUSHHXL-֓HD$0H`	HD$ HD$8HD$@Ll$(HHL4HHHzHH8H
(AHOL
EHIHLOHHH%SH5yH81@;XHZH
	H=^A>1HX[]A\A]A^A_H>HbLVLT$(LLL$ (foLVHI)D$ HVLL$ I$EtEHgHHHAUH=UIt$HAjRPjRLPj5jLHPH7HU4HHU&HH$y4H$HX[]A\A]A^A_fDLyL1MdfHL9twL;DuMLL$ MBIM&LT$(
MLLyLL$ M~HLH+IHHD$(IOE1I@(JtHD$I9fDHI9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA UIx8A 2Hv8DA]A`DDE9u7L$HtHLL$H5LL$L$DIM9JtI9O`@M9uuL9uuLǺLL$L$2HHtsH;L$H;=LL$L9LL$LD$H<$'6LL$LD$H<$Hx
HH=PHD$ '5H
/AL
!HG7HL$ HT$0ILL
,H-xLL$ noHfDHUxHHUH
ē	IHH$H=.{:H$k4HbGD$LL$L$0D$LL$L$L^(H8A@IEIx8A@HE|$HH$0H$MDDDDDAWHAVAUATIUSHHXL-HD$0HHD$ HD$8HD$@Ll$(HHL4HHHzHHhH
XAHOL
HEHIHLOHH1HSH5sH81p5XCZH
vH=yq81HX[]A\A]A^A_H>HbLVLT$(LLL$ (foLVHI)D$ HVLL$ I$EtEHHHHIAUH=PIt$HAjRPjRLPj5r|HPH7HU4HHU&HH$.H$HX[]A\A]A^A_fDLyL
1MdfHL9twL;DuMLL$ MBIM&LT$(
MLLyLL$ M~H(LH&IHHD$(IOE1I@(JtHD$I9fDHɋI9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA UIx8A 2Hv8DA]A`DDE9u7L$HtHLL$H</LL$L$DIM9JtI9O`@M9uuL9uuLǺLL$L$,HHtsH;1L$H;=LL$L9LL$LD$H<$W0LL$LD$H<$Hx
HH=PHD$ W/H
_AL
QHC7HL$ HT$0ILL
H(xLL$ noCfDHUxHHUH
DH$H=uA4H$.HbCD$LL$L$+D$LL$L$L^(H8A@IEIx8A@HE|$HH$*H$MDDDDDAVAUIATUSHH=HGHH;u.1LG*IHHL[]A\A]A^LH,IMu=)HH#LC`L MIxI9tzID$HHW@A$@HXHtTHJH~61fHH9t'L;duHC`IxHIuL),IHt+E1HI9tHuL;%#tHILH5ҌH81.K/IL)tLC`HC`MrUIl$H_1	HH9tI;|u&E1KtH9tH|$OH|$uIL9uATHUHHHWH=,IHttA$HL]A\D+HuHH]A\AWH/AVAUATIUSHHHD$0HD$pHD$xH	IL4H	H 	H.HIHl$0HHD$8HHD$@HD$HHD$PHD$XHD$`HD$h\+H$H~H7H}H9t:HXH~	HqH	1DHH9	H;TuHH5vHH@HH|$8H:HGH5HHILD$@H|$8MHxHH8LD$@HTL-HD$8I9M9L;!L{*AƅcLD$@Ix
HIHD$@EH}HH9HH5HHHH|$@HH5UH9CHGH;c HGHE1HuE1AHx
HH HD$@EH5H:
HD$@HH$H9L9H;=vS)Å$H|$@Hx
HH}HD$@LHHD$H9XHEH5ǟHD$HEHHaHHH|$@H[111eHD$8HHLD$@IxHI;H|$8HD$@)HHH|$8Hx
HHHEH5/HHD$8HHhHH|$8HbHGH5ŘHHILD$@H|$8MsHxHHLD$@HD$8L(HHnH|$@Hx
HHuHD$@H=HD$@HHH@H5THHHD$8LT$@HIx
HILHD$@HJ%HD$@H%HD$HIHHD$@HD$@IGJ'HD$@HH=ՙ0IHH5HeHD$PIHIExHIEL|$PH5ZH|$@L'H|$PHx
HH,HT$@Ht$HHD$PH|$87HD$PIHH|$8Hx
HHbHD$8H|$HHx
HHJHD$HH|$@Hx
HH2HD$@L|$PHD$PL;|$I$H5MwIHI$H5lHD$@HH$HD$HHf~H9G HGHD$HH HttLT$@H|$@IHI:HD$HH|$@Ht$pHD$pHD$xc&H|$HHD$PDH|$PHD$HHLT$@IxHIH|$PHD$@Hx
HHHD$PTHL$hHT$`HxhHt$XH$HHH~{ID$ Ll$IH$LLd$L|$ IH<$L)HL$HLHL,L"LHL"LHL"I)IuLl$L|$ HD$$tH\$H\$HH\$Px
HHHD$PH|$XH|$`HD$XH|$hHD$`H5&1LHD$h3HD$hIUxHIU"HD$hHfHx
HHnHD$hHD$$H\$IHH|HZH5bSL
AH
H81@$XeZH
H=hE1>'HĈL[]A\A]A^A_fHuH.Hl$0jDLyH-%1MUHL9I;luI,Hl$0H7IOD|HDHH9HuH;|{fDHXHxHqH1HH9{H9TuH5mHHD$HIHH5H9H@H;{A_Ix
HI8HD$HoH5hHHD$HIHH58HÅ8H|$HHx
HHHD$H0H5pH@HD$HIH!H5H HD$@H!H|$HHx
HHHD$HH=9HD$HIH!H5dHHD$PIHE"H|$HHxHH'L|$PH\$@LHD$HHxHHH|$PHD$@Hx
HHHD$PL9H=UHD$PIH{!H5(HHD$@HI!H|$PHx
HHHD$PHD$PIH9!HkH5,H$ HT$PH5ȘH|$@HD$HIH!H|$@Hx
HHHD$@H|$PHx
HHHD$PH|$HHx
HHHD$HH=hHD$PIHH53HHD$@H%H|$PHx
HH
H5HHD$PtHD$PIHH|$@L5v1HD$8AL9wE fInfHnH\$pflH4L)D$p3H|$8HD$HH|$PHD$8Hx
HHHD$PL|$HMO H|$@HxHHL|$HI$H5>HD$@HD$H'IHI$H5HD$@HH;HD$PL9p
 H@HD$PHHttLT$@H|$@I
HIHD$PH|$@H޺HD$pHD$xH|$PHD$HH|$HHD$PHdLT$@IxHIH|$HHD$@Hx
HHHD$HHL$XHT$`HxhHt$hHD$(H$HHI HL IH911HH=HD$HHHH5
uLH|$HHx
HH11HHHD$HHD$HHHLHH|$HHx
HHOLHHHD$HHH|$hTH|$`HD$hAH|$XHD$`.H51LHD$XHD$XIExHIELl$XMIExHIEHD$XL%sA$Ld$$VHH9HuH;sfDH=!THD$PIH+HHÃ}H|$PHxHHuHD$PGH=kHD$PIH.H5>H&HD$@H}H|$PHx
HHHHD$PHD$PIHUH,tHL|$PIWH}H5PHD$HIHmH@H;rAAAL|$HL|$8MH|$HHxHHEL|$8AG HD$H@u tDLl$PIHD$8M} H
tH
Ll$PIM(H։T$T$HI
HD$HƁv>HI?LGۃLD$AF  IF8HD$E1Hl$ E1HLd$(Mԉ\$4DHr8;D$

I1LLIIIKTHZHtHH)I9J  tHr(Hz8@HDf.2fAE1E1H|$8HHHHLT$@MtIx
HIH|$HHtHx
HHMtIExHIEH|$PHtHx
HHDH
tE1H=~\	MIHILE1A.iDLT$@*fDL0LT$@f)fDL1BfDHE(E1L$$IHD$LLMIǐItI9HKoI9D$H9FIT$H;VHFI|$H9AHAt
HEL$ DF DD@@8udA %
I|$8A 	LF87EA9u(HLHHL9fDLmM9uuL9uuLLD$}LD$HHtdH;mH;=mL9H|$H|$Hx
HH`LL$$MIIͅy4HD$0He"LL$$MIIK,sfDL`H=ɍH5*1SHD$@HH*-H|$@HxHHuH|$8YfHD$@AE1E1HKfDHx
HHHD$@H|H}H9K
f.H|$PHl$ Lt$8Ld$(Hx
HHFHD$PEHD$PIHAHD$8HIGtL|$PIW HD$8HD$8HHHtH550HT$8Ht$PH|$@HD$HIH5H|$@Hx
HHHD$@H|$PHx
HHHD$PH|$8Hx
HHpHD$8H|$HHx
HHHD$HI$H5\WIH
I$H5$7HD$8IH
HD$PHjI9E
IEHD$PH
MmtAEtAEH|$8Ll$8HJ
HH
HD$PLl$8Ht$pLHD$pHD$xH|$PHD$HLl$HHD$PM$
H|$8HxHH	Ll$HHD$8IExHIE	HD$HI 
HL$hHT$`HxhHt$XHDL,$IMLL11HHIfHD$HH11LHIHD$8H		HT$HLHKr	H|$HHx
HH]HT$8LHHD$H	H|$8Hx
HHHD$8I:H|$XH|$`HD$XH|$hHD$`mH5Ƈ1LHD$hHD$hIx
HIL|$hMIx
HIH)hHD$$5H\$IkLH
;
fD+
UfD
fDHL$0HT$pILL
mLAY	Hl$0L	HLT$@BfAE1E1H5kwHsfAE1E1HHH|$8fAVD$LHډHHH|$4ZIKDfALT$@fAPGfAE1E12HnfAE1E1HLT$@fAHx
HHHD$@LwfAhI]H|$8fAFHfAE1E1=@H[HHD$L,$I HL|$MIHIHDLLHHH0IuI6H0IEII)IuL,$L|$
!fAH|$8fATD$ED$dLd$H|$8qfA#H
HE1fAHD$HHt$p	LNH|$8fALN(H8A@LDMI|$8A@HE|$gHHIL]HD$HfAE1E1ZLd$HcH5PH8IxHIuLLT$@FiHD$8A'6HD$@
LE1fALyH|$fAH;bIHtBH9AL9DL;=bL6	AI)
E
sfAE1E1E1fAL7E0iH|$PNH|$8HD$P;H|$@HD$8(H|$HHD$@H
f1HD$HH=NB
HL$PHT$HHHt$8VHt$8HL$P1HT$HHD$@HH1LHIx
HIH|$@Hx
HHHD$@H	H;-taH;-2aH;-PaHAHExHHEE^Hl$8E,	HH|$HHD$8H|$PHD$HH{hHL$hHD$PHT$`Ht$XkDHExHHEuHrIfAH5pL+fAE1E1iA$E1gA
iHpf,HD$PHt$pLE/iA$E1E1KfIExHIEAE1"i/iH{hHL$hE1E1HT$`Ht$XA.L|$87EiH;^LIHtGH;_H;^L;-^vLRIE	gA
E1E17Ht$x112H|$8UfAfRH|$8zfAIV(IN8@HDHT$)|fAE1E1Ht$x1e
IEHILbEXNlDL7<-E1iA.6E1gA#IiHIA.E1E1E1'f.GADE2E1wgAgAE1E1f(Ht$x11Ht$x1E1#iA&U/Ii2E1iA.(LAE1ciA,E1E1H|$8%iA&E10iA'H_H;Y\	LPXIE18iA'{LR8E1hA[iHgAE1E1;i(nLT$@:iA':hAH|$PbH|$8HD$POH|$@HD$8<H|$HHD$@)H
`DHD$HH=GXH|$HL$PHT$@Ht$HSHt$HHL$P1HT$@HD$8HH1L1HIExHIEH|$8Hx
HHHD$8HRH;-ZH;-DZH;-bZHHExHHEHl$HKHH|$@HD$HH|$PHD$@HD$HL$XHD$PHT$`Ht$hHxh{HEۅxHHEuH	phHD$HL$XE1AHT$`Ht$hHxh)IEۅIHIE;LvBhAL~HD$PH޺bjhA qhA a8DL+E1hA4E1QiA&!H|$8hALA.E1E11ffA.GEiE1gAE1gALT$@aiA,H|$8gADLl$PLd$HHiHLLHD$8HD$HHD$PH|$8gAE1gAE1gAhA!E1gA<hIExHIEAE1HGHD$8HHttLD$@H|$@IHIHD$8L|$P1AH|$@U:hAE1+hA
E1gAHt$x1cPh*hHt$x11AhE1liA&hLAE1pLc6HD$8L|$P1AHIE}Lt$PLd$@HhHLLHD$HHD$@HD$PHIsL&L;LMhALTE1jA.H|$@L|$HVH;TH5dL6Iff.ATUHL%oH=dIT$LHHŋtEHEH5hHHHHUHt?x
HHUtH]A\fHHD$HD$H]A\fDx
HHUtbNnH
XH=IUH1]A\HuLHHBLnkNfDH(fDAWAVAUATIUSH(H6qIHeA$tA$L59nH=JcIVL^HHtEHEH5mnHHHIHEMxHHELHHIFHHNH=3rHLLIMIx	HIt~Hx
HHI$x
HI$t8IEx
HIEtH(L[]A\A]A^A_@LfDLfDHLHv~HhiHHox
HHIx
HIeH
VH=ZE1DHLLrIHtIf.HBHLl$H\$HD$HD$t$HIHE11LHHtHD$H@uHPHYH5u1E1H81]{HuLnHHZoxlHHEubHoI>ofDLt$t$HOH5E1H8E>oaH߉t$zt$8AWAVAUATIUSH(H6IHeA$tA$L5jH=_IVLHHtEHEH5jHHHIHEMxHHELHHIFHHNH=0HLLIMIx	HIt~Hx
HHI$x
HI$t8IEx
HIEtH(L[]A\A]A^A_@LfDLfDHLHv~HiHHSox
HHIx
HIeH
RH=
WE1:DHLLIHtIf.HBHLl$H\$HD$HD$t$H<IHE11LHHPtHD$H@uHMH[VH5-E1H81H]HuLHHZLoxlHHEubH:No[I>QofDLt$t$HLH5-H8>NoaH߉t$t$8AVHg`AUATUHSH0HD$HD$ HD$(HJIL4HRHL.HALl$H{L%fH=[IT$LHHdtEL%KL9HELHH]Hx
HHA$LtA$HUHHUu|HHD$HD$H0[]A\A]A^@HHKH\TH51UL
OAH
PH810XnZH
OH=@11H0[]A\A]A^fHuL.Ll$DH^LHHY"IHD$HCMHHGn|DHHuLHH
'OnH=5@x1BHZHH}H9YHXHHqH~1H;T+HH9uHIHJH5.HWH81HExHHEH
xNnH=?1fHL$HT$ ILL
RLLl$TH
NnHD$H=#?fHD$@HpeHHH5MH84HDHH9HuH;HnHff.AWAVAUIATUH H-aH=RXHUHfHIċtA$ID$H5S_LHHHI$HxHI$$HGH9ELl$H5wHHD$H}H9	E1L|$AHF1LLHHIMtIx
HIMHExHHEL;%~GL;%<GL;%ZGtLŅRI$xHI$dLLHHHAtA2HUBL|$LrE1 uLeH='Au=LLAIM>HuHFH5'H8ArAHEx6HHEu,H"x
HI$tJArAH
JDDH=2<M1H ]A\A]A^A_DLPL@fDIEH5mYLHHIMoHHHcH5YH
ID$L5adLMH=:&%HLLAHD$/HD$HI$xHI$HUHHUHHD$DHD$f.H(NLLI;HuH.IHArA;HLuM8ALetAA$tA$HExHHEfInfInLAflL|$)D$AArI$HI$1LHKf.AMI$HI$	AuHRLHD$HD$>fHLLHfAN{DIVHD$H|$HAsA'AuAIAKAuKHrHBH5#H8WAuff.AWH'\AVAUATIUSHHXL-FBHD$0HHD$ HD$8HD$@Ll$(HHL4HHHHHFH
FAHOL
FEHJIHLOHHqAHJSH5*(H81XZZH
[FH=71HX[]A\A]A^A_HfHbHVHT$(LLD$ (foHVHI)D$ HLD$ M$AtAL
SHH
_It$ jH=~AQQjAQE1QLj5ZAPAaHIHPHGx
HIHHHU
HHUHH$H$HX[]A\A]A^A_@LyL
Z1MHL9L;DuMLD$ MIM2HT$(LLLyLD$ M~H8\LH-HHHD$(IOLH
bDZH$H=5H$fDx
HIH
!DZH=5r1E1I@(JtHD$I9fDHa?I9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA %Ix8A Hv8DAADDE9u7L$HtHLL$HLL$L$DIM9JtI9O@M9uuL9uuLǺLL$L$xHHtsH;=L$H;==LL$L9LL$LD$H<$LL$LD$H<$Hx
HH=PHD$ H
AAL
AHnoZHL$ HT$0ILL
1FHx*LD$ gL(t{Z0f[HtvZ@D$LL$L$D$LL$L$L^(H8A@IEIx8A@HE|$DDDDfAWHUAVAUATIUSHHXL-<HD$0HHD$ HD$8HD$@Ll$(HHL4HHHHHx@H
h@AHOL
X@EHDIHLOHHA;HdESH5!H81XWZH
+@H=11HX[]A\A]A^A_HfHbHVHT$(LLD$ (foHVHI)D$ HLD$ M$AtAL
MHH
\YIt$ jH=.AQQjAQE1QLj5pTAPA[HIHPHGx
HIHHHU
HHUHH$H$HX[]A\A]A^A_@LyLS1MHL9L;DuMLD$ MIM2HT$(LLLyLD$ M~HVLHHHHD$(IOLH
2>\WH$H=/H$fDx
HIH
=NWH=/B1E1I@(JtHD$I9fDH19I9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA %Ix8A Hv8DAADDE9u7L$HtHLL$HLL$L$DIM9JtI9O@M9uuL9uuLǺLL$L$HHHtsH;7L$H;=S7LL$L9LL$LD$H<$LL$LD$H<$Hx
HH=PHD$ H
;AL
;HnVHL$ HT$0ILL
@Hqx*LD$ gLtW0f+HtW@D$LL$L$D$LL$L$L^(H8A@IEIx8A@HE|$DDDDfAWHIAVAUATIUSHHXL-5HD$0H`	HD$ HD$8HD$@Ll$(HHL4HHHHHH:H
8:AHOL
(:EH>IHLOHH5H>SH5H81PXZVZH
9\H=+Q1HX[]A\A]A^A_HfHbHVHT$(LLD$ (foHVHI)D$ HLD$ M$AtAL
wGHH
,SIt$ jH=AQQjAQE1QLj5GAPARUHIHPHGx
HIHHHU
HHUHH$_H$HX[]A\A]A^A_@LyLF1MHL9L;DuMLD$ MIM2HT$(LLLyLD$ M~HOLHHHHD$(IOLH
8VH$H=)OH$fDx
HIH
7VH=)1E1I@(JtHD$I9fDH3I9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA %Ix8A Hv8DAADDE9u7L$HtHLL$HtLL$L$DIM9JtI9O@M9uuL9uuLǺLL$L$HHtsH;i1L$H;=#1LL$L9LL$LD$H<$LL$LD$H<$Hx
HH=PHD$ H
5AL
5Hn>VHL$ HT$0ILL
9HAx*LD$ gLtJV0fHtEV@D$LL$L$D$LL$L$L^(H8A@IEIx8A@HE|$DDDDfAVHGAUATUHSHH@H/HD$ H(HD$(HANHD$0HD$HT$HIL,H,HrHHH4IH
4H8HIHH.I?SIH5H8L
V8A1+XUZH
3	H=%,1H@[]A\A]A^DH&HdHbILA$tA$H
}AHHu E1H+MjAQH=RjQLRLj
5EPYOHI$HPHmxHI$HHHU4HHU&HHD$cHD$H@[]A\A]A^ÐoLVLq)D$M6HD$@LqMHDLLH`IHD$M~cHILLIHHD$IfLVLT$HHD$f.HLqHD$MLT$mDLxZH
1UHD$H=#.HD$@x
HI$tbH
1UUH=#1fDIIHL$HT$ ILL
5L1xHD$DL딾UX@HtU@@HU$AWHEfAVfHnAUATIHHUSHHxHD$`H))D$0fHnflHD$@HD$h)D$PHHL<HvHHHHIHD$0IL-MEM1
HL9L;luIHT$8HLiM-HL$0LT$@AHnHFHIHD$@HFHD$8HHD$0H?HL$0HT$8LT$@M$AEtAEHH=@It$HE1jA5=5TIj5DRLj5XCQLKHIEHPHxHIEHH/HUxHHUHx[]A\A]A^A_f.HHLVLT$@oHVH)T$0fDHIHBLHHL$MHL$HHD$0LEH9DH
y.AHHh)H2H5"SL
2H81XTZH
K.
H=^ Hx1[]A\A]A^A_HH
.H.AHMEI~fL!)@HyELHnHHD$@IML8cHVHLiHT$8HD$0pfDE1IE(JtHD$ I91fDH(I9EH9FSKIUH;VHFI}H9AHAt
HEu D^ DD@@8A I}8A "Hv8DAAADDD6E9OLD$H[LL$E1HHL$GHL$LL$LD$AEHD$8%H9HH)'H
,H5
jL
0AH0H81SY^TL5!'M9uL9uLLL$LD$HL$HHTH;&HL$H;=&LD$LL$u	L9DHx
HHoEfDIM9JtI9K@HHD$HD$Hx[]A\A]A^A_H
*$UHD$H=NHD$@xHIEH
*UH=1f.HL$0HT$PILL
.HQTLL$(LD$HL$H|$LL$(LD$HL$H|$ALXI}8A@HE|$ /TfLL$LD$HL$lLL$LD$HL$iH"T_Lv(H8A@IEnHu,H
q)ADD6DD6T
AWH_@AVIAUATUSHH8L-f$HD$ HD$(Ll$HHLHHL>HAL|$HMfA$tA$H4H=3HSHHH,tEHLI$pxHI$HExHHE8I~H5;HGHHHHH"H9EZH]HMLetA$tA$HExHHEfInfHnHl$ Afl)D$ Lg1LHLHkIHtHx
HHMLI$xHI$Ix
HIIFLPHH,Hx
HHAULAUH8[]A\A]A^A_DHHHH&H
&HIHH&H?L
3+HLIL@HH!SH\+H5^H81X#ZH
&H=1H8[]A\A]A^A_@LaM/MlL>L|$XsIH9=LHLT$豻LT$HIHD$ID$HxHhsLXMHD$ H5X!L|$(H}H9t
HUBL|$(HZE1 uLeH=&LLII{MHy@A$APA#AHExHHEDDH
$H=:EH81[]A\A]A^A_@LHML8Q+nfDH[HuHNHHA#AI$\HI$N1LH%6@H5Q>H=@1諥HHtxH苸HExHHEAA#@HXHI$AA#gIAHl$(1AA#f.+H/AA#aHL$HT$ ILL
'H	L|$9#fAA$LT$LT$Ht#Mf.HXIHdH5H8pAWH7:AVAUATUHSHhL%H|$HD$PHD$XLd$0HPIHHHIL.HALl$0H)
HD$8HD$@HD$HM9L%6H=,IT$LHHtEHl$HHEH5L2HHH)
HHl$@H&
H|$HHx
HHeHD$HHD$HHH)
AEtAELmSHD$8HHZ
H-5H=4,HUHHHHt
tHCH53HHH
IM
HxHHuH_H5@1H|$8L{IExHIEuL)Hl$@Lt$8Ll$HHELM
H=*
HLLAH~H
H|$@Hx
HH
HD$@H|$HHx
HH
HD$HH|$8Hx
HHp
Hl$8EtEHExHHE:
Hl$8HD$8HEuH} HD$H}<HD$HbHD$XE1HD$(HD$L- 0LLM~L
HH.H@HH"HLLHH-HD$L-/LLM~LHH=H@HHLLHH'H@HD$HH;q
HGHD$HHQ
LotAEtAEHx
HHHD$HHt$PLHD$PHD$X~LT$HHD$8HMtIxHIpH|$8HD$HHA	IExHIEH|$8Hx
HH
HD$8dIHD$Hx HL$LJbHCH5'8LM/H=Ht$ F.1Ht$ HAI虾MHx
HHIExHIEIL9d$EIEHHHHH
HIHHH?L
C!HLIL@HHUHF!H5nH81X*ZH
mH=E1HhL[]A\A]A^A_LyMHD$8HD$@HD$HHD$L=,LLMuLֽHHH@HH6HLLHHHD$L={,LLMuL}HHH@HH
LLHD$@HHH@HD$HH;8	HGHD$HH	HttLD$@H|$@I=HIxHD$HH|$@Ht$PHD$PHD$X9H|$HHD$8HHtHxHHH\$8HD$HHH|$@HxHHH\$8HD$@Hx
HHqHD$8HD$Lphf.M>Mt	M9MvMu1E1HD$Hx 胒HHD$8IHYHD$8HD$H@hH8L8HtHx
HHMtIx
HIHtHx
HHH5@41HVHHExHHEH	HHHHL.Ll$0*H0HLIHHD$0IG@賶fDfD,%fDLpcfDSKfDL@AtAMwAtALH-fDL51HnIHxHHuHеM1Av,A/HLE1A*,AH8诵H|$8HtHx
HHH|$@HtHx
HHH|$HHtHx
HHHtHx	HHtiMtIEx
HIEtbH
tDDE1H=	ƽHHEHHEH軴fDH訴fDL蘴fD苴fD{*fDk8fDEE@H1LH8VHA,,xcE1HHQA1@SHuHH5H8蘴Hx
HHXAv,AE11.fDH訳LL蘳#苳fDHLLHHfDA+A11E1H8tH|$@DHfDTfD"fD#HLHD$HHHJE11A+AHL$0HT$PIHL
LɮLl$0*5fHA@,)1AA@,@Ht$(I113KHH|$8HHw1E1AA+jHt$(I1E11A+A2f.H許蛱SfDHD$HHt$P@1E1AA+fA+A11L@{胴HuHvHE11A+A+Is1A+AUDӰ[fDHA1踰+HLE11AD+AH8議E11AA+f.HILH8nHD$@HEAF+xHHEAE111[HHH
H5E11A+AH8舰KH**HEAZ+g1E1AAZ+Ht$X11H|$@Ht$X11H|$@HD$8הH|$HHD$@ĔH
q+HD$HH=H|$HL$HHT$@Ht$8eHL$HHT$@1Ht$8貵H1HHHD$ǒL\$IHExHHE4Ix
HI	ML;%L;:M91LLT$ZLT$Ix
HI$0H|$8D襓H|$@HD$8蒓H|$HHD$@HD$HD$HH@hH8L8HtHx
HHMtIx
HIMHHHHHyHAv,E11aAE11A+AHAE11-1IHILHD$HE11A+AWA+HD$H@hH8L8HtHx	HHt|MtIx	HItqHtRHx	HHtf11ALLT$oLT$HLT$ XLT$ L\$E11A4zL'H11AL\9A+A+A+Ld$@Hl$HH|$貮H|$LHA+HH6HD$8HD$@HD$HE1A*,AHE11AD+A@AWH$AVAUATIUSH8HLvHD$ HD$(H\$HHMIHFHHD$誩H!Hl$H9H5HF+HEHHHTHHHx
HHEtEID$LHHHHE1x
HHGHEHHEH%MIMHkH
[HILHLH?L
MLIL@HH5AVHH5H81sXZH
H=AnH8D[]A\A]A^A_@H0IHH5"HHVHpHD$IEPf.HnHl$FfH-H=HUH薬IHtAHI9FfHt$(1L)D$ MdHHIE5HIE'L薨苨fDL-H=IULIHtAHlI9FfHt$(1L)D$ M迭HHIExHIEHCH5*HHHHHHH9GLMALotAAEtAEHx
HHfHnfInHt$ Lfl)D$ IIx	HIt{MwIEx
HIEt@IH݅HIL
fDLfDۦSfDLȦx1HL$HT$ ML

HHH5AH8$H
H=7f{HL86{HuHn{IH"H
AH=Ϯ\f.Ht$(H|$HD$ Hl$(^H|$IIcfDAIExHIE1H
DH=OA@M~MtAMntAAEtAEIx
HIHt$ LL|$ HD$(裪HI4HI'L#H
HuLyIHWH
AH=_f.0AM~MAMntAAEtAEIx
HIHt$ LL|$ HD$(裩HIHILHIEHIEARL螣H
DH=fHHA*Lh@L[31H
vAH=^H
>HH=9AH
uRH=ƫdH
SRHH=A蝫qAWH/AVAUATUHSH(H9HD$HD$H\$HIL<HHL6HALt$HL%H=IT$L軥HHgtEHEH5HHHIHEMxHHEL-LH=5IULIHHMtEHLXAŃI$xHI$HExHHEL%H=IT$LE̤IHXtAEIEH5LHHIIEM]xHIEHI9D$Ht$LMHD$Lt$NIM:IHIL肠DHHHHH
HIHHH?L
HLIL@HHUHDH5FH81̥XvmZH
wH=E1ʨH(L[]A\A]A^A_LiM[IuCHHtEHEH5:HHHIHEMxHHE;MeA$tA$MeIExHIE0HD$Lt$I|$H;=.tH5%訤IT$BLt$Lj1 uIl$H=]u,LHAI[MH[@H
mE1H=`L6Lt$%HLLfIHHD$IE@LPHt$1LHIMjIGH5LHHHIHkx
HIL-H=,IUL@IHtAIGH57LHHIM~Ix
HIzIEH5HLHHyЉHEYxHHEgIExHIEAI݃@HHМkLEHuLqHHmH
H=E1ZD蛢IqAmHExHE1HHEu&E1H5MtIExHIEMtIx	HIt]H
wDH=ͤME1I$HI$L进AmL蠛fDbHIETE1AmLlM諞HuLpHt	HME1AmIEE1ÞISHuLFpHHMmK#HuLpHH
/mH=耣MAmE1HELE1HHE:(DHL$HT$ILL
pL葖Lt$hm%f.HL LLLؙyAn9L踙H訙˟IE1Am(D裟IiIxHAAmIH
mH=>7Il$HAEM|$tEAtAI$xHI$RfInfHnHt$Lfl)D$\IHEHHEH藘fۛH"cmsHIH
mH=VUf[H<kHuL^mIHhAmfHExfAnILH
&mE1H=tL臗IxAn]H
nH=f.eHbH5H8H
mH=)E1IAWHAVfHnAUATUHHHSfHnHflHxL5kH|$HD$0HD$`HD$hLt$8Lt$@)D$PHL<Hq	CH*HL&HMLd$0HHD$@Ll$8HD$A$tA$AEtAEH-H=HUHM9l藙HHtHCH5HHH
HHH
x
HH	H=H5	HGHH
HH
IH	H5*LH菚	H5`	LLuHCL5HHZH=HL$AaLHL$LHI葘MxHx
HH
Ix
HIHH9EHt$XHIHLt$XHD$PHD$` HIx
HIyLAaA>HIx
HIHx
HHH|$H5HGHH!
IMHI9]LrHHH@L
3H9R
HE
HH)NjEHHIM5
HExHHE_LL$@LL$HHA$tA$fInfInflE蛗HZHT$H5&
HHD$9LL$HH5LLL$LHLvLL$HIIx
HIV
HExHHE(
IxHI
@I$xHI$rIEHIEL@H.HFL&HMHD$@HFLd$0HD$8HLd$0DH>HHHH8H
(AHOL
EHLOOD+IH
tAIALL$LH5B
HHLL$HIHDx
HI{	H=H5HGHH)IMLL$qLL$HIH5LHLL$	IAH-NHHq
H=7LL$HL$ ЏLL$t
LL$(HLHL$ LHHD$HLL$(>
Ix
HI	Ix
HIc	H\H9CaHD$Ht$XHHD$PHD$XHcHD$`處IHHT$Hx
HH"	H
Ix
HIHExHHEA$tA$Ix
HIHt	HI$xHI$IMI%fDHMHLHHL$=HL$HHD$0I"HHxH
aAL
HHIHH5SH81舔X">ZH
3	H=6E1膗HxL[]A\A]A^A_@HLHHL$艆HL$HIxHD$8HHvLmL%[MU1fDHI9{L;duIH*HD$@HfLt$ML&Ld$0HFHD$HD$@LnLl$8IxHA?IA?AfE11Ix
HIHtHx
HHMtIx
HIHtHExHHEH
DDE1H=MfLnHHMLl$8HD$0fDLA?Ix1HIu(E1LDD$LL$赌LL$DD$MAf@LDD$背DD$fHDD$cDD$fLDD$CDD$fHDD$#DD$fAEtAEL
dL2@H1HD$@Ld$0HD$@AcA>3ID$(HL$E1HD$ H\$HLMMDJtI9HsI9EH9FIUH;VHFI}H9AHAt
HEU DN DD@@8uhA I}8A Hv8DAA&DDE9u)HHDIL9HH\$fDM9uuL9uuL詊HHtH;H;=L9H|$(2H|$(Hx
HH)iHHL$H\$My-8Ht[
>fHHL$H\$MKLt$fDAcA>HL$0HT$PILL
H蹅Z>蛌HuH^HH@AaA>LMIDLeH4LЈLLH:IHfDAcA>軎LL$H&fDLpHLL$[LL$LHLL$fDcH\E1AaA>@HLL$LL$fLzL؇HȇL踇xAcA>MÍHH耇RLp.AcA>A?IHIfDA[Ap>1xDA?AfA>ILІLlHLL$ 諆LL$ HuH[IHAZA_>5H;LHIA?kLLHLL$ 貋LL$ HHD$A[Aq>1o@E1AZAa>1UfHL$6HL$H>
fDA7A/@LMMAL}tAAtAHExHHEfInHfInLflHt$PLL$HD$`)D$P݊LL$HIHIL1E1A[Al>vf.ID$(ׄD$(fDA
?DHHH)HHHHC`LHIf.軇AcA>HHoH5DD$H8DD$A[An>1LV(H8A@IE$I}8A@HE|$ @H
HAL
:H=L{MALKtAAtAHx
HH3HfInLHt$PD$LL$ HD$`)D$PLL$ HIVHIILLL$ /LL$ 2LL$A[eLL$Aq>HHH5DD$1H8蔃LL$DD$8A?DDE1LA>AZ"DD}EHH	}EHH	HHLL$eLL$HLL$ NLL$ /XE2If.AWH?AVAUATIUSHHHL-HD$0HD$8Ll$(HILH*HH.HAHl$(H#EtEH{H5MHGHHa	IM	H5H5LI9D$W	kIM6	H5I9H7I9FH9FIVH;VIx
HIL9H;-bu
H;-v)L=H=-IWLAIHutAIFH5`LHHIIMlx
HI
IGH5LMp
H=Ht$_Ht$1LAHD$调LT$M
Ix
HI	Ix
HI	HKD$t	H
9HExHHEi	H-Hc{PɁIH	H5HL}	Ix
HICXUIH	H5HL}	IxHIuLL9H;-D$	H;-ЈD$L9LsAtAL-FH=/IULCIHw
tALLRÃIx
HI	Ix
HIw	|$rL$HH5HLI9D$
OhIM
H5HLI9D$
"hIM
H5HLI9E
gIIEM
xHIEHeI9D$LT$LH5A
gLT$IM
H.I9FLT$LH53
xgLT$IIM}
xHIuLLT$}LT$HI9D$LT$LH5l
gLT$IMh
HI9D$LT$LH5Sg
fLT$HHB
LT$xLT$HfInfInfInLflHX8I@fInfl@(HHMHH
HILH|H?L
MLIL@HHeATH0H5H81裁X~$ZH
NH=E1衄HHL[]A\A]A^A_LyM[LL;51utH;5 ucL{IHD	L9L;=eL;=XL8I$&1E1E1E1Ix
HI*MtIx
HIMtIx
HIMtIExHIEHtHx
HH$H
H=.QLE1HHHNzfH.Hl$(IFHNH9@H@t
HEN ~ Dȉ8A GMV8@ !Hv8ȃ$A
>9HLH{1҅Ix
HIsf.Hh}}&$HaLLLT$9qLT$HHHD$(IGNf.LxH|H|D$z2G%Lf.LxDIHILx%$H
H=;MHEHHEwH0xjS~I&$@xIA$L}A$tI?HI2LT$wT$}ILLT$wLT$r%3lf.H߉t$T$PwT$t$H
H=Lt$LT$T$wt$LT$T$8fL׉t$T$vt$T$+Lt$T$vt$T$&Lt$LT$T$vt$LT$T$fHL$(HT$0MLL
LrHl$(p$~f.LHvH8vL(vILLT$vLT$f+%%+1E1E1E1fD1LF{IHf.E1'$1@,%fLxuLhu%,1E1E1E1HfD-%{xHuLnJIHw'$1E1E1Ҿ$'fH5H=J1XIHHkIEgH.5%IE%LT$t$tt$T$fDLT$wLT$Hk$rfD'$E1E11L{wHuLnIIHu1E1E1Ҿ %-CwLT$HI2HH5|1H8ztLT$'$fDHN(H8@HE@IN(MV8A@LE"%-1E1E1kf3R%+tI'E1Һ3T%1J
tI3M1E1V%3
sI;A
>?sLT$IjE13Y%1LT$rT$@1۾[%3sLT$ITA
>csLT$I4f%1h%4X1sLT$H.5%HI
f.1%1E1E1Ҿ$&f.AWHOfAVfHnAUATUSHHpHpfHnH(	HH$HO)D$`fHnH8HD$pflH^)$fHnHD$0flHD$xHH|$HDŽ$HD$8H$)$H=L4H
HdHHcH@HF H$HFHD$xHFHD$pLnHL}Ll$hHD$`HH(HcHLyHLHhHD$`Hh(IHLHhHD$hIHu%IMH\$`fHiLH^hH%HD$pIM~}H(LH5hH#HD$xIM~THML%#H81fDHH9
L;duIH
H$IMH\$`Ll$hHD$pHD$ HD$xHD$0H$HD$8tAEtAEmIHkH\t	HLIAL$HH-zsL$HIH5E1LHH=sL$II$xHI$M|$Ix
HIH5LL$PvL$HIhtA$I$xHI$Ix
HI{H-H=HUHqIHutAIAL$LH5iHHL$HHIx
HIH$H9ERH$HHDŽ$H$isIIMIx
HIHx
HHH-H=HUHqIHtAIBL$LH5HH`L$HHIx
HIH;H9EH$HHDŽ$L$rIHD$(H|$(Ix
HIIExHIEHD$ H;>H@kHH%Ht$ $tHt$ HEHl$ H0IFH5LHHIMSLL$oL$HIIx
HI	IH|$(H5HGHH` IM LL$oL$HH Ix
HIAH
H5H=1rOHHHNbHExHHE(A\pHD$1E11HD$E1H$HD$mHt]@HH5HFo&LnHHD$ HD$p)d$`*fHHF HD$8H$HFHD$0HD$xDHaH9HXHHqH1HH9H;TuHo&LnHHD$ )d$`xHLyHD$`WH
IAHH8HH5SL
H81poXs[ZH
H=~E1nrHL[]A\A]A^A_fLhiIHH9HuH;fDHT$ $fDLiiLiCHL$`ILHH$L
!&e[[H$1E1E1HD$A\pHD$HD$MtIx
HI=HtHx
HHDH
E1H=.!qMtI$xHI$H\$ HtHx
HHHtHExHHEHL$HtHx
HHH<$HtHx
HHH\$HtHx
HHHL$HtHx
HHMtIx
HIIx
HIHD$(HH|$(HH"gDLL$gL$0LfxLL$fL$LHfffDHfHf%Lf.Lf2LpfEH`fSHPf^H@fLHL$0+fHL$0LLD$fLD$L$DLeHeQLe-E1ID$(L<$IJtHD$I9EfDHI9D$H9FIT$H;VHFI|$H9AHAt
HEL$ DF DD@@8A 'I|$8A Hv8DAAZDDE9ufHtwHguJL<$y]
hHV[f.L;%AuuH;54u2t.fDIM9tJtI9L<$K@LdHHtH;H;=u
H;=Hx
HHt4fDLl$(I1E1H$E11E1HD$A[aHD$HD$HD$ HH
HAHMEOD@HD$I11HD$E1E1E1H$E1aHD$HD$ Ll$(A[MtIx
HIMtIx	HItKMdIYHILLHL$8L\$0bHL$8L\$0+fLHL$@L\$8LT$0bHL$@L\$8LT$0LLD$HHL$@L\$8LT$0dbLD$HHL$@L\$8LT$0;Ll$(I1E1H$E1E11HD$A[aHD$HD$HD$ La+eH0H7HH1H$1E1E1HD$HD$HD$Ll$(IA[dHD$ fH51H|$(FH111HH$NL$HIFIx
HI	H5H|$(L$EL$HI11ҾHLL$H$NL$LL$HI0Ix
HILLϺLT$L$`L$LT$HI]Ix
HIQIx
HI\HI9L;ƽL;LL$:dL$DIx
HIIFH5LHHIM111LL$rML$HI^Ix
HI~H5_H|$(L$IDL$H111HLT$H$ML$LT$HIAIx
HILL׺LL$L$s_L$LL$HIhIx
HIRIx
HIfI9L;Q&L;oLL$bL$Ix
HI|ZH|$ HWHBpHH@HH5IHHtI9@@I86AALIx
HIH5LBH111HH$KL$HI.Ix
HInHU HEHHH9H9AtAHULHHEIx
HIH5H|$$BHD$HHwH9PULhMLPAEtAEAtAHt$HHHH$fHnfInLLT$fl)$obLH$SBL$LT$MIx
HIEH5LL$JAL$HIbIx
HIH5'LL$AL$H111HLT$HD$ILL$LT$HH$Ix
HIH$I9BlMjMwAEMBtAEAtAIRHH$IHLLD$L$H$H$H$aLHD$@H4$LD$Hx
HH.H|$Ix
HIsH5kH|$(?HH$H=p2L$HIH5HLT$HD$?L\$LT$HH$Ix
HIHͷI9BMBMiAMjtAAEtAEIHH$IfInLLD$$)$_LD$HD$L?H4$LL$Hx
HHM`IExHIEHT$(Hx
HHqA$tA$HܶI9D$ME1fInfInLLL$L$flLT$ItL\$()$^L\$(H$L>L$LT$LL$M'Ix
HII@H;XIPHvI@H$I@ HD$I@(HD$H4$D$(tHT$D$(tHt$D$(tIx
HIL|$0LL$(H5LsHLL$(VH5ALLHLL$(
t'H5L)HLL$('!H=/LL$(/LL$(HH5HLL$@HD$(<LD$(LL$@HIIx
HI.H=L\$@LL$(/LL$(L\$@HI<H5iHI<LL$(L\$@HI"Ix
HIFH5H|$L\$HLT$@LL$(;LL$(LT$@HL\$HI!Ht$HWWLL$(LT$@HL\$HH!Ix
HIH5	E1I9r!Ht$fHnfInLflL\$XH$ItLL$PHL$HLT$@)$&\LHD$(	<HL$HLD$(LT$@LL$PHL\$Xx
HHM Ix
HIxLD$HL\$@LL$(XLL$(L\$@HLD$HI L@AtAMJ L\$HLL$@LT$(DZLT$(LL$@HL\$H L|$8H5HL\$PLT$HLHD$(ZLD$(LL$@LT$HL\$PdH5LLL\$HLT$@LL$8ZLD$(LL$8LT$@L\$HvLLLLL$HLD$@LT$8L\$(+9L\$(LT$8HLD$@LL$HI"Ix
HIPIx
HIIx
HIb I9L;=*L;=HLLL$(XLL$(#2 H=LL$(+LL$(HH5*HLL$0HD$(9LD$(LL$0HI?Ix
HIH=LT$0LL$(p+LL$(LT$0HIH5HLT$8LL$0HD$(8L\$(LL$0HLT$8HIx
HIKH51H9qfHnHItLT$@D$LL$8HL$0)$XHHD$(8LD$(HL$0LL$8LT$@MrHx
HHH5LLT$8LL$0LD$(vLD$(LL$0HLT$8IBIx
HIHt$LLT$8LL$0L\$(RL\$(LL$0HLT$8IIx
HIH51I9rfHnLItLL$@D$L$LD$8LT$0)$WHHD$(7LD$8L\$(LT$0LL$@Ix
HIMwIx
HIHt$Hx
HHLLLL$0L\$(QL\$(LL$0HHD$Ix
HIRHLL$(`PLL$(HHBH|$LL$0HHL$(H5HGHHHL$(LL$0Hx
HHHT$D$(ILL$(1iOHD$ HHD$1E11H$E1A\gHD$HD$fDVL$HWLl$(I1E1HD$E1E1E1HD$A[dH$HD$HD$ fDH|$TH|$@D$OD$HD$1E11HD$E1E1A\H$oHD$fDL}MALUtAAtAHExHHEfHnfInL׺flH$L$)$TL$II_HIRLL$	OL$=Ll$(I1E1HD$E11A[HD$dH$HD$HD$ fQH
H#HHeLl$(1E1E1HD$A[eHD$H$HD$HD$ DL8NLl$(1E1E1HD$A[eHD$H$HD$HD$ TL$HLl$(1E1E1H$E1E11HD$A\eHD$HD$HD$ NL}MZALMtAAtAHExHHEfInfInLϺflH$L$)$RL$HD$(IHILL$LL$fDHD$1E11H$E1Aj\mHD$HD$RIWOH\O[Al\mHD$1E11HD$E1E1H$HD$LL$LL$mH5H=r10HH
HBHExHHEA|\nfHD$1E11H$E1A\oHD$HD$QILL$DKLT$L$fD{NHH[oA\oKNH
HHOH
?H5	jL
AH	H81yPY^A[DLLD$L$JLD$L$fLL$tJL$Ll$(I1E1H$E1E11HD$E1A[aHD$HD$HD$ LJwLN(H8A@IEI|$8A@HE|$PIHD$1E11H$E1A\qHD$HD$	ILLInHHRxH5A\H81O'HD$1E11H$E1A\qHD$HD$LL$IL$LL$VNL$HHH$1E1E1E1A\xHD$HD$HD$HD$1E11H$E1A\qHD$HD$pHL$_HL$LL$JHL$}DDIKH
AH>7[fHD$1E11H$E1A\qHD$HD$LLT$L$GLT$L$LG1HD$1E11H$E1A\qHD$HD$@H$1E1E1HD$AD\iHD$HD$HD$ LLD$L$GLD$L$LL$FL$LHL$bIL$LH$1E1E1A
]yE1HD$HD$HD$DDA\q%HL$nFL$2L]FPLL$LFL$H$?H5H=1,*HH?
H=HExHHE+A\rH|$Ht$HT$L$EL$HT$Ht$LL$EL$<HD$1E11HD$E1H$HD$HD$1E11H$E1A\oHD$HD$LLT$&ELT$HELD$HA|\nDH$1E1E1HD$A]yHD$HD$)LDH$1E1E1E1A]yHD$HD$HD$CH$HD$1E11HD$E1E1A\H$oHD$E1LLD$Ht$HT$CHT$Ht$LD$CLl$(1E1E1HD$1A[eHD$H$HD$HD$ HD$1E11H$E1A\oHD$HD$6H$1E1E1HD$A]zHD$HD$1E11H$E1A\oHD$HD$IH$E1A\osH$1E1E1HD$A(]zHD$HD$LLT$BLT$HnBLL$dH\BHL$KBL$zLL$6BL$LIH$&H$1E1E1E1A,]zHD$HD$HD$H${LLD$@Ht$HT$AHT$Ht$LD$@PLLD$L$ALD$L$[H$1E1E1HD$A/]zHD$HD$H1E1E1E1HD$A1]zHD$HD$H$1E1E1HD$Ax\nHD$HD$DLLL$(@LL$(H$1E1ME1AG]zHD$HD$MH$E1MH$H$1E1E1HD$AU]HD$?[t1E1AW]HD$HD$H$1E1AY]HD$HD$HA\r?MH$E1JMH$1E1E1Ao]HD$HD$gHD$1E11H$E1A\xHD$HD$MH$H$1E1E1LL$(A]HD$HD$M\$M
AMT$tAAtAI$xHI$1HHHHPL$H
àHEHH5LD$0H81DL$LD$01A]E1E1E1LL$(HD$HD$H$H;"LLL$L$BL$LL$HH
Ix
HI'	HALL$HHL$HH$HL$LL$HIHD$@HH$LL$(HL$HL$LL$(HHD$LT$@LT$HHL<$LL$@HL$(AHL$(LL$@HHD$LT$HHLT$@LL$(H$AH$LL$(LT$@HHHL$@LT$(L$<HL$@LT$(L$HHL$HHLL$(<LL$(LL$(A]1E1ۻE1LLT$0LL$(a<LT$0LL$(<LHL$8LT$0LL$(;<HL$8LT$0LL$(HLD$8LT$0LL$(<LD$8LT$0LL$(LL\$8LT$0LL$(;L\$8LT$0LL$(
H$1E1E1HD$A\rHD$HD$LL\$@LL$(;L\$@LL$(IPHI@H0H4$HpH@Ht$HD$[LL$(A]1E1ۻE1LL$(Ll$LL\$HLT$@;L\$HLT$@LL$(LHL$P:HL$PL\$HLT$@LL$(HLD$PL\$HLL$(:LD$PL\$HLT$@LL$(QLLD$8LT$0LL$(:LD$8LT$0LL$(LL\$8LL$(`:L\$8LT$0LL$(XLL\$0LL$(::L\$0LL$(TLLL$(:LL$(HL\$0LL$(:L\$0LL$(5kLL$(1E1A^LL$(1E1A^)LLD$HL\$@LL$(9LD$HL\$@LL$(]LL\$LT$L$v9L$LT$1L\$LL$(1A^LL$(1E1E1A^LL$(1E1E1A	^}LL$(A^LL$(1A^LL$(A]1E1HD$E1E1HD$H$HH5yLD$0L$H81?>6H5#H=1uLL$(HIHL/ILL$(x
HILL$(A]1E1E1LL$(A9^1E1HYHoHAttHx
HH:H16LL$(E1Iɻ1A^pLL$(1A^rLL$(1MA^E1ۻ<LL$(A^E1HLL$(@7LL$(,H|$l:LL$0HL$(LL$(E1A^wLL$(A]1E1ۻE1ZLLD$8LL$(6LD$8LL$(LL$(A:^1E1HD$E1Hx
HHLT$L$6L$LT$ILLT$0H6H
A]HEHH5w~E1H81;L$LT$01HD$E1E1LL$(LL$H$HD$LL$(L\$A]LL$HD$E1E1HD$H$LL$(1E1A7^LLL$(5LD$@LT$8LL$(LL$(1E1A/^LLL$(1E1A+^GLL$(1A^0LL$(E1ME1A^MzM6AIBtAtIx
HI&Iº1MLL$(1ME1E1A^jLHL$L$4HL$L$LL$(1A^bLLL$(P4LL$(H|$0LL$(H5$LL$(yH=|LL$(HHDH5įHLL$0HD$(HL$(LL$0HIHx
HHH5i1LLL$0LD$(LD$(LL$0HI}Ix
HIIHILLL$(N3LL$(IZHIBttIx	HIt.Iº1L\$1E1ۻLL$(A^ULLD$8HD$0LL$(2HD$0LL$(LD$8I1OLHL$PHD$HL\$@LL$(2HD$HLL$(L\$@HL$PI1HLT$L$^2LT$L$LL$(1E1A]L.2ILL$(1A;^LL$(1E1Al^LLT$0LL$(1LT$0LL$(\LL$(E1Aa^)LL$(E1A_^H5XH=	1LL$(LL$(HHLL$0HD$(e(LD$(LL$0IxZHLL$(It/A^1E1LL$(AU^1E1ۻLA^11E1lLL$(A^1E1ۻRLL$(1E1A^8LL$(AJ^1E1ۻHLD$0LL$(0LD$0LL$(HHD$8LT$0LL$(t0HD$8LL$(LT$0H1L$LT$(HL$@mALL$(E1E1E1HD$A]HD$H$IL$DLL$(A]1E1LL$fDAWHǣAVfHnAUATUHHHSfHnHflHxfo«L-HD$`HHD$hL5HD$@)D$P)T$0HIL<H
HoH3L.LALl$0MHLLLD$'LD$HIHD$8IMML$H
ҨM
1DHI9
I;LuIHHD$@I,@HHFLvL.LAHD$@Lt$8Ll$0M?Ll$0Lt$8L|$@HH(hE111HALIHtA$I$xHI$u	H.H(hE111HALHH+
tEHExHHE+	EA;D$}L-H=ߚIUL0IH_tAIBLT$LH5HHjLT$IIMlxHIuLLL$,LL$HI9ALHt$XLL$HD$PHl$XLd$`Z2LL$IMMfIxHIuL,AtAH̫L0IHtAEIExHIEuLB,L
KH=IQLLL$/LL$HItAI@LD$LH5HHLD$IMIx
HILǢH= LT$IPLLD$*/LD$LT$HHtHALT$HHL$H5HHLHL$LT$IHM!x
HHHHI9CdLHt$XLT$L\$HD$PLl$X0L\$LT$IMMIx
HIG
HI9BLHt$XLD$XLD$LT$HD$P$0LT$LD$ILIx
HI
MOHx
HH
L;L;u
L;̇^
Ix
HI

LAtAHfLMLH5{AHs H=RjP5jPAUjPL\$XFHPL\$HI	IHILLD$l)LD$rfH,HHWL=L.Ll$0DH~L~L|$@LvLt$8f.{L,f.HD$<
L,f.,V
L-ϟ\D$H="IULfI~1,IH
tAIBLT$LH5HHLT$IIMxHIuLLL$8(LL$fInLL$$*LL$HIH4I9ALHt$XLD$XLD$LL$HD$Px-LL$LD$HMIx%HIuLHL$L\$'HL$L\$HSIx
HIH;
(H;
CH;
6HHL$Y+HL$AAp;E1E1E1E1Hx
HHE1MIE1HILLL$LD$L\$&L\$LD$LL$_@LAM[L|$@aH
AHHHۍH5jUL
RH81(,X:ZH
ӈH=n|E1&/HxL[]A\A]A^A_@L=у@DHx
HH8EHtD$HL$'HL$HIfInHD$'L\$HL$HIH5GMLHjHs AH=P5jPARLT$XjPL\$`HL$XHPHL$L\$HILT$\
Hx
HH@Ix
HIIHAAII$xHI$MHExHHEMtIExHIEMWILHI?L}$2Lh$~HX$LvHLALt$8HD$0_fDH($bL$mE1LLD$$LD$MH)HH
?HAIHII?IA/fLl$0fDE1HA(KtHD$ H9!fDHH9AH9FHQH;VHFHyH9AHAt
HDi D^ DD@@8A C
Hy8A  
Hv8DASAfDD.E9uCLL$HL$HtNLD$E1H$LD$HL$LL$A@IM9KtH9K@L-	L9uuL9uuHϺLL$LD$HL$"HHH;HL$H;=LD$LL$lL9cLL$(LD$HL$H|$%LL$(LD$HL$H|$AHx
HHEE($H:$DE1E11E1E1ۻ|A	;E1MtIx
HIMtIx
HIMtIx	HItFH
DH=#w)MI$xHI$E1L fDLLL$LD$ LL$LD$[LLL$ LL$VE1E1E1E1ۻ}A;@L=~?@H	LLLD$ILD$HIHD$0I	f.HL$0HT$PILL
SLA:~LHL$HL$BLL\$#L\$A><E13DL߉D$tD$dHD$LL$"LD$H	LL$LLD$HI
A<LD$c"LD$H:HLT$L\$LT$L\$HLLT$LT$f!HE1E1E1A5;E1D$!D$HE1E1E1A?;E1@HLT$L\$LT$L\$E1E1
DC!HL2IHE1E1E1ۻA;]D!HLIHE1E1E1ۻAR;DLLD$LT$fLD$LT$LL\$HL$>HL$L\$LLD$LD$!LLT$LD$LT$LD$HLD$L\$LT$LD$L\$f"LT$IfDE1E1A;E1"LT$IfDE1E1AT;DHL\$KL\$E1E1A;f.MiM/AEMYtAEAtAIx
HIxfHnfInLߺflHt$PL\$Ld$`)D$PT!L\$IIEHIELL\$L\$E1E1M˻AW;E1E1ۻA;fE1E1E1Al;MiMAEMYtAEAtAIx
HIfInfInLߺflHt$PLD$L\$)D$PT L\$LD$HIEHIELHL$ LD$L\$vHL$ LD$L\$fLD$LD$Hz:fDE1ۻA	<DK LD$I3fDH5qH=R1IHHIExHIEE1E1E1A;E1MDLL$LD$HL$LL$LD$HL$LT$LD$LT$HLD$LLT$HI-A<DE1E1E1A;A<2LT$HL$IE1E1A;Ln(H8A@IEHy8A@HE|$ IKHMKtAtAIx
HIofHnfInLϺflHt$PLT$HL$LL$)D$PHL$LL$ILT$HLHH?HLD$LL$LT$LD$LL$LT$A#<IE1E1A;MJMAIJtAtIx
HIfInfInHϺflHt$PLL$LD$HL$)D$PLL$HL$ILD$IHILLD$L\$HL$LD$L\$HL$E1IʻA:<H5[H=<1IHHHD$
L\$Ix
HIAN<E1E15DD.Ak<DD.LL\$^L\$qLLD$L\$BL\$LD$PL+]E1E1E1E1ۻA;LLL$LT$HL$HL$LT$LL$fE1E1E1E1ۻAR;cLLD$HL$LL$LL$HL$LD$L߻AN<E1E1E1ۻA<E1E1E1ۻA|;E1ɻA<E1AJ<IIHI}E1AWHAVAUATUSHHH-rH$H	H|$0HDŽ$H$HDŽ$H$HIL4H	
HHvHHvH
vAHOL
vEH+{IHLOHHqH{SH5VXH81XcZH
v*H=JjE1HL[]A\A]A^A_DH6HVLnL$L>L$(o&LnHI)$HL$HD$xLHDŽ$HDŽ$BHD$H[HH(hE1ɹAHƺLHD$xIHH$t	A$Ld$xI$xHI$L5H=BHD$xL$HDŽ$IVL9IHtAL|$xIGH5LHHGHD$H$H|$xHHx
HH?L5HH=HD$xIVLHD$ HHD$tH|$ H5BHGHHHD$H|$H\$ Hx
HH
HD$H5nH9pH\$HH$HDŽ$HL$H$IHD$xIMcIx
HI
H$HPnH9G*HD$xH$HDŽ$H$H$H|$xHx
HHB
H$HD$xHL$IxHIH$H;==nHDŽ$H;=mH9nÅ8H$Hx
HH HDŽ$^I\$I9HD$(LphMI9t	M	MvMuHD$E1H-;H=<}LT$HUHKLT$HHytH$HGH5փLT$HHLT$HH|$xL$HIxHIH|$xH
alH$1HDŽ$H9O-fHnfInLT$fl)$H$LT$H$HtHxHH
H$HDŽ$H|$xHHx
HHH|$LT$HD$xLT$HHD$x;LT$HH$I~$HDŽ$HDŽ$D$xHD$x@MtIx
HI\
MtIx
HIU
Ht$HtHx
HHH-ȄH=!{HUH5IHtALL$xIAH5LHH!H$H|$xHHx
HHN
H-IH=zHD$xHUHIHFtALL$xIAH5_LHHHD$H|$H|$xHx
HHH$1HD$xH
iH$H9O8fHnfInHD$flH$)$H|$xH$HtHx
HHPHD$xHt$Hx
HH
H$HD$(HH$HxHHH$HD$(Ht$(HDŽ$Ht$D$tH$HD$HD$HDŽ$HpHx Ht$pHЊLt$0H5~HD$8I}HD$ HIH5I~\H$HH5LhH9pHhHHxEtEtL$H$IxHI	
H$H$H$HDŽ$CH$HHExHHEH$AdHa
L$IxHIz	H$HDŽ$Hx
HHH	HDŽ$H|$8HD$X
Ht$L|$`E1Hl$Ld$hHHD$@HHHHD$HHHHt$PIMHD$0fE1LhHBLT$<)T$BDIXM9u
Ҷ^IHD$HH(H@fHfY@H9uHD$PI9tHL$LHYMHl$@L9t$8BL|$`Ld$hH|$XH\$ H5҅1HIHxH\$ HHMrIxHIuLH\$(D$tI$xHI$HD$Ld$(HxfHt$HH.MtIx
HI%HT$(H-H"HHHfLiL=x1MfHL9SM;|uM<L$MIMHBL$I<L>HIL$H~HuLLHL$eIH!
HL$H$HL(CHLfDH1AtAMrAtALLT$LT$HD$f.L\fDIG(E1Lt$IHD$LMMMKtI9HKdI9D$H9FIT$H;VHFI|$H9AHAt
HEL$ DF DD@@8udA I|$8A qHv8DA"A~DDE9u$HHII9LI9uuH9uuLHHtH;bH;=bH9H|$	H|$Hx
HH^qMMILLt$yMHDŽ$H
gAL
gH^b@MILLt$MO<fDH|$H$IH
(H$IH*H$HDŽ$HDŽ$IGLL_H|$xAFc1E1HD$ E1E1HD$(HD$HtHx
HHYH$HtHx
HHH$HtHx
HHHT$ HtHx
HHMtIx
HIHtHEx
HHEtYH
eDH=NYMtI$xHI$E1HD$HHjwDHfDLL$LL$@LL$LL$@HLL$sLL$ fLX#LL$FH$LL$@1LI#;fDH$E1E1APcHD$(1HD$HD$ 21HLHD$xIHH$E1A_cL
hILLH$H$L$1E1E1AacHD$ HD$(gTHD$H
FLT$H$LT$+LyLH\$(HLL$LL$LLT$Lb\HLHD$HH|$x1E1E1HD$(AdceH|$x1E1E1HD$(Afc?,HD$H$A{cLpM'LHAtAAtAH\$Hx
HH	H{fInfInLflúLL$H$H$)$LL$HD$xIIHIt
L|$xLLL$L|$xLL$E1E1AcLMAHtAtL$H$IxHIHH$HD$xH$L$H$H$I~HIqLTdLLT$BH|$xLT$.qH!H|$xAc1E1HD$ E1HD$(HD$"LT$LT$@H5{H=0|1H$IHv	HH$Hx
HHH|$xAcE1HDŽ$HD$(1E1HD$HD$ Ht@sHbAdH\$ Hx
HHH|$x1E1HD$ HD$LL$HHHD$xIHH$AydD$D$fHH$1)$H$HvA{dLT$wLT$HHLT$\LT$HH$HZcH|$xH
HHHL$HD$xMtIx
HI H$HDŽ$HtHx
HHH
]LT$H=QHDŽ$&H|$(H$HT$xH$LT$HSXI9E4AEtAEH|$LT$LT$HHD$ I[LT$HHlLxHL=LT$HIIExHIE)HExHHE%H$LT$H|$xHDŽ$H$HD$xHD$(LT$HDŽ$H@hH8LHtHx
HHMIHILHD$LL$HHHD$xIHH$A~dHzcLT$HHD$mLN(H8A@IE~I|$8A@HE|$\1E1AdHD$ HD$(8H]
dHGH$HHttLL$xH|$xIBHIH$H|$xH$gH|$x1E1AdHD$ HD$HGHD$xHHttL$H$IHIHD$xH$H$YdHD$x*LT$L$LT$LT$LT$'H|$x1E1AdLLT$qLT$doLULT$HLT$>LT$A:d1E1HD$ HD$(H@hH8LHtHx
HHMtIx
HIHL$Ht3Hx
HHHD$(H|$xE1HD$HD$(H|$xE1DDHLL$mLL$L[H|$xAcHD$ H|$x1Ake_DD{H|$x1E1AcHD$ HD$(HD$LLT$LT$HHD$ 1E1AFdH$E1ɻHD$xA_cM1AHdLbHU_M黨AJd"HLL$E1-H|$xLL$HD$(HD$JLL$LL$LLL$LL$M黨AOdHD$ H|$x1E1E1HD$(AdcHD$LLT$H|$xH$H$LT$QH$H$7LC?HD$xH$H|$xAcH|$xcHDŽ$HPfDHD$xA~dH$HD$xAydH$IHD$ 
df.AWHhAVAUIATIUSHHHD$(HD$0HD$8H-HL4HUHH>LAH|$(MHGHGHHHH)HHH(IIkLInHHIHHIEH5kLHHVIMXIHW	HOHH[	H5\lHLq1HExHHEL-,iH=_IULHH%
tEHEH5HmHHHU
IMW
HExHHE!H5dLL_	IExHIEIGH-vnHHH=/:
LHLIMV
Ix
HII$xHI$IEH5IbLHH	HH	IExHIEuLHMH9]EL}M8ALetAA$tA$HExHHEHkHt$0LL|$0HD$8IIx
HIMI$xHI$]IEH5*kLHHG	HIEHxHIE+H9]qL}MdALetAA$tA$HExHHEHt$0LL|$0HD$8IIx
HI#1MI$xHI$IEHXpHH{LHHH=LHHIHExHHELMLLSIIx
HIIEMxuHIEukLafDHHKHUH52ATL
PAH
`QH81Xt0ZH
P%H=DE1
HHL[]A\A]A^A_HuH>H|$(DAI)ƋGL#Ly1H
cMfHL9H;LuI<H|$(HcMGrHLxLhWLX1xHIEAG1H
ODE1H=CHPHmJH5V0H81IEx
HIEtRAG1DDwGII	DDwGII	IfHpLfDLx5HH5QHHXHtI[IAF0HA(E1HD$@JtH9HIH9AH9FHQH;VHFHyH9AHAt
HDY DV DD@@8uxA Hy8A Hv8DAADDE9u9H$HLL$1HXLL$H$@IM9fDHHH9uuH9uuHϺLL$H$	H$LL$HHthH;QHH;=HH9LL$HL$H<$LL$HL$H<$Hx
HHDy(HD$(Hd0K<gAF0E1f.Ix	HItpMtI$xHI$HtHExHHEMnIEbHIETLGf.LhfD1I$AGHI$E11fDL(^HiE11AF0E1AF0DLHLRIHLLHHHt$8HIHD$0HcHD$8IfDAF016fDLHL$(HT$0MLL
eOHA2H|$(#HuLHHE1AG0LWHIAG0pfHt$81H)D$0IIDL0L hAF0E11+H
0AG?+HH"1AF0DHLL$H$LL$H$@@1IEL^(H8A@IEHy8A@HE|$DDH@`HHHHHHCH9EHIHE$HHEH	p0|DDyi0eHBAF0H5<$H8<H)HBH5GH8ff.AWHUAVAUATIUSHHBH$H`	H$H-H$H-H$HBH|$ HDŽ$HDŽ$H$H$H$HGL<HHMIJcHfDHFH$HFH$HFH.MuH$H$IjIiMdIMH$H$L$HL$H$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$UtUH$tA$tA$L-ZH=PIULIH
tAL$IFH5xTLHHIH$MHx
HH
HDŽ$H$IHEtEIn=H$IHH*@H5UH{
H$H$LH$IH1Ix
HIH$Hx
HHH$HDŽ$Hx
HHwH$HDŽ$HD$`HExHHE8H|$`H5TXHDŽ$HGHH<2IL$M1H5]L9&IFH-c?H9"2EnAIxHIuLbHDŽ$EH5WH|$`H$IH4H5]H9,H@H9IIGuHH,IxHIuLHDŽ$H5]H=;_1H$IHwHH$Hx
HHEgHD$ Hl$`E11HD$HE1E1H$HD$@E1E1A,3HD$8HDŽ$HD$0HD$XHD$PHD$HD$HD$(HD$OIuOM~SIMH-:WH\1DHH9I;luIH2H$IM
H$HDH<HHHD$IHFH.H$H$@HLfL$HFHD$H$H.LqH$@LqHOLLH$HHF2IwDH.HD$IHH$}DH
@AL
TEHH;HEH5"ATH81X1ZH
@IH=4E1
HL[]A\A]A^A_HXLLH0H$IMHWLLHu/H$I@HfDGfDLxIe$HDŽ$TH$H$HxhH$HH=T蔴H$IHH5QQHH$IHV0H$Hx
HHa-H|$`H5uQHDŽ$tH$AQ2IH6H9HD$0I9FGMnMHAEM~tAEAtAI .HH$IV'LL$HDŽ$LH$H$EIx
HI&H$HD$0E1H$H9G[GH$L$H$CLH$#H$Hx
HHg&L$H$HDŽ$A|2MHxHHH&L$H$HDŽ$HDŽ$H$HDŽ$H$HDŽ$iH52WLHDŽ$	H$IHNGH;N8L;=8u	I9$Ix
HI%HDŽ$y!I9L(HHOH=DQ蟱HD$H$H0PH5:THʾH$H$IH(Hx
HH`-H=PHDŽ$2IHnPH5MHgIH>QIx
HIFH=PLT$LT$HIQH5LHLT$LT$HHD$VSIx
HIFHK6H$E1HD$0I9B`TL|$fInLLT$fInfl)$|LH$\ILT$x
HI.FH$HD$HKTIxHI)LH$HD$H|$H5K+H$IH6\Hx
HHCNH$HL$01HDŽ$H$H9O]fInfHnfl)$H$H$qHDŽ$Ix
HIMH$HD$H\H$HxHH NH$HD$I|$H5FEHDŽ$HDŽ$DHVL(hE111HALAHD$(H$H`bHHωD$t
H$Hx
HHFOHDŽ$I$xHI$.OH9\$(eH|$(H5MLg[IHdH5RH9RH@H;L4}mIAuHHRIx
HIeH5eSH=T1?HD$H)HHHІHL$HH*Ld$(Hl$`E1E1HD$ E11HD$HA4E1H$HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(L
<MLLH$H$1+fDHD$ E1H$HD$HE11A2HD$@E1E1HD$8HD$0HD$XHD$PHD$HD$HD$(HD$@HtHx
HHMtIx
HI6H$HtHx
HHMH$HtHx
HHdMtIx
HI[MtIx
HIrH
d6DH=*E1MtIx
HIpHL$HtHx
HHbHL$(HtHx
HHTHt$HtHx
HHFMtIExHIE;HT$HtHx
HH-HtHx
HH$H$HtHx
HHH\$PHtHx
HHH\$XHtHx
HHH\$0HtHx
HH	HL$8HtHx
HHHt$@HtHx
HHHT$HHtHx
HHH\$ HtHx	HHtuHEx
HHEtsH$HtHx	HHt6MI$HI$LfDfH~HHHxHhHXLHH8H(HLHHfDHHL׉T$pLL$hD\$`T$pLL$hD\$`|LωT$hD\$`oT$hD\$`oT$xLL$pLT$hD\$`HT$xLL$pLT$hD\$`LT$xLL$pLT$hD\$`T$xLL$pLT$hD\$`DT$xLL$pLT$hD\$`T$xLL$pLT$hD\$`T$xLL$pLT$hD\$`T$xLL$pLT$hD\$`lHE(E1Lt$IHD$Ld$MILfDItI9HS-I9EH9FIUH;VHFI}H9AHAt
HEU DN DD@@8A !I}8A w!Hv8DA.:A7<DDE9umHHuMMLt$Ld$IH1DI9uuH9u*t&fDHI9MLd$fLSHHtH;+H;=b+u	H9
Hx
HHt=f.MLt$Ld$IKMH/H
/AHOL
/EHL4LOOD@fDH:L蒢H$IHHD$ E1E11HD$HE1A2HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$JIsHD$ E1E11HD$HE1E1A2HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$H$H$L$HL$fDHD$ E1E11HD$HE1A2HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$H$AL2D\$LHDŽ$ְH$ɰH$HDŽ$谰HE`D\$HDŽ$L-tIHHxI9IEHCHW@A@HXHHJH1
HH9L;luH
,DH= 1H$H$HH$H5*GH=H1$IHWHIExHIErCA2HEhH$L$L$H8HHtHx
HH5MtIExHIE4MI1HI	4HD$ Hl$`E11HD$HE1E1H$HD$@E1E1HD$8HD$0HD$XHD$PHD$HD$HD$(HD$JfIHD$ E1E1H$HD$H1E1A2HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$f.HD$H$HD$H9H%D$(t	H
%Hw%E1H9%HDŽ$H%AH9O%HL$D$(tH$HD$H=>H$IHMH5?HCH$IHGNH$Hx
HH=HDŽ$H$IHQHL$D$(t
L$HD$IEqIHSH==HD$(TLL$(HISH5D;HLL$0HD$(zLT$(LL$0HH$IZIxHIHAL$H5a9LLLL$(H$LL$(THx
HHrBH$H$LLL$(HDŽ$'LL$(HH$I[H$Hx
HHJH$HDŽ$Hx
HHJHDŽ$Ix
HIJH$H$H$Hx
HHJH"HDŽ$HD$(HL$H;
"H;
"H9H41>VI98H57L輩IHVH"HDŽ$HD$0I9E&YIEH$H[MMtAtAIExHIEpIH$H$LLL$H$HDŽ$H$H$ЩH$LL$HDŽ$HXIxHI/@H$1ɺHHHDŽ$萱HD$H$HSYHHH$IH\Hx
HHvKHDŽ$Hx
HH`KH50<H|$ &HD$H$H^HDŽ$HL$0H9H{QHH@H$HcQHIHL$tHL$D$ tH$HD$H$HwOHHPH$H$HD$H$H|$H$HD$H$+H$HHD$H$HDŽ$H^Hx
HHYMH5;LHDŽ$IH7_HD$ LL$ HH$HfHL$D$ t
H$HD$LL$ HC9LL$ HH$HcH:H5;HLL$ LL$ |UH$H$LLL$ {LL$ HH$HlIx
HIZH$Hx
HHZH$HDŽ$Hx
HHZH=8H$HDŽ$HDŽ$>HD$PH$H%uH51HiHD$PH$H>wH$Hx
HH]HDŽ$AHD$PH$HvtH$HD$PHD$PHXHD$PH$HsHH5[2H+xbH$H$H$IHH$Hx
HHjH$HDŽ$Hx
HHVfH$HDŽ$Hx
HHBfH50LLL$ HDŽ$LL$ HHD$PH$݇Ix
HIsIHH-EtEIiLL$ ILL$ HHD$PH$ՂHO:H50HLL$ LL$ lsH$H$LLL$ 艢H$LL$ HHD$PH$Hx
HHHDŽ$Ix
HIH$Hx
HH%HDŽ$HH$x
HHHDŽ$HHD$HHD$@HD$8HD$0HD$XHD$PEH{H5U+nH5!2H)HD$ H$HHDŽ$H
hH9H,mHH@H$HmHIttH$H$HL$hHxHHH$HL$hiIcǹH|$hP~$H)Hc9H)$7H$H$H$HDŽ$HD$ IH${H$HxHHL$hhHDŽ$Hx
HH1hHDŽ$LH5{2H|$`蹠HD$ H$HgH5<8H1H$Ņ;oHx
HH)YHDŽ$aEGH52H@HD$ H$HXH57H1yH$ŅHx
HH8vHDŽ$}GH=(2胒HD$ H$H{H5-H讟H$HD$ H$HsHx
HHUHDŽ$HD$ H$H`H5v-H|$`DHD$ H$HHT$ H5J-H$腿3H$Hx
HHH$H57HDŽ$H$HD$ H$HH$Hx
HHH$HDŽ$Hx
HHzH$HH|$`HDŽ$HDŽ$HD$ 'H$IHH5&H|$ HշۑH$Hx
HH\zHL$ HDŽ$D$h}Hl$`I)fHILfDH=/DH$HX2H50HtH$HD$H$Hu3HxHH/,H$HD$HL$H|$01HDŽ$H$H9y;H$H|$H$H$ĽH$H$蟝L$HDŽ$MT<H$HxHH-L$H5'4HDŽ$L90/IGH;4AIoHՃIx
HI/HDŽ$H5x4H=51jH$IH{`H>H$Hx
HHLHD$ Hl$`E11HD$HE1E1H$HDŽ$A2E1HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$H)D$t	H
HAHDŽ$HD$(H
#HL$D$0tH#HD$H2t	Hs2H$H$HHH޵fH|$(ֹH|$(@LL$ŅHD$ Hl$`E11HD$HE1E1H$HD$@A2E1HD$8HD$0HD$XHD$PHD$HD$HD$(HD$xfDLfDLHt$HT$δHT$Ht$D$(说D$(L螴,fHI9HuL;-DfDA^Ix
HIvHDŽ$H5-H|$`ߘH$IH	111H譡H$IHH$HxHHL$L950HDŽ$HDŽ$GH=*H$IH:H5+H1HD$H$Hp;H$HxHH)H$HD$Ht$H=N1HDŽ$H9~<H$H|$HH$H$zH$H$UH$HDŽ$H$HD$H*;HxHH)H$HD$H5.HL$HDŽ$H9t HAH9DHAIHD$IAHL$Hx
HH*HDŽ$EH5(/H=y01
HD$H$H0RHܨH$Hx
HH?HD$ Hl$`E11HD$HE1E1H$HDŽ$A3E1HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$HD$ Hl$`E11HD$HE1E1A3HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$HD$ E1E1H$HD$H1E1A 2HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$f.HD$ Hl$`E11HD$HE1H$E1HD$@E1A/2HD$8HD$0HD$XHD$PHD$HD$HD$(HD$f諵IkfDH;L薯IH
;H;AH;DI9LAIHEHD$ Hl$`E11HD$HE1E1H$HD$@E1E1A12HD$8HD$0HD$XHD$PHD$HD$HD$(HD$<蛱Hm1H$fDALD\$衮D\$HD$ Hl$`E11HD$HE1E1H$HD$@E1HD$8HD$0HD$XHD$PHD$HD$HD$(HD$谰Hw1LV(H8A@IExI}8A@HE|$WHD$ Hl$`E11HD$HE1H$E1HD$@E1A3HD$8HD$0HD$XHD$PHD$HD$HD$(HD$1AN2&A2u軯H
AL
H1HD$ Hl$`E11HD$HE1E1H$HD$@E1E1HD$8HD$0HD$XHD$PHD$HD$HD$(HD$&H$LH$IHDH;>	L;-g!I9^!LxL$Ņ1DIExHIEH3HDŽ$#JH5'H$1fH$IHIH;@H;h@!I9!LL$HcJIExHIE>HDŽ$NI9":H=!IH]H5HHD$!LL$HH$IH^Ix
HI@GH5&LpIHYH5H$HDŽ$AHD$0H1H9OXfInfHnH$flH4LHD$p)$KH$H$&HDŽ$IExHIERJL$MMWH$HxHHL$vIH$L1HDŽ$nH$H$IHVHx
HHVH$H;=HDŽ$@H;=@@<H9<辬ŅoH$Hx
HHTHDŽ$nH$t	H$H5LH$H$IHaHD$0I9EaImHEbEMEtEAtAH$L$HxHHL$^HL$pLH$HDŽ$H)H4>HH$L$H$Ll$hMaHxHHH$HL$hq^HDŽ$I$Hl$hxHI$a^H=1HDŽ$~H$IH^H5#H譋H$IH1^H$Hx
HH^HDŽ$臩H$IH^HL$D$tH$HL$HH۪IH_H0H59HHD$tLL$^H$H$LLL$*H$LL$HH$IHx
HH^H$HDŽ$Hx
HHg_HDŽ$Ix
HIH`H$H5HDŽ$HHD$P5IHTHDŽ$HD$0I9E`IEH$H_MMtAtAIE_HAIE_HL$pIcLLL$H$HDŽ$H$H)H4dH$H$?L$LL$HDŽ$MMIxHI9_L$L\$XE1E1H$HDŽ$HD$HHD$@HD$xD|$Hl$8Lt$hH$1fH$IHH;L;i6[I9-[LŅH$Hx
HH^HDŽ$H5H|$ JHHH$H$)H$IHHDŽ$HD$0H9EHEH$HLutAtAHU҂HAHUIcǹAWL~$H)HcHD$p$H4)$QH$H$,H$HDŽ$Hx
HH]L$HDŽ$LMIxHIH$H|$xI軇H5H$HDŽ$VH$IHH;AH;XD\I9\LӥADžxH$Hx
HHHDŽ$EtwH|$XE1A1H$1H$IHHH|$8Hğ:H$Hx
HHHDŽ$H=xxHHH5uH譅H$IH<HExHHEfH$HL$01E1H9MPfInHH)HD$pD$8Hc)$H4LH$L$LM:H$HxHHnH$HDŽ$L誅1ɺHHDŽ$H諍H$IHHH輡H$IHH$Hx
HHރHDŽ$HEL$xHHEH5LHDŽ$'H$IH)H$IHȃAtAH$Lp艣HHHVH5H'IH$H$HH$HH$Hx
HHH$HDŽ$Hx
HHHDŽ$HExHHELL$H=YHDŽ$uH$H(H5H؂HHH$Hx
HH@HDŽ$躠H$H*rAtAH$LxH$IHqHBH5H賢AqH$H$HsH$IHqHExHHEqH$Hx
HHrH$HDŽ$Hx
HHqH$HDŽ$HGH;kHWHnHGH$HG H$H$tH$tH$Hx
HHoHDŽ$H$H|$@HD$xفH$H|$HHDŽ$HHD$@賁H54HHDŽ$ȀH$IHmHDŽ$HD$0I9B|mIBH$HgmIzttL$H$IxHInH$H$HL$pHDŽ$H$HcиH)H4H$H$ÀL$HDŽ$LMnnH$HxHHHnH$HDŽ$HExHHEnH5LHDŽ$rH$IHiHDŽ$HD$0I9BhIBH$HhIzttL$H$IxHIiH$HL$@H$H$H)H$PHD$pHcH4莟H$H$iL$HDŽ$LMgH$HxHHhH$HDŽ$IIx
HIgH5{HHDŽ$~H$IHfH$HØH$HUfH$Hx
HHgHD$XHDŽ$H@LxpM~eIseH$H$H衞IHdHD$HH|$XHHAWLT$HAIx
HIfH$ECdHx
HHdH5iHHDŽ$}H$HcH$H蔗H$IHmH$Hx
HHcL$H$HDŽ$H$IxHImH$HD$@HDŽ$HD$HHD$xLt$xHD$@ef.IE
mHIlL\ZH;L荗IH8H;AH;DVI9MLIx
HIKHD$ Hl$`E11HD$HE1E1H$HD$@E1E1A3HD$8HD$0HD$XHD$PHD$HD$HD$(HD$L$Ix
HInHDŽ$MfDH$MAe2HD$ Hl$`E11HD$HE1H$E1HD$@E1A?3HD$8HD$0HD$XHD$PHD$HD$HD$(HD$MH$1E1)LT$pE11D\$hE1E1CHl$`E1E1HD$ D\$hHD$HT$pHD$@H$HD$8HD$0HD$XHD$PHD$HD$HD$(HD$'LT$D\$讔T$D\$T$D\$蒔T$D\$DDMH$1/LoMAEHtAEtL$H$IHIH$H$<HD$ Hl$`E11HD$HE1H$E1HD$@E1AA3HD$8HD$0HD$XHD$PHD$HD$HD$(HD$־LLT$aLT$йHD$ Hl$`E11HD$HE1H$E1HD$@A2HD$8HD$0HD$XHD$PHD$HD$HD$(HD$4E1ffA.FADE3HDŽ$nLLT$菒LT$[H|${LT$龹DDH=m	iHD$(H$H5H5HvIHD5H$Hx
HH#H5LLT$HDŽ$vLT$HH$I7HL$0A1HDŽ$I9Jj;fHnHfInLflLT$H$H$H4LHD$p)$H$H$vH$LT$HDŽ$Hx
HH%H$HDŽ$HD$(H-8IxHI%H$HD$(HL$(H;
AH;
@DSH9JH軔AH$HD$(E[8HL$(Hx
HHF,HDŽ$EH=mgIH[KH5m
HHD$tLT$HHD$(H$KIx
HICH=mgHD$(H$HLH58HtH$IH_LHx
HHKH5LLL$HDŽ$PtLL$HHD$(H$KHD$0I9A%jM1E1H$LL$H)H$PHD$pHcH4ǔLHD$tH$LT$Hx
HHKHDŽ$M&jIExHIETLH5LLT$zsLT$HHD$(hIx
HI0LL$HL$01E1I9KhL|$(PLH)HD$pfInHcfInflH4)$ݓLH$sIx
HIKH$HD$(HdH$Hx
HHKHL$HDŽ$D$tHD$H$HH$IHdH;DAH;D=I9=LLT$wLT$ANeIx
HINE+NH$HL$hD$tH$HD$hLl$hL$Ix
HINH$HDŽ$Hx
HHML$AEtAEIExHIEKHL$L$Hx
HHKHDŽ$Ll$LXʳNH5H|$ pH$IH-H$IH8H_tHOL$IUAtAL$Mu 7IH8HT$H5HHD$ҐLL$%H$H$LLL$oLL$HH$I:H$Hx
HH(H$HDŽ$Hx
HH*HDŽ$Ix
HI(H$HDŽ$HD$HE1HD$@HD$8HD$0HD$XHD$PHD$HD$ Hl$`E11HD$HE1E1H$HD$@A3E1HD$8HD$0HD$XHD$PHD$HD$HD$(HD$z*鳱L(HD$ Hl$`E11HD$HE1E1A3HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(	jֱ`V@HD$ Hl$`E11HD$HE1H$E1HD$@A3HD$8HD$0HD$XHD$PHD$HD$HD$(HD$%IAׅ[HINLT$蕈T$臈Ix
HI!HDŽ$HD$ Hl$`E11HD$HE1H$A3HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$=L͇EI]HS1HH9I;|u+蒇鰰L腇ŰHxOHD$ Hl$`E11HD$HE1H$A3HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$SHD$ Hl$`E11HD$HE1E1H$HD$@A6E1HD$8HD$0HD$XHD$PHD$Lp遼HD$ Hl$`E11HD$HE1E1A2HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$邱HD$ Hl$`E11HD$HE1H$A3HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(ѰE12fA.GELLL$(3L$LL$(顾HD$ Hl$`E11HD$HE1E1E1HD$@A2HD$8HD$0HD$XHD$PHD$HD$HD$(MjMAEMztAEAtAIx
HIm&MH$NHD$ Hl$`E11HD$HE1A3HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(uLӃĿLL$(ăLL$(zAyWIx
HIl$H5H|$(JhIHfLHHD$8蹃LL$8HHD$H$IxHI
H$HD$HL$H;
H;
LH9CHAH$HD$EHL$Hx
HH
HDŽ$ER HL`H=fH~ZIHeH5HHD$87gLL$8HHD$H$V'Ix
HI)fHn>HD$H'H$HL$0E1H9Og.L|$H$fInH4HL$pfInfl)${LH$[gIx
HI#H$HD$H,H$HxHHH$HD$HL$H;
HDŽ$H;
H9HJAH$HD$EN+HL$Hx
HHHDŽ$EA)H=WXHD$H$H[3H5:HeIH2H$Hx
HHH5LLL$8HDŽ$:eLL$8HHD$H$1Ix
HI5#H5H|$(1舀HD$H5L$HD$0I9C5McMvDA$M[tA$AtAH$L$H&HH&Ht$pL$L|$fInLfInfl)$-LH$
eIx
HIw"H$HD$HD$hH4H$HxHHH$HL$h"HL$hH;
HDŽ$AH;
zHD&
H9
H|$hAąAH$Hx
HH(HDŽ$Eq@fHn\+fT,芀HD$H$H?Ht$HǺ~HD$H$H=H$Hx
HHM.H$H;=HDŽ$@H;=@^H9UŅ$AH$Hx
HH-HDŽ$Ld$(zH5H=1aHD$H$H:VH|$|tH$Hx
HHVLd$(Hl$`E1E1HD$ E11HDŽ$A5E1H$HD$HHD$@HD$8HD$0HD$XHD$PHD$HD$HD$(2f.DDHAH$HSHIHL$tHL$D$tH$HD$H$H5!HHk#H$H$H$HL$HD$ Hl$`E11HD$HE1E1A3HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$HD$ Hl$`E11HD$HE1E1A2HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$鵦LLL${LL$H$H$yzLL$(LL$(zLL$(Lz%zGHD$ Hl$`E11HD$HE1H$E1HD$@E1A3HD$8HD$0HD$XHD$PHD$HD$HD$(阥HGH$H
HttL$H$I$HI$H$H$H$骡H,E1E1E1HD$ Hl$`1A5HD$HH$HD$@HD$8HD$0HD$XHD$PHD$HD$(駤:y鱘L-yHE1E1E1HD$ Hl$`1A5HD$HH$HD$@HD$8HD$0HD$XHD$PHD$HD$(HD$ Hl$`E11HD$HE1H$E1HD$@AT3HD$8HD$0HD$XHD$PHD$HD$HD$(HD$鉣x逴Hx铴H$8LwHD$ Hl$`E11HD$HE1E1AV3HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$ Hl$`E11HD$HE1E1E1HD$@Ak3HD$8HD$0HD$XHD$PHD$HD$HD$(\HFH$HHNHL$tHL$D$tH$HD$H$H\!HHE!H$H$HL$1iH;LvIH:H;@H;@I9L(zI@bAHD$ Hl$`E11HD$HE1E1H$HD$@A2E1HD$8HD$0HD$XHD$PHD$HD$HD$(HD$ݠHE1E1E1HD$ Hl$`1A5HD$HH$HD$@HD$8HD$0HD$XHD$PHD$HD$(aLtt靲HtLd$E1EIKtI99ELd$@HD$ Hl$`E11HD$HE1H$E1HD$@E1A4HD$8HD$0HD$XHD$PHD$HD$队HD$ Hl$`E11HD$HE1H$E1HD$@E1A12HD$8HD$0HD$XHD$PHD$HD$HD$(HD$
H|$`HH$IHI7HD$ Hl$`HDŽ$鉟H$鞰HE1E11HD$ Hl$`E1A5HD$HH$HD$@HD$8HD$0HD$XHD$PHD$HD$(<HEE11E1HD$ Hl$`A5HD$HH$HD$@HD$8HD$0HD$XHD$PHD$HD$(ÝA2lFruHE1E11HD$ Hl$`E1A5HD$HHD$@HD$8HD$0HD$XHD$PHD$HD$(5EqH$Ld$(Hl$`E1E1HD$ 1H$E1HD$HA4HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(鉜H5H|$(cXLd$(Hl$`E1E1HD$ E11HD$HA4E1H$HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(fDLpp'H5H|$ UH$IHi6HDŽ$H[I9E!IEH$Hz!MEtAtAH$L$HxHHF!L$H$ULL$HcH$H)H5uH$H$UL$HDŽ$H$Ll$hM/HxHHH$HL$h H|$hE1E11H$1HDŽ$iH$IH-H$Hx
HHH$H5HDŽ$HDŽ$HT$HCHHH,ЅHD$ E1E1H$HD$HE1E1Hl$`HD$@Al9HD$8HD$0HD$XHD$PHD$釙LnLT$nLT$HD$ Hl$`E11HD$HE1H$E1HD$@A 6HD$8HD$0HD$XHD$PHD$H;'HϺmHD$H2L|$L;=
AL;=DI9LBqAI8E7HD$ Hl$`E11HD$HE1E1H$HD$@Ao3E1HD$8HD$0HD$XHD$PHD$HD$HD$(HD$HHl$`1HD$ HD$HA5HD$@HD$8HD$0HD$XHD$PHD$HD$(鼗Llk@pHD$ Hl$`E11HD$HA|6E1H$HD$@HD$8HD$0HD$XHD$PMH$11H|$kkLT$THD$ E1Hl$`E1HD$HA46HD$@HD$8HD$0HD$XHD$PHD$魖kLkHmHl$`HD$ E1HD$H1A5HD$@HD$8HD$0HD$XHD$PHD$HD$((jH|joIHl$`E1E1HD$ 1AB6HD$HHD$@HD$8HD$0HD$XHD$P鲕Ld$(Hl$`E1E1HD$ 1H$E1HD$HA4HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$ Hl$`E11HD$HE1H$E1HD$@E1A(3HD$8HD$0HD$XHD$PHD$HD$HD$(HD$kMH$1{H;"
LϺLL$8"iLL$8HHD$BL|$L;=cAL;= D:I91LLL$8lLL$8AIx
HI.ELd$(Hl$`E1E1HD$ 1H$HD$HA4E1HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(BE17fA.AADEIx
HI-EVf.IHl$`E1E1HD$ E11AD6HD$HHD$@HD$8HD$0HD$XHD$PHD$鍒LHl$`A61HD$ E1E1ҺHD$HE1E1HD$@HD$8HD$0HD$XHD$PHD$Lf<HD$ Hl$`E11HD$HE1A6HD$@HD$8HD$0HD$XHD$PHD$ߑL=f3f)f*HIfHD$ Hl$`E1A6HD$HE1H$HD$@1E1HD$8HD$0HD$XHD$PHD$@Ld$(Hl$`E1E1HD$ 1H$E1HD$HA4HD$@HD$8HD$0HD$XHD$PHD$HD$(遐Ld$(Hl$`E1E1HD$ E11HD$HA4E1H$HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$ Hl$`E11HD$HE1AQ6HD$@HD$8HD$0HD$XHD$P͏H+dLd$(Hl$`E1E1HD$ 1H$E1HD$HA4HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(HD$ Hl$`E11HD$HE1E1Ae6HD$@HD$8HD$0HD$XHD$P騎;cLL$I@.HIt.L
cLL$bLL$ZLb鳸HD$ Hl$`E11HD$HE1H$As6HD$@HD$8HD$0HD$XHD$P~bͦtbLgbgH5H=1]FHD$H$HH|$-YH$Hx
HHU Ld$(Hl$`E1E1HD$ E11HDŽ$A4E1H$HD$HHD$@HD$8HD$0HD$XHD$PHD$HD$HD$(LsaHD$ Hl$`E11HD$HE1A7HD$@HD$8HD$0HD$XHD$PHD$飌H5RH=s1EH$IHBHWH$Hx
HHHl$`A6HDŽ$HD$ E1E11HD$HE1HD$@HD$8HD$0HD$XHD$PHD$LL$>`LL$LHl$`A71HD$ E1E1ҺHD$HE1E1HD$@HD$8HD$0HD$XHD$PHD$._L$xHD$ Hl$`E11HD$HE1H$E1HD$@E1A|3HD$8HD$0HD$XHD$PHD$HD$HD$(闊L'_L_页HD$ Hl$`E11HD$HE1H$E1HD$@A6HD$8HD$0HD$XHD$PHD$
1ffA.G@EHD$ Hl$`E11HD$HE1H$E1HD$@E1A3HD$8HD$0HD$XHD$PHD$HD$HD$(HD$bL]MH$لHD$ E1H$E1HD$HHl$`Az6HD$@HD$8HD$0HD$XHD$PHD$ E1E1H$HD$HHl$`E1A6HD$@HD$8HD$0HD$XHD$P~L]]H$HD$hH|$\zHD$ Hl$`E11HD$HE1H$E1HD$@A3HD$8HD$0HD$XHD$PHD$HD$HD$(ɇHD$ Hl$`E11HD$HE1H$E1HD$@E1A3HD$8HD$0HD$XHD$PHD$HD$MH56H=O1?H$IH&HRH$Hx
HHHl$`A7HDŽ$HD$ Hl$`E1Au6HD$HHD$@HD$8HD$0HD$XHD$P麆H$H$Ld$(Hl$`E1E1HD$ 1H$E1HD$HA4HD$@HD$8HD$0HD$XHD$PHD$HD$(Ld$(Hl$`E1E1HD$ E1H$1HD$HE1A4HD$@HD$8HD$0HD$XHD$PHD$HD$(o"Hl$`IHD$ HD$ Hl$`E11HD$HE1H$A4HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(̈́HD$EH#HL$HH#H|$5YLL$ &YLL$ 閙LL$ YLL$ 骙YHt$pL$<Ht$p-XHD$ Hl$`E11HD$HE1H$E1HD$@A4HD$8HD$0HD$XHD$PHD$HD$ƒHD$E1ff.@ADEHD$ Hl$`E11HD$HE1E1H$HD$@A4E1HD$8HD$0HD$XHD$PHD$HD$HD$(H5H=1;HD$H$H,H|$}NH$Hx
HHULd$(Hl$`E1E1HD$ E11HDŽ$A&5E1H$HD$HHD$@HD$8HD$0HD$XHD$PHD$HD$HD$(3HD$ Hl$`E11HD$HE1H$E1HD$@A2HD$8HD$0HD$XHD$PHD$HD$HD$(HD$騁IBH$HMjtAEtAEIx
HIH$L$M1A3ULd$(Hl$`E1E1HD$ E11HD$HA5E1H$HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(鱀DUH$1ɺ'L#UAH$H$|LL$ TLL$ BLd$(Hl$`E1E1HD$ E1H$1HD$HE1A5HD$@HD$8HD$0HD$XHD$PHD$HD$(jTݫHD$ E1H$E1HD$HHl$`A}6HD$@HD$8HD$0HD$XHD$PkHl$`E1E1ҺA9HLD$ SLD$ 鸗SL$醗SH$IcHL$h֖LgMA$HtA$tL$H$IHIH$16HD$ Hl$`E11HD$HE1H$E1HD$@A6HD$8HD$0HD$XHD$PHD$:~HD$ Hl$`E11HD$HE1H$E1HD$@A6HD$8HD$0HD$XHD$PHD$}HD$EHHL$HHH|$LL$8-RLL$8R+HD$ Hl$`E11HD$HE1E1AW7HD$@HD$8HD$0HD$XHD$PHD$}HD$ Hl$`E11HD$HE1AS7HD$@HD$8HD$0HD$XHD$PHD$|HD$ Hl$`E11HD$HA6HD$@HD$8HD$0HD$XHD$PHD$|HGH$HHttL$H$Iv*HI\*H$H$1A頦HD$ Hl$`E11HD$HE1H$E1HD$@A?7HD$8HD$0HD$XHD$PHD$r{H$1HL$h'OEOOH|$E11E1OLd$(E1E1HD$ Hl$`A4HD$HH$HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(zLd$(Hl$`E1E1HD$ E11HD$HA4E1H$HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(zNH$HD$heMNL$Ld$(Hl$`E1E1HD$ 1H$E1HD$HA=5HD$@HD$8HD$0HD$XHD$PHD$HD$(eyLd$(Hl$`E1E1HD$ 1H$E1HD$HA:5HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(xLd$(Hl$`E1E1HD$ E1H$1HD$HE1A85HD$@HD$8HD$0HD$XHD$PHD$HD$(]xHD$ Hl$`E11HD$HE1H$E1HD$@A:7HD$8HD$0HD$XHD$PHD$wHl$`E1E1HD$ A9E1wLVLHHD$ E1Hl$`E1HD$HA6HD$@HD$8HD$0HD$XwHD$ Hl$`E11HD$HE1H$A<7HD$@HD$8HD$0HD$XHD$PHD$vHD$ E1E1H$HD$HHl$`E1A6HD$@HD$8HD$0HD$XvL/KHD$ E1E1H$HD$HHl$`A6HD$@HD$8HD$0HD$XHD$P0vLd$(Hl$`E1E1HD$ E1H$1HD$HE1AT5HD$@HD$8HD$0HD$XHD$PHD$HD$(uH$E1Ld$(Hl$`E1E1HD$ E1H$1HD$HE1A@5HD$@HD$8HD$0HD$XHD$PHD$HD$(uHD$ E1E1H$HD$HHl$`E1A6HD$@HD$8HD$0HD$XtHD$ E1E1H$HD$HHl$`E1A6HD$@HD$8HD$0HD$XatT$HL$HcT$HH$HD$hxLH钡HݤHD$ Ld$hE11HD$HHl$`E1A7HD$@HD$8HD$0HD$XHD$PHD$sHD$ Ld$hE11HD$HE1H$E1HD$@Hl$`A7HD$8HD$0HD$XHD$PHD$1sHD$ Ld$hE11HD$HE1H$E1HD$@Hl$`A7HD$8HD$0HD$XHD$PHD$rLL$JGLL$[HD$ Ld$h1A7HD$HE1E1H$HD$@Hl$`E1HD$8HD$0HD$XHD$PHD$3rHD$ Ld$hE1E1HD$HHl$`1E1HD$@A7H$HD$8HD$0HD$XHD$PHD$qLL$LFLL$酠11MkHD$ Hl$`E11HD$HE1A7HD$@HD$8HD$0HD$XHD$PHD$kq1MHD$ Hl$`E11HD$HE1E1A7HD$@HD$8HD$0HD$XHD$PHD$pZELME髟ME1<L5E麠LLL$#ELL$A
	EUECD龉HD$ Hl$`E11HD$HE1H$E1HD$@A%4HD$8HD$0HD$XHD$PHD$HD$HD$(oHD$ Hl$`E11HD$HE1H$E1HD$@A'4HD$8HD$0HD$XHD$PHD$HD$^oLL$CLL$2HD$ Hl$`E11HD$HE1A/4HD$@HD$8HD$0HD$XHD$PHD$HD$ooCLT$lHD$ Hl$`E11HD$HE1E1A,4HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(SnHD$ Hl$`E11HD$HE1E1A*4HD$@HD$8HD$0HD$XHD$PHD$HD$nLLT$mBLT$镳L[BóH|$(LB.BBVLd$(Hl$`E1E1HD$ E1H$1HD$HE1A4HD$@HD$8HD$0HD$XHD$PHD$HD$($mADAHD$ Hl$`E11HD$HE1A6HD$@HD$8HD$0HD$XHD$PHD$lHl$`E1E1ҺA9lHD$ Hl$`E11HD$HE1A_9HD$@HD$8HD$0HD$XHD$PHD$SlL@
H@!L@<1zLd$(Hl$`E1E1HD$ E1H$1HD$HE1A{5HD$@HD$8HD$0HD$XHD$PHD$HD$(mkL?Ld$(Hl$`E1E1HD$ E1H$1HD$HE1A4HD$@HD$8HD$0HD$XHD$PHD$HD$(jHD$ Hl$`E11HD$HE1E1A[9HD$@HD$8HD$0HD$XHD$PHD$wjL$AtAL$ML>>>隅>L>qLd$(Hl$`E1E1HD$ E1H$1HD$HE1Ay5HD$@HD$8HD$0HD$XHD$PHD$HD$(iH5lH=1."HD$H$HH|$4H$Hx
HHrLd$(Hl$`E1E1HD$ E11HDŽ$Ag5E1H$HD$HHD$@HD$8HD$0HD$XHD$PHD$HD$HD$(hLd$(Hl$`E1E1HD$ E11HD$HAX5E1H$HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(*hLd$(Hl$`E1E1HD$ E11HD$HA}5E1H$HD$@HD$8HD$0HD$XHD$PHD$HD$HD$(gHl$`E1E1ҺHD$ H$A):tg<L|$ Hl$`h;QHD$ E1H$E1HD$HHl$`A6HD$@HD$8HD$0HD$XfH$λHD$ Hl$`E11HD$HE1H$E1HD$@A2HD$8HD$0HD$XHD$PHD$HD$HD$(HD$[fL.*IL9E㺭Ld$pHD$ Hl$`E11HD$HE1H$E1HD$@E1Ao3HD$8HD$0HD$XHD$PHD$HD$HD$(eHD$ E1H$E1HD$HHl$`A6HD$@HD$8HD$0HD$XHD$PEeHD$ Hl$`E11HD$HE1AG9HD$@HD$8HD$0HD$XHD$PHD$eH5ѶH=1sH$IHnHG0H$Hx
HHHD$ Hl$`E11HD$HE1E1H$HDŽ$Ah7E1HD$@HD$8HD$0HD$XHD$PHD$dHD$ Hl$`E11HD$HE1E1H$HD$@AY7E1HD$8HD$0HD$XHD$PHD$cHl$`E1E1HD$ A9E1zcHl$`E1E1ҺA9cHD$ Hl$`Id7yH7yHD$ E1Hl$`E1HD$HA6HD$@HD$8HD$0HD$XbLq7JyHl$`E1E1E1H$A9bHD$ Hl$`E1A6HD$HHD$@HD$8HD$0HD$XbHD$ E1H$E1HD$HHl$`A6HD$@HD$8HD$0HD$XHD$PaLL$ 6LL$ @xHl$`E1E1ҺA9bb6{Hl$`E1E1E1A9a:6|Hl$`E1E1ҺA9aHl$`E1E1HD$ H$A9E1Sa5
|HD$ Hl$`E11HD$HE1H$E1HD$@Ad7HD$8HD$0HD$XHD$PHD$`l5<H$HD$Hl$`E1E1E1H$A9`HIHL$HHHD$ Hl$`E11HD$HE1A7HD$@HD$8HD$0HD$XHD$PHD$;`L$|HD$HD$@HE1Hl$8Lt$0E11HD$HHD$xA"9IHL$8Lt$hHD$ Hl$`HD$@_64=HD$@HHl$8E1Lt$0A9E11HD$HHD$xIE1HL$8Lt$hHD$@Hl$`HD$ HD$9_3gHD$HD$@HE1Hl$8Lt$0E11HD$HHD$xA9IHL$8Lt$hHD$ H$HD$@Hl$`^HHPH
ʚHΚHHl$8Lt$0H5HDHLt$hE1IH818HD$@H\$8A9H$E1E11HD$HHD$xHD$ Hl$`HD$@HD$5^HD$HD$@HE1Hl$8Lt$0E11HD$HHD$xA9IHL$8Lt$hHD$ Hl$`HD$@^Ll2HD$HD$@HE1Hl$8Lt$0E11HD$HHD$xA9IHL$8Lt$hHD$ H$HD$@Hl$`n]2HD$@Hl$8E11Lt$0A9Lt$hHD$HHD$xIL|$8Hl$`E1LT$H$HD$ HD$@]L1H$1[HD$HD$@E1E1Hl$8Lt$01A8HD$HHD$xIL|$8Lt$hHD$ Hl$`HD$@\L$1H$
1kH;)	5HHH$Hx
HHHEHHDŽ$LAH$HHAH$H%HAHH0HEHHEHH0Hl$8Lt$0IE1L|$8Lt$hE11IH$HD$ A8HD$Hl$`Z[HWHHGHH@H$H$IHl$8Lt$0E1L|$8Lt$hE11IH$HD$ A8HD$Hl$`Z9IHl$8L|$8ALt$0Lt$hIx	HItbR/tcIH$E11Hl$`E1E1HD$ A8HD$YZLt$0ILt$hE1Hl$8L|$8L.IHLIH
H5vHEHE11H81R4Hl$`E1E1HD$ H$A8HD$YH$1ђHD$HD$@E1E1Hl$8Lt$01A8HD$HHD$xIL|$8Lt$hHD$ Hl$`HD$@YLt$0Hl$8Lt$hL|$8HHxuHHIH
H5uHEHE11H81_3Hl$`E1E1HD$ H$A8HD$Xe-IH$E11Hl$`E1E1HD$ A8HD$XHtIE11ۺH5PnH812Hl$`E1E1HD$ H$A8HD$1XL,H$2,鮑HD$@Hl$8E11Lt$0A8Lt$hHD$HHD$xIL|$8Hl$`E1LT$H$HD$ HD$@WH?,mIHl$8Lt$0E1L|$8Lt$hE11IH$HD$ A8HD$Hl$`QWIHl$8Lt$01L|$8Lt$hE1A8IHD$H$HD$ Hl$`WIHl$8Lt$0E1HD$Lt$h1A8IL|$8Hl$`HD$ VHU+IHl$8Lt$01L|$8Lt$hE1A8IHD$H$HD$ Hl$`nV+ߍ**Ld$(Hl$`E1E1HD$ E1H$1HD$HE1A"5HD$@HD$8HD$0HD$XHD$PHD$HD$(UL$HHD$HD$@HE1Hl$8Lt$0E11HD$HHD$xA$9IHL$8Lt$hHD$ H$HD$@Hl$`aUL)0HD$ Hl$`E11HD$HE1H$E1HD$@E1A^4HD$8HD$0HD$XHD$PHD$HD$Tk)Ld$(Hl$`E1E1HD$ E1H$1HD$HE1Ac5HD$@HD$8HD$0HD$XHD$PHD$HD$(MTHD$ Hl$`E11HD$HE1H$E1HD$@Ad4HD$8HD$0HD$XHD$PHD$HD$HD$(SHl$`E1E1ҺH$A:SHl$`E1E1E1H$A9SHHD$(qHD$ Hl$`E1Ae4HD$HE1H$HD$@1E1HD$8HD$0HD$XHD$PHD$HD$HD$(RLT${'T$;Hl$`E1E1H$A	:E1RHD$ Hl$`E11HD$HE1H$E1HD$@E1A5HD$8HD$0HD$XHD$PHD$HD$(8R&fL&}rLd$(Hl$`E1E1HD$ 1H$E1HD$HA4HD$@HD$8HD$0HD$XHD$PHD$HD$(QL3&H$1A?|HD$ Hl$`E11HD$HE1H$E1HD$@AH4HD$8HD$0HD$XHD$PHD$HD$QMkMAEM[tAEAtAH$L$HHHttL$ʖMyMtOAMitAAEtAEIHILωD$$HcD$鋕M1違$L$QGMHl$`1E1HD$ AD4HD$HHD$@HD$8HD$0HD$XHD$PHD$HD$HD$(OߔHl$8HD$E1E1HD$xLd$81A7ILt$hHD$ HD$0H$Hl$`VOHD$ Ld$hE11HD$HHl$`E1A7HD$@HD$8HD$0HD$XHD$PHD$NHL$PD|$Hl$8Lt$hD$t{HD$xHLd$8IHD$0HD$eHl$8HD$xE1E1Ld$8Lt$hE11IHD$0H$A7HD$ Hl$`HD$RNHD$xH\$PLd$8IHD$HD$0,eHD$IHD$xE1Hl$8Lt$h1Ld$8HD$0H$A7HD$ IHl$`MHl$8IHD$xE1Ld$8Lt$hE11IHD$0H$A7HD$ Hl$`HD$MIE1(HD$ Ld$hE11HD$HE1H$E1HD$@Hl$`A7HD$8HD$0HD$XHD$MHD$ Ld$hE11HD$HHl$`E1A7HD$@H$HD$8HD$0HD$XHD$LHl$8Lt$0E1E1Ld$8Lt$hE11IH$HD$ A8HD$Hl$`WLHl$8Lt$0E1E1Ld$8Lt$h1A8IHD$H$HD$ Hl$`
L ~Hl$8HD$xME1Ld$8Lt$hM1ILT$Hl$`A8HD$ H$HD$0KLA }H4 B}A7}L}MpALEtAAtAH$L$LHx<HHtH$!H$~IHl$8Lt$0E1Ld$8Lt$h1A98IHD$H$HD$ Hl$`JHl$8Lt$0IE1Ld$8Lt$hE11IH$HD$ A78HD$Hl$`jJHl$8Lt$0E1E1Ld$8Lt$hE11IH$HD$ A$8HD$Hl$`JHl$8Lt$0E1E1Ld$8Lt$h1A"8IHD$H$HD$ Hl$`Ib=}HU}Hl$8Lt$0IE1L|$8Lt$hE11IH$HD$ A8HD$Hl$`gIHl$8Lt$0E1E1HD$Lt$h1A8IL|$8Hl$`HD$ WIHPIHl$8Lt$0E1Ld$8Lt$hE11IH$HD$ At8HD$Hl$`HHl$8Lt$0IE1Ld$8Lt$hE11IH$HD$ Ar8HD$Hl$`lHIHl$8Lt$0E1Ld$8Lt$h1Au8IHD$Hl$`HD$ \H6~IHl$8Lt$0E1Ld$8MLt$hE1IHD$Hl$`1HD$ A^8H$GIHl$8Lt$0E1Ld$8MLt$hE1IHD$Hl$`1HD$ A\8H$GHl$8Lt$0E1E1Ld$8Lt$h1AN8ILT$H$HD$ Hl$`6G|Hl$8Lt$0E1E1Ld$8Lt$h1Ak8IHD$H$HD$ Hl$`FHr{Hl$8Lt$0E1E1Ld$8Lt$h1Am8IHD$H$HD$ Hl$`Fo|fAWHAVAUATUSHHHD$`H8HD$hHHD$pHHD$xHrxH|$HD$@HD$HHD$PHDŽ$HD$XH
L4H
HHHcHHFHD$XHFHD$PHFHMHD$HHHD$@HWH
HpIHL%xM1HL9cL;duIHD$HH}LmHL%M1fDHL9sL;duIHD$PHHH~yHLHHL$H
HL$HD$XHH~FHL$@HT$`ILL
̀Hy#W	fHuHDHD$XL|$@H\$HLt$PHD$H@H(hE111HALIHtA$I$xHI$T
HH(hE111HAHHHztEHExHHEBHL(hE111HALAIH?tAEIExHIEEA;D$
L5H=:IVLNIHtAIBLT$LH5HHLT$IMIxHIuLZHcH=HSHIHtAIGH5gLHHIIMx
HIzL=H=LL\$IWL[L\$HItAI@L\$ LLD$H5HHLD$L\$ IMIx
HIH}sI9_Ht$hLL\$HD$`Ld$hHl$pL\$MIMϺt%YMIx
HIlI9[^LHt$hLD$hLD$ L\$HD$`Ll$pSL\$LD$ IMIx
HIMt<YM5Ix
HII9^Ht$hLMLT$hLT$HD$`LT$IIx
HIMIx
HIL;rL;aru
L;r=DIx
HIE`ID$H5LHHIMH=IHH@LT$LH5ĈHHLT$IMIxHIuLL\$L\$I9^NMFMAAMNtAAtAIx
HIfInfInLϺflHt$`LD$(L\$ LL$)D$`>LD$(LL$IL\$ Ix
HIIx
HIMYIx
HIL;=p_I$xHI$H5eHIH_H=mIHH5RHHD$LT$HIIx
HI.I9^MfMA$MNtA$AtAIHHt$`IfInfInLLD$(flLL$ )D$`LHD$LD$(LL$ Ix
HIH|$DIx
HIHD$H;oMHExHHEH5L|IHRH=IHYH5HHD$ DLT$ HIIx
HI%I9^InHEMFtEAtAIHHt$`IfInfHnLL\$0flLD$()D$`HHD$ jL\$0LT$ LD$(Ix
HIMIx
HI0L;;nMIExHIEHD$LAtAHt$HLML
H=CCj5[H ARLT$@j5t$HjHT$PL\$HH@L\$LT$ HHQIx
HIHLT$M$LT$Hl$HIMJE1E1Z
fDHHHH
qHqAHMEIHHlHvH5SSL
)vH81XWZH
qH=fE1HĘL[]A\A]A^A_HFHD$HD$XLvoH^L>Lt$P)L$@@HHIHD$@HIHMLHHL$HD$@HHL$LmHfDHD$|E1ҾXoIxHI
ME1E1Ix
HI1E1MtIx
HIMtIx
HI#MtIx
HIBMtIx
HIQMtIx
HIXH
pH=duMtI$xHI$E1HtHExHHEMtIExHIEHHHHH
A;E.&LIH
HHHQLIHdII9HD$LAtALL\$LD$ L\$HIEHL\$HILD$ LL\$HIHt$HE1LjH=)?A5=H PHD$8j5{AVj5AWHT$`L\$XHPL\$LT$HH
Ix
HIIx
HIIx
HIqIx
HIMH} IHI$HI$ML@E1ID$(H\$LJtHD$II9fH	iI9D$H9FB:IT$H;VHFI|$H9AHAt
HEL$ DF DD@@8^A I|$8A \Hv8DA
ADDE9H+HtH\$L	fDHD$PR
HoHHVgH
FlH5NjL
pAHWqH81Y^W|@L;%QguusH;5DguufL	HHmH;&gH;=fu
H;=gHx
HHfII9JtI9H\$LKd@HLIHgLrE1LL\$L\$ME1ID$(H\$LJtHD$II9f.HYfI9D$H9FB:IT$H;VKHFI|$H9AHAt
H%EL$ DF DD@@8A I|$8A VHv8DA	AHDDE9HH	H\$LHD$H
HHHdAH5gKjL
nH
iH8Hn1_WAXfL;%duuH;5du:t6fDII9mJtI9eH\$LK@LHH1H;@dH;=cu
H;= dHx
HH&sfDLLD$ 1ۉt$LT$T$,T$t$E1LT$LD$ fLLD$(t$ LT$L\$T$LD$(t$ LT$L\$T$DLLD$ t$L\$T$LD$ t$L\$T$LLD$t$T$LD$t$T$Lljt$T$`t$T$Lt$T$@t$T$E1E1nXE11E11E1E1E1a8XfDE1E1D1E1E1E1E1bGXfD1E1E1E1cVX빐H|$ H|$ G@LL\$L\$A1ۺtWYE1E1l@H|$ fH|$ LL\$?L\$;D$ ,D$ LYaHSHPIH1E1Һt	YI|$8A@HE|$DDlHt$hLL\$hL\$HD$`:	L\$MIWHW>fDLL\$cL\$ofHEM܅@L0LLT$LT$xLLT$LT$LfLLT$LT$fLL\$L\$]fD$ D$ ]fDLLT$LT$LLD$ L\$nLD$ L\$sHWLLT$:LT$LL\$#L\$LN(H8A@IEI|$8A@HE|$q;H1ۺgwXE1E1E1HD$LT$HLLT$HIV
1E1tYH1ۺhXE1E1E1cHD$LD$H1ۺiXE1E1E11H5~H=1$IH/	HHD$L\$Ix
HI1ۺlXE1E1E1LT$I;1E1ۺtYfLt$ LT$L\$T$t$ LT$L\$T$"LN(H8A@IEE1҅YtkI,XpL\$HD$ eL\$LD$ HdLJL\$LD$ HItYDDuXmXL\$ LD$I)tYpE1E1rXLLL$qLL$MWMAMOtAAtAIx
HI	fInfInLϺflHt$`L\$(LT$ LL$Hl$p)D$`LT$ LL$IL\$(IHILLD$(L\$ LL$LD$(L\$ LL$LJL`MKMAM{tAAtAIx
HIhfInfInHt$`LflúLL$ LD$Ll$p)D$`LL$ LD$IIZHIMLLD$ LT$LD$ LT$,DDLL\$(LL$ LD$LD$LL$ L\$(H
_AHW:1E1MtSYcMFMAM~tAAtAIx
HIfInfInHt$`LflĺLD$ LT$)D$`LD$ LT$IIHILLT$ L\$LT$ L\$LL\$ LL$L\$ LL$LLD$}LD$LkLL$ NDDH5yH=z1OIHHHD$&L\$Ix
HIK1ۺufYE1E1E1Ht$`LHI-1E1E1ҺwxYLHT$0LD$(LL$ Ht$Ht$LL$ LD$(HT$01E1ۺwzYe1ۺw|YTwLT$ILL\$ -L\$ LLT$(LD$ LT$(LD$ K1E1E1MκwYLH5hLM1ۺwYE1E11ME1E1ҺxYHt$`uLLT$ tLT$ LLT$ ]LT$ LL\$8HT$0Ht$(LD$ 7LD$ Ht$(HT$0L\$8LLT$LT$#1ME1ۺxYMME1xYMHt$hE1`1ME1E1MκxYMHt$h1H5]gHeL\$M1ۺxYE1E1fHl$1ME1E1ҺyYGHl$1ME1ۺyY+LL\$(LL$ LT$LT$LL$ L\$(1E1E1tYLLD$ LL$LL$LD$ wHl$1MyYMHl$ME1E1zYMHt$h1gLLT$ LD$aLD$LT$ 2MHt$h4H5	fLLT$ LT$ MHl$M1ۺyYE1E1DHl$1ME1MƺyY1E1E1lXL1E1E1Һt	YE1tYi1E1E1ubY}1E1E1CI6IE1E11۾Yt!IfAWH7lAVAUATUSHHHD$PHHD$XHPHD$`HHD$hHTH|$HD$0HD$8HD$@HD$pHD$HHA	L4HG	H4_HHcHHFHD$HHFHD$@HFHMHD$8HHD$0HOHH	IHL%0lM1HL9{L;duIHD$8HLmHL%;oM
1fDHL9cL;duIHD$@H
HH~qHoLHHL$HHL$HD$HHH~>HL$0HT$PILL
]HyMIHuHDHD$HL|$0H\$8Lt$@HD$HptH(hE111HALIHtA$I$xHI$LHtH(hE111HAHHHZtEHExHHEB
HsL(hE111HALAIH?tAEIExHIEEA;D$L=kH=jaIWL~IH;tAIFH5dLHHIMIxHIuLHjH=`HSH
IH0tAIFH5AgLHHHIHNx
HIHEPH9CHt$XHHD$PLd$XHl$`IILú
SOMIx
HI^HOI9G
Ht$XLLHD$PLt$X*IIx
HIIߺ
jOMGHx
HHL;OL;Ou
L;ODIx
HI*H=iiIHH@H5bLHHIMwIx
HIH=hHHtH@H5reHHHIHMax
HHaHvNI9GhHt$XLHD$PHl$XLl$`MHHIxHIuLHNI9FHt$XLHD$PH\$XgMIHx%HHuHL\$ LT$L\$ LT$O
MIxHIuLL\$eL\$L;	NL;M4
L;M'
LL\$:L\$Ix
HIH=gcIH4H5`HIH7Ix
HIH=fIH;H5bHQHH/Ix
HIHLHt$XE1H9CfInfInHLD$flLl$`)D$PLD$IL
PMHx
HHHLHt$X1I9GfInfHnLfl)D$P_HHD$BIL\$x
HI
PMpIx
HIL;LL;KL;KLL\$LL\$Ix
HIHD$LAtAHt$HMLL
d^H=jH AQAUjAQUjHT$PL\$HLlH@L\$HIIHILLD$LD$HHHH
OHOAHMEIHHJHTH5Q1SL
SH81XMZH
zOH=DE1HĈL[]A\A]A^A_HFHD$HD$HLvo6H^L>Lt$@)t$0}@HHIHD$00HIHaLHHL$}HD$0HHL$LmHDHD$|HuH|IH
<OE1Ix
HI<	MtIx
HIH
UNH=BI$E1xHI$HtHExHHEMIEHIELLD$lLD$ufA;ENFLFf.f(	LL$ &f.~L$ D$	HL$ f.VL$ f(	f/b
f/T$
f.L$$HD$Htf(T$ IH
T$ f(IHD$nIH\
Ht$HHZ5GjAMHPH H=2ARLT$0jPAWjPHT$`hLT$XIHPH
Hx
HH=Ix
HIIx
HIIx
HII$HI$HELxE1ID$(H\$LJtHD$II9f.H9GI9D$H9FB:IT$H;VHFI|$H9AHAt
HEL$ DF DD@@8^A I|$8A Hv8DA
ADDE9H+HH\$L	fDHD$@HOHHEH
vJH5@,jL
NAHOH81Y^M@L;%EuusH;5tEuufL	HHmH;VEH;=Eu
H;=6E(Hx
HHAfII9JtI9H\$LKl@H(LIHEaHHESfDHLD$LD$-fLLD$LD$fE1ID$(H\$LJtHD$II9f.HiDI9D$H9FB:IT$H;VKHFI|$H9AHAt
H%EL$ DF DD@@8A I|$8A Hv8DA8	A	DDE9HHH\$LHD$8HHHBAH5w)jL
LH
GH8HL1_MAXfL;%BuuH;5Bu:t6fDII9mJtI9eH\$LK@LHH1H;PBH;=Bu
H;=0B:Hx
HH7sfDL׉T$t$Ht$T$XE1FNCfDH
F7NH=0;E1UNfLL\$L\$
nOMIHIL߉T$t$T$t$H
EH=:NfH|$ fH|$ @H|$ NH|$ D$ +D$ LhDI|$8A@HE|$HDDWMMfDLT$LT$t$T$LT$t$fL_LL\$sL\$fLXHL\$CL\$fD$ 'D$ fDLLLD$LD$ALLD$LT$LD$LT$LLD$LT$LD$LT$HLD$LD$LT$H
MvDD$L$H*vNl6L$ L$ HN6f$L$ D$(IL$ T$(HNDLN(H8A@IEI|$8A@HE|$HuLIH
7OH5]H=^1uIHHQI	H
NILLT$t$t$T$/=IP
9OMH5i]H=Z^1IHeHIH
NIqH5]H=^1IHnHqIH
NIlE1Hx	HHtM&fH߉T$LT$t$T$LT$t$LN(H8A@IEE1Ҿ>O
Ix	HItHLT$LT$t$T$LT$t$HF
NME12=LKMJALCtAAtAHx
HHfInfInLǺflHt$PLL$ LD$Hl$`)D$PLL$ LD$IIHILLD$LD$E1Ҿ	O	
DDMGMAI_tAtIx
HIpfInfInHt$PHflǺLD$)D$PLD$IIHILL\$L\$O

O
LH5LZH=E[1IHHIH

}OI\DDH
>AH)MQ
Og
O%fIdL&i
ODDR
Oy!IwLkMOMAMGtAAtAIx
HIfInfHnLǺflHt$PLL$ LD$Ll$`)D$P
LL$ LD$HI<HI/LLD$;LD$ME1MƾO
?HLL\$aM~MAMVtAAtAIx
HIfHnfInL׺flHt$PLT$)D$P5LT$IIHILL\$ LT$cL\$ LT$LL\$GL\$
NK
OeL
N H5|WH=mX1IHKHI)H
OI
O
N
OHLD$ LL$tLL$LD$ 6
O@E1ҾO
jLCMALstAAtAHx
HHLHt$PLLD$LD$yI_HIGttIx
HIEIHt$P

}O
P
N
NxH5UH=V1VIH	H2IH
-PI-
N
JP3LLD$ LL$LL$LD$ +LLT$LT$

yO
O
OHLD$LxLD$Ht$PLHD$WHD$Ht$PIf
-PN
)P?fAWHSAVAUATUHSHHXHD$(HD$0HD$8H=IL4HEHSL&LALd$(MID$HH$uBHDH9t6HXHzHqH1HH9H;TuL-eMH=CIULIHtAIAL$LH5:GHH
L$IIM
x
HI4L-3M9nHt$8LHD$0Ld$8SMIMIxHIuLHEH5YOHHHVHHXL9kN
LcMA
A$L[tA$AtAHx
HH)fInfInLߺflHt$0L$)D$0L$HI$xHI$3HIx
HI^HExHHEXAtAIxpHIugL}]HH1H
<H5SL
6AH
Q7H81XjZH
6<H=~+E1HXL[]A\A]A^A_@HH9HuH;1fDL-JH=BAIULVIH2
tAIGH5DLHH
IIMa
x
HIL-0M9n
Ht$8LHD$0Ld$8MIMIxHIuLIGH5ILHHHHH5MO1H+IHHxHHuHLL$LL$L;
V0L;
0QL;
20DLLL$LL$+AqkE1E1E1Ix
HI
1MtIx
HI
MtI$xHI$
MtIx
HI
H
c4DH=6)MtIx
HI
E1H4	H&L&Ld$(Ly1H
MMfHL9I;LuM$Ld$(MMGIx
HI)
y
IGH5GLHH
IM
H5VML9IAH;.
IA0HH*	IxHIuL
H=GHHrH@H5GFHHHIHMxHHuHLL$9LL$M9iaLHt$8LL$HD$0L|$8Ld$@LL$HMHIxHIuLH;}-H;;-H;Y-HAąHx
HH!
EH=FߦHHjH5@HIHrHx
HHM9h}H$E1H$fInfInLflLD$Ht0)D$0LH$uL$LD$MlIx
HIIx
HIMH5yHHYHHL9hHhH0LhEtEAEtAEH0HHt$0H`fInfHnLfl)D$0HH$衳L$MIExHIEICHI6L)fLCLHA(E1HD$@KtH9H{+H9AH9FHQH;VHFHyH9AHAt
HDY DV DD@@8uxA 	Hy8A 	Hv8DA
ADDE9u9H$HLL$E1HLL$H$AfIM9fDL%*L9uuL9uuHϺLL$H$H$LL$HHtkH;)H;=)L9LL$HL$H<$LL$HL$H<$AHx
HHEBEy%HD$(H>js@O$GIUH=BIH	H@L$LH5<HH	L$HIH	xHIuL)IGH5DLHH
IM
111LL$蛸L$HIIx
HIqL$L$HI
LXH$L$HI~H=AHD$L$L\$HIH5>HL$L\$HII$xHI$,H5
=LLLL$L$AL$LL$2Ix
HILLHL\$L$L$L\$HIHx
HHIx
HIIx
HIH5UCH5HHHL9hQLhMLXAEtAEAtAH	HHt$0H	fInfInLL$fl)D$0LHzHL$
Ix
HI-	HExHHE3	LL(7HH
Ix
HIE	ILfHWHHJH`=LPH@HIL#fDD Ht$8HHD$0L|$8IH
DD7E1E1_lA}fDHx	HHtPMKZf.1AyLL$tL$+L`6HL\$L$GL\$L$@L0!L *1LIIfDLHL$L$HL$(HT$0ILL
h.L	>Ld$(LL$L$HuLƛH	1ApwkjHuL薛Hd	1E1Alk7ApykME1M1E1f+L$IE1AlkxDI6I^HTMNtAtAIx
HIfInfHnLϺflHt$0LL$)D$0LL$IHHHHLL$0LL$fDE1E1E1Apk1Al3kE1E1I^HM^tAtAIx
HI+fInfHnLߺflHt$0L$)D$0L$IHHHHL$SL$f.IHIL CHAmAkAqkHE1E1E1۽kAq1AmUkH5AH=A1裧HH<HHx
HHs1ArkhIN1AukILL$H$,LL$H$CL^(H8A@IEHy8A@HE|$H;' .LϺLL$'LL$HHtWH;s H;=1 H;=O LL$H|$H|$LL$H~AukH[LL$JL$zDDfLL$(L$1Ht$0AwkLL\$L$1A}XlHHt$H$H$Ht$E1E1E1۽kAwI4LLL$LL$LL$pL$A}ZlL$HDDkLL\$L$(L\$L$.HL\$L$XLL$L$WL^E1E1E1۽]lA}MqMAMYtAAtAIx
HIefInfInLߺflHt$0L\$Ld$@)D$0L\$HIWHIJLL\$2L\$3SIAwkHCHH6LL$LL$aIAwklE1E1blA}HLD$覿LD$hL蔿Ht$0lHxj0Ht$HT$L$VL$HT$Ht$/L%LL$/L$gLL$L$MfE1E1glA}@HAr1۽kAy"lnlA}E11lfA.AD‰IHt$81MLE1E1E1۽6lAyE1ilA}klA}IHt$8E1plA}iLA~lIHt$8E1AxkLA~lMAxI߽kLAlM`MA$MptA$AtAIx	HItbMME1E1E1LýlAxArkJIHt$8LL\$L\$L
MHHuH$IIfAWH'6AVfHnAUATIHHUfHnSflHHhfo8L
8HD$PHHD$XH8HD$0)D$@)T$ HHL,HHHLLyLL$ MHq5LHHHHD$(IMLML55Mp1
HI9{L;tuIDHJHD$0I+HVHFHVLLyHD$0HT$(LL$ M_LL$ HT$(LT$0H
I$EtEH+HIt$HH=QAHjP5L7j5|4RLjP9HPH"HUxHHU$Hh[]A\A]A^A_DHv4HH+H
BILLL$ Af.HuJLVH
LT$0HVHT$(LyMLT$0H
f.H
AHHHH5:SL
 H81踿XA@ZH
cH=fHh1[]A\A]A^A_H
aIhHH$褹H$Hh[]A\A]A^A_ÐHVHLyHT$(HD$ HH
HIHII?IA+fDLL$ fDE1IF(JtHD$I9	fDHI9FH9FIVH;VHFINH9@H@t
HA~ D^ D8uq@ I~8A }Hv8ȃDA9u6L$HtGLT$H苺LT$L$@IM9JtI9KDdH
I9uuH9uuLHL$LT$L$$HHtxH;uL$H;=/LT$/HL$H9!LT$LL$H<$薻LT$LL$H<$Hx
HH4,?蟺HtJ(@OH
IH,LH.IHHD$ I@HL$ HT$@ILL
H1z-@HUxHHUuHH$誶H$H
x@H$H=eH$@軹HZ@g蛹Hj!@GD$LT$L$D$LT$L$HN(H8A@HErIN8@HHE|$ODkD_f.AWH-fAVfHnAUATIUHH0HSHH$H)D$pfHnflH|$ HDŽ$H$)$HL4H
H	HHLEHD$pML-(-MD1HL9L;luIHD$xH MhH|$pMH.LH辬HH$ME2H>	HFLEH$HFHD$xHHD$pM$H|$pUDHt>Ht,HH
HAHMEIDHFH$oH>)T$pHGHGH9HHH)HH1	HG	HD$H|$H$L|$xHD$XHD$`HD$H2HD$hH(hE1ɹ1HALHD$XIH2HD$`t	A$Ld$XI$xHI$7HD$XLd$`HD$`At$cH,2I|$ Mt$H5*LHúLt$(o1HtHsLL1f/`
H-'H9l$DoHD$0LxhfDM7Mt	I9MMu1E1L-)H=IUL践HHtH|$`HGH5J&HHGHH|$XLT$`H$IxHIH|$XHD$`H
1H$H9O7fHnD$)$!H|$`HD$hHtHxHHHD$hHD$`H|$XHGHx
HHHD$XHMHD$XHKHD$`IHaHD$`~D$hHD$hD$XHD$X@MtIx
HIBMtIx
HIHtHExHHEL5'H=IVLHH7tEHl$hHEH5],HHHHD$XHH|$hHx
HHqHD$hβHD$hHHAEt	AEHl$hLm2HD$`IHH
H5"H˴3Hl$XHT$`L|$hHELMH=HT$菮HHT$LAHHH|$XHx
HHHD$XH|$hHx
HHHD$hH|$`Hx
HHHD$`EtEHEuH} HD$8H.fH=$H*D$IR- HD$Ht
LHHHD$HD$ L5z!LLMxLD$0L_HD$HH@LD$0HHH|$LLHD$HoHD$ H5 HHD$`HHHD$hH
H9GHGHD$hHHttLD$`H|$`IHIHD$hH|$`H$H$HDŽ$H|$hIHtHx
HHkHD$hMH|$`Hx
HHeHD$`Ix
HIRұH|$HD$0~}HD$ HLt$8E1HT$ LH`Ld$HH Ld$(Hl$8LILl$@MfDHt$HMILLIHl$ L;|$uHl$8Ll$@Ld$HH|$0^H\$H5")1H8HD$HxH\$HHIH\$HoHx
HH>EtEI$KHI$
HEIE1

@H)‹GHHT$@LEH!LHLD$}LD$HHD$pLL}I>DH

AHHHH5RATL
H81ϰX_ZH
z
H=E1ͳHĸL[]A\A]A^A_LȪAtAM~AtALnHUfDGWHH	HHD$fDGWHH	HD$fHFLmHD$xHHD$phfDHXHD$`IHfHD$hIHHD$hHD$`HD$`IE_@1IE(Ld$MHtHD$MI9@HI9EH9F;3IUH;VHFI}H9AHAt
HEM DF DD@@8ZA TI}8A AHv8DAADDE9H(HLd$MHD$xHHHH
H5jL
bAH(H81+Y^w_WLM9uupL9uugLLD$}HHfH;H;=uLD$L9	Hx
HH@HL9HtI9
Ld$MI@HqIGH9t<HXHHqH1HH9H;TuH=e~HD$XIHH5HHD$hHHH|$XHx
HHH5LHD$X讋HD$XIHH|$hH1H$H9GfInHfHnfl)$H$.HHD$`H|$XHx
HHHD$XHD$`HD$H5H|$hHxHHKHD$`HD$HL$HHD$hH9H;
t
H;
g
HŅuHD$`HD$HT$Hx
HHHD$`AH5LZHD$`IHOH5HťHD$hHHFH|$`HxHHHl$hHD$`H9H;-H;-H AŅHl$hHExHHEHD$hEpH5L艉HD$`IHHD$XHI9FIFHD$XHMVtAtAH|$`LT$`HxHHLT$`H$HD$XLHDŽ$H$éH|$XHD$h褉Ll$hHD$XLMLD$`IxHIH|$hH5- 1HD$`HD$`IHH|$hHx
HHHD$hH|$`H9H;=3H;=&sÅbH|$`Hx
HHjHD$`L5 At
AL5H=!H$HHDŽ$L$脨HD$`IHH˙H|$`HxHHu豢`E1HD$`wfDHH9$HuH;DfDL5QA?AL5;0葥HuHH5H8֢fDkHHD$c@H|$`E1_HD$E11E1HD$@HtHx
HHwH|$hHtHx
HHyHL$HtHx
HH{HL$HtHx
HH}MtIx
HIH
H=MtI$xHI$lE1HtHExHHEMtIx
HIMtIEx
HIEt6HHEHHEH蛠fDL舠HEHIHEuE1f.HX]LHfT$ LT$2T$ LT$m@T$ LT$T$ LT$k@HωT$ LT$T$ LT$fHωT$LT$ϟT$LT$dL׉T$负T$g1LI蛟fD苟fDH5IH=1{HD$`IH|HRH|$`HxHHu8_E1E1HD$`H|$X1E1HD$HD$HCHx	HHt
H|$`T$ LT$ҞH|$`T$ LT$L谞`HD$E1E1HD$1H|$XE1Hy뇐k8fDaHD$E1HD$HL$pMLHH$L
f_@H|$H|$HE1;LٝdI}8A@HE|$H蹝话H袝u_H舝{fDHT$D$0_XDKkfD;9fD+fDkH	LZrHD$hHHE1һaHD$HD$QHLJHHE1һaHD$HD$H|$`a豢TLtLg譟H	LqHD$`HH.A"aH|$XH@H5HH[LT$`HD$XMtIx
HIHHD$`H|$hHtHx
HHH
3DHD$hH=R}H|$0HL$hHT$XHt$`IHL$HH9A=D$tH聝HD$IHWIHLhH|$HHD$褚LT$HIHT$Hx
HHwIx
HIVH|$`HtHx
HH*HD$`H|$XHtHx
HH
HD$XH|$hHtHx
HHHD$hHD$0H@hH8L0HtHx
HHMIHILsE1һaHD$HD$c2H~_D$这D$A$a֟Hap芙L}HD$hH$HGHD$`HHttLT$XH|$XIHIHD$`H|$XH$cHY	A9aHD$XLN(H8A@IELT$`A=a诘襘L蘘A?aSLxHkLT$waE1HD$HD$aeaE1HD$HD$HD$0H@hH8L0HtHx
HHMtIx
HIE1HCHE5HHE'HT$ 1LT$蚗LT$T$ HuL	bH8蕗E1Һ#HD$誚HD$HHeH5aH8E1ҺHD$DDYHH
XAbHL$Hx
HHHD$#E1HD$-E1`H$115艖uk-bsE11`HD$HD$DD1HaHD$HE1һqaHD$H$1E1һsaT$ LT$ɕT$ LT$LT$ LT$誕T$ LT$uayE1һkb#HD$mbHD$za<KH@`HHHHHH@L-L9ut_HEHv~HHH)HHHtqH#HD$HEHHEH蜔HH5zHH\H@kH)‹EHHT$뜋EUHH	HD$HEHHE눋EUHH	HHD$T_D`IE1_HēH跓#E1HD$HD$HD$`H$Ly]H|$`F`rE1E1H`HD$HD$HD$h2H|$`K`)E1E11E1HD$``=HoH/EHtEtLD$hH|$hIHIvLl$XH|$hH$H|$XA"aHD$`HMd`THGXE1s`		m_E1E1u`	HD$HD$sw`	JLH|$hёLT$`H$1t賑LT$`H$XH@`HHHHIHL9huID$
ID$HHHH)HHHLuHD$I$FHI$8L+H5SH
wIHfHEHHEH謐H)AD$HHT$rAD$AT$HH	HD$WAD$AT$HH	HHD$9LHD$'L/}Ll$XH$[nE1`
`
JH|$``
E1`

HHH5NH8NA9aE1һ	b#HD$AWHAVfHnAUATIHHUfHnSflHHhforL
kHD$PH_HD$XHWHD$0)D$@)T$ HHL,HHHLLyLL$ MH!LH趆HHHD$(IMLML5Mp1
HI9{L;tuIDHJHD$0I+HVHFHVLLyHD$0HT$(LL$ M_LL$ HT$(LT$0H
I$EtEHH=KsIt$ AQHj5D5	j5.RLj5
DHPHHUxHHU!Hh[]A\A]A^A_fHv4HH+H
ILLL$ Af.HuJLVH
LT$0HVHT$(LyMLT$0H
f.H
AAHH0HH5SL
H81hXJZH
HH=niHh1[]A\A]A^A_H
IhHH$TH$Hh[]A\A]A^A_ÐHVHLyHT$(HD$ HH
{H}IHII?IA+fDLL$ fDE1IF(JtHD$I9	fDHI9FH9FIVH;VHFINH9@H@t
HA~ D^ D8uq@ I~8A }Hv8ȃDA9u6L$HtGLT$H;LT$L$@IM9JtI9KDdH
YI9uuH9uuLHL$LT$L$ԊHHtxH;%L$H;=LT$/HL$H9!LT$LL$H<$FLT$LL$H<$Hx
HH4,?OHtJJOH
IH1LHށIHHD$ I@HL$ HT$@ILL
XHzJHUxHHUuHH$ZH$H
2KH$H=H$@kHZJgKHjJGD$LT$L$ΈD$LT$L$HN(H8A@HErIN8@HHE|$ODkD_f.AWHAVfHnAUATIHHUfHnSflHHhforL
kHD$PH_HD$XHWHD$0)D$@)T$ HHL,HHHLLyLL$ MH!LHHHHD$(IMLML5Mp1
HI9{L;tuIDHJHD$0I+HVHFHVLLyHD$0HT$(LL$ M_LL$ HT$(LT$0H
I$EtEHH=kIt$ AQHj5D5j5.RLj5
DHPHHUxHHU!Hh[]A\A]A^A_fHv4HH+H
ILLL$ Af.HuJLVH
LT$0HVHT$(LyMLT$0H
f.H
AAHH0HH5SL
H81hX=JZH

H=iHh1[]A\A]A^A_H
IhHH$TH$Hh[]A\A]A^A_ÐHVHLyHT$(HD$ HH
{H}IHII?IA+fDLL$ fDE1IF(JtHD$I9	fDHI9FH9FIVH;VHFINH9@H@t
HA~ D^ D8uq@ I~8A }Hv8ȃDA9u6L$HtGLT$H;LT$L$@IM9JtI9KDdH
YI9uuH9uuLHL$LT$L$ԃHHtxH;%L$H;=LT$/HL$H9!LT$LL$H<$FLT$LL$H<$Hx
HH4,?OHtJ$JOH
IH1LHzIHHD$ I@HL$ HT$@ILL
aH~z)JHUxHHUuHH$ZH$H
CtJH$H=JH$@kHZJgKHjJGD$LT$L$΁D$LT$L$HN(H8A@HErIN8@HHE|$ODkD_f.AWH'AVAUATUSHHxL5HD$@H-HD$HHHD$PH-(HD$XHH|$HD$ HD$`HD$(HD$0Lt$8HEL4HHIHcH@HFHD$8HFHD$0LnH.M|$Ll$(Hl$ HHtHHMHD$0Ll$(Lt$8H$EtEAEtAEL;-L%Lt$HHD$@I|$H;=7YH5*譅ELHt$H1LH=IMID$H5cLHHIML;=SL;=L;=/L艃ÅIx
HIH,H=HSHɂIHMtAIGH5LHHmHIHlxHIuL~H51HbIHHxHHuH~IxHIuL~ID$H5LHHIMHI9G4MOM'AM_tAAtAIx
HILHt$@LL$@LL$L\$HD$H菃LL$L\$HIx
HIHUIx
HI	I$xHI$IHH=HSHIHtAIGH5LHHHIHx
HIHLh}IHHx
HHxL;=L;=_u
L;=[Ix
HILLHD$LAtAHE1HAWHD$LHT$LH m_AXHH&
Ix
HIb
H$H;9tI$xHI$IHx
HHHtHExHHEIExHIEHxL[]A\A]A^A_ÐIT$BHt$HHZE1 uM|$H=Ht$zHt$u9LIM~HuHzH5H8{H
-E1H=eHuLM~PMl$H-M	1@HI9I;luIHHD$8IMHl$ CAHtM8HHv	H$LnH.Ll$(Hl$ f.HLvLt$8HFH$HD$0fDEtEHHxH
HHuHzHpt	H`HExHHEj	IHH.LyHl$ )LyHuLLqHD$ HHIH.H$IHl$ @L}Å-A1@H
AL
HHHH5SSH81~X#-ZH
H=6E1ցHLLpIH
HD$(IM(HLLpHEHD$0I}Lx[Hxx{Lhx-A1IE1ۅx&HIMtIx
HIH
DH=JE1I$x
HI$txHf.HL$ HT$@ILL
Lt
-S{ILw0IDLxw{Hhw_HXwjLHwpL߉4$5w4$
DLt$L$wt$L$AtAH5L9wIH*
H;AH;CDu
L;dEIx
HINE-Ix
HI!H=MIHyH@L$LH5HHwL$IIMRx
HIqHBI9@}LHt$HL$HD$@H\$H{L$IMMIx
HIIGH5LHHIIMx
HImH5LϺL$uL$HI-Ix
HI	L;=L;=5L;=(L(y…Ix
HI	AtAHHt$HE1I9F
fInfHnLL$fl)D$@JzL$IL+ZM
Ix
HII$pUDH=qKIH
H@L\$LH5HH
L\$IIM
x
HILLFtHH
Ix
HIH;H;=JH;[=HwADž
Hx
HHtE}HD$LAtAHE1LASHD$HHT$LH L\$ 9Y^HL\$HIHILs1HE(L<$MIHHD$ItI9Af.HI9EH9FIUH;VHFI}H9AHAt
HEM DF DD@@8A #I}8A 5Hv8DAA8	DDE9ucHttHAtuGL<$HyZ7uH-@L;-quuH;5du:t6fDHI9tItI9L<$HIfLqHH{H;H;=u
H;=Hx
HHs'HH|H
lAHOL
\EHLOOD@DwI -H
8H=E11yI$DHD$0Hl$ Lt$8H$HIHrp-DH59LpIH	H;AH;DL;LL$!tL$AIx
HIIx
HIzEK@LL$sL$A/IMA FH|$sH|$5@DuILHo.AL(oD$oD$fDLo%Ln+rHbHDHHA-fDLnLIntH.-A
LL\$LL$NnLL$L\$&IA-1fHt$H1L)D$@sMH/DLL\$mL\$+qHuHCIH-LL$mL$zsH-A%EepH=-7L8mnIA-1LL$mL$~H=	dDHH|H59HQIHqHx
HHmL޺LL\$lL\$HILIx
HI]L;=(L;=L;=L^pÅIx
HIdHD$LAtAHE1LAWHD$HHT$LH HXZHu[.AxH
:-H=tI$E1HI$1Lxk*A-)LXkyL$Ek$CnHo,I}8A@HE|$H
kLN(H8A@IEA!/A!/pL$I
nH
AL
Ha,MXMvAMHtAAtAIx
HIfInfHnLϺflHt$@L\$L$)D$@oL\$L$II1HI$LL$iL$A!/IHILω4$i4$oM/A M/A!=oI
.H
H=FrDD<A
.1moL\$I
A!/:Li%!.A
/A!LhhDDIA
1۾#.H=(@HH5HHD$[ML\$HI*Ix
HILLhIHIx
HIeL;L;L;LL\$ lL\$}Ix
HIEHD$LAtAHE1LASHD$HHT$LH L\$ A[A_HL\$HfA.1Cf.1A-;A0.1HL\$?gL\$|M/A Lg/cM/A"MFM"AM~tAAtAIx
HIMHt$@A iLfcLLL$L$fL$LL$kAG.9I߾I.1AAL.1N.A1H=,=HH,H5lHJIHHx
HH
L޺LL\$fL\$HIIx
HIL;=KL;=	L;='LiÅIx
HI
HD$LAtAAPE1LAWHD$HHT$LH 6AYAZHH.ALdkLL\$dL\$LL$MdL$Ht$@Ldr.1Ay.;1۾w.A
At.1LFdH=J;HH5HHD$HL\$HIIx
HIlLL3dIH]Ix
HI[L;lL;*L;HLL\$gL\$gIx
HI:GHD$LAtAQE1LHASHD$HT$LH L\$ A^_HL\$HA.1vI߾.1AA.HL\$bL\$Lb	A.1b.A14Lb1۾.ALL\$[bL\$A.1.L(bIH=$9HHH5THFIHHx
HHL޺LL\$bL\$HISIx
HIQL;=CL;=L;=LyeÅIx
HIt[HD$LAtAASE1LAWHD$HHT$LH "HXZH/AH=P8H9H5@HHD$EL\$HIIx
HI!LL`IHIx
HIL;L;սdL;WLL\$HdL\$Ix
HI/tiHD$LAtAAPE1LASHD$HHT$LH L\$ AYAZHL\$HA2/1qH=7HHiH5AHADIH9Hx
HH\L޺LL\$_L\$HIIx
HIL;=мL;=L;=LcÅjIx
HIptZHD$LAtAQLHE1AWHD$HT$LH ^_HH$]/A'H=H;=ID$t
H;QLdIMH=Ht$HL\$HHL$HD$@cL$HIt7Ix	HItRLTIx	HIt!|/NAw/1~L]պu/#L]L`IBP/A1|L`]AN/1LA]I߾K/1AAI/1A%/HL\$\L\$L\1۾#/AtLL\$\L\$BA /1g/.A1*Lu\	L`\A.1LA\I߾.1AA.1A.HL\$[L\$ff.AWHGfAVfHnAUIATUSHHHHH$Hݶ)D$pfHnflH$HDŽ$)$HHL4HHHHHIHD$pIL%M/1HL9L;duM$Ld$xM
LyM]Ll$pL$LfDHHFHIH$HFHD$xHHD$pHLl$pLd$xL$HHD$@HD$HHD$PH(HD$XHD$`HD$hhE111HALHD$@HH
HD$HtEHl$@HExHHEHD$HHD$@HD$HHD$hHL(hE111HALAHD$HIHVHD$@tAL|$HIx
HIHD$HHD$@HD$@HD$upH5H|$H5rH|$RL-M9L%H=SIT$Lf\IH,tAL|$HIGH5LHHmIL|$PMgH|$HHxHHAL|$PHH$HD$HHD$ H1I9fHnfInHrLflH$)$]H|$HHD$@IHtHxHHYL|$@HD$HMH|$PHxHHL|$@L|$PAtAL|$@Ix
HIL|$PE1HD$@HD$PHAwI LHL$LHD$(HT$1AHHDHD$HL9-MtI$xHI$cHEH5HHD$HHHHH|$HHLdHD$PHHLT$HIxHIH|$PHD$HHx
HHLH5HD$PMuHt$0LhZHt$0HHD$EH@HHH|$LLHD$HHH5CHD$HHH)HD$@HD$ H9GHGHD$@HHttLT$HH|$HIhHIzHD$@H|$HH$H$HDŽ$ZLT$@HD$PHMtIxHIH|$PHD$@HLT$HIxHIH|$PHD$HHx
HHSHD$PLk`E1H YH|$(HD$ Ld$(L|$(@H0LHL0H@H0H8H0H6ԆH01IMHE .mf.H(H0HH@(H;}}AHH@HHt̀8oH(HHI8HcI H0;}|IM90L|$(H|$ RH\$H51H7HD$hHHxH\$HHH|$hHLHx
HHHD$hAtAIHI.HExHHEfDH|$tHD$HxH\$HHH|$H\$HHHHR@HHLvL$oLfL.)T$pHIHLHHL$}JHL$HHD$pL}HDH
AHHH!H5RAUL
H81WXPZH
z
H=UE1ZHĸL[]A\A]A^A_HH
$H&AHMEInfL5A@u3HH0H;0HHH0HH0H02@y2%HF(HJ(H)0HLcJ4LN(L;(}INL(HJ(H0fDH@0HH@(HH(H+0H0LTf.D$=LUIHH=D$7fH=I*<L-M9SH=;'HD$HIH`H@H5LHHmIL|$PMGH|$HHxHHOL|$PHH$HD$HHD$ H1I9vfHnfInH̪LflH$)$UH|$HHD$@IHtHxHHrL|$@1A
HD$HASMH|$PHxHHL|$@L|$PAtAL|$@Ix
HInL|$PHHD$@HD$PAwI HH5HD$(IGHD$0;HHYHH5w;HD$@HHHD$HHD$ H9G[HGHD$HHHttLT$@H|$@I
HIHD$HH|$@H$H$HDŽ$gSH|$HHD$PH3H|$PHD$HHLT$@IxHIEH|$PHD$@Hx
HH0HD$PLs`E1H MRH|$(HD$ ~LHl$8Hl$(L|$(MLl$0fD$LLH|KDIL9uHl$8L|$(H|$ 
LH5H10HD$hHHExHHE
H|$hHHx
HHHD$hAtAI
HIUL1HD$H|$HA7QA~
HD$E1DHtHxHHuLfDH|$PHtHx
HHH
lDDH=FTMtIx
HIxE1HHEHHEHKuDHLHCH	H$IO@HXK`LHKLfHLyLd$xHD$p0fDE1ID$(H\$LMMHD$ JtHL$I9fHI9GH9FC;IWH;VHFIH9AHAt
HEW DN DD@@8bA I8A aHv8DA
A|DDE9H0HYLHL$H\$MHD$x8MHHH<AH5jL
H
H8H1fO_PAXfL
1M9uupL9uugLLL$IHHcH;H;=uLL$L9vHx
HH	@II9
JtI9HL$H\$MO$HH55IHE
HH55HD$HHHHD$@HH9EHEHD$@HHmtEtEH|$HHl$HH
HH
HD$@Hl$HH$HH$HDŽ$MH|$@HD$P-Hl$PHD$@HH|$HHxHHG
Hl$PHD$HHExHHE-
HD$PFHL$XHT$`HxhHt$hHD$ 6HS`H{ LD$yHIHD$PHHHD$ HT$`HD$PLd$XLl$hH@hH8HHtHx
HH
MtIExHIE
MtI$xHI$
H51LHl$X*HD$`HIxHI
Hl$`H
HExHHE
HD$L|$XHD$`HD$XHeH\$HHSH|$6F7H
yHT$1Ht$IHHD$PL9ZHD$PH=SHD$@HHH@H5HHIL|$HH|$@MZHxHHuEH5KLHD$@2*H|$HHD$@HHH$E1HT$ HѺH9OfHnfInHmfl)$H$JLHD$P*H|$@HxHHuDLD$PH|$HHD$@MHxHHLD$PLD$HAtALD$PIxHIuLDHD$PL|$HHD$H[D\fD1LICDyHD$H|$@1AWQA
HHx	HHtH|$HCHL$pMLHH$L
̪@#PH|$GH|$yI8A@HE|$ 2HCLCRwCmCL`CVCMHD$HH$ZP(+CH|$D$0AQA
1E1f.H|$@HLBFBBLLBAQA
1E1LBBBD$rBD$MEHjPIHE-HHEL*B+HD$@H$LLAyLV(H8A@IE1LARA
^'H=H
JH|$@HD$H|DH%LHD$HIHH|$@1AQA
=DHARA
1E1ED[GI1AQA
 H|$@A RA
%GHH5H3Hl$HDH7ARA
1E1ARA
1E1IGHD$HHEMtAtAH|$PL|$PHHH|HD$HL|$PH$1A
AQA"RA
ARA
1E1HٝA/RA
H8??DDHD$A1RA
HH\$HA
HH}?HD$H\uBHH
AL;?1?'?mH$11L	?
HD$AERHQH|$HA
H$1fH>DD}H|$@1ASA
{1ASA
DIx>11E1AQ#	H
H= A
GHD$P@ARA
/IGHD$HHxMtAtAH|$PL|$PHJHH3HD$HL|$PH$"H|$HLAQA
^H5_Ho0$Ld$Px=Hk=a=&HD$@H$&LAQA
\CIrASA
#HEAS HHESA
1H$11HEASyH|$H1A
}LAQA
aLwM^AHtAtLD$HH|$HIHIHD$@H|$HH$LAQA
H$1;<1A>TA
L;L;L;9H;P;zHD$HH$nIASHIUA
1E11ARA
xH|$@ H|$HHD$@ H|$PHD$H 
H
4SHD$PH=wCH|$ HL$@HT$HHt$Pi<HL$@HT$H1Ht$PAH1HLHD$(L\$(IIx
HI Ix
HIML;+L;HM9?LLT$(`>LT$(AIx
HI2EL|$PEMLH|$HHD$PH|$@HD$HHD$ HL$XHD$@HT$`Ht$hHxh.IASH|$HE1A
hHA
19H$1]H$11LHD$HH|$@1AQA
(LARA
FLA
1E1#9.DIHIL8E1ASA
1ASA
L8gHD$@H$tP8HD$HH$LLT$0r8LT$0L\$(AQA
1E1]AISHD$ HL$XE1A
HT$`Ht$hHxhq,,E1ASA
LLT$(7LT$(fARSA/RA
AMSLl$@Ld$H:LLHLA^S:-HD$PHD$HHD$@CAVS8f.DUf(SH(--f/\f(f\H,H*X
,\$^T$YYX
,Y\
,YX
,Y\
,YX
,Y\
,YX
,Y\
,Yf(L$8L$X
,T$f(5;,\$^f(\,f/YX
m,X\vIH~DHD\L$Hf(T$7L$H9T$\uH(f([]f1ff.fHHH?Pf*YX-Hff.HGH?H~CAUIATIUHS1HfDH}UADHI9uH[]A\A]fDH~SAUIATIUHS1HfDI}AUf*Y,AHH9uH[]A\A]AUIATL%UH-SHH(I}AUfHHHH*YLH9IEI}AL$HcAT$\$L$D$f(fW%,f(3T$L$f($YD$Xf/KH(f([]A\A]f.fW+5
	*H([]\A\A]f(fDHWAWIAVE1AUL-dATL%[UHSHH(f.H6L$HcLT$\$L$D$f(fW%+f(2T$L$f($YD$Xf/BLIL9tkI?AWfHHHH*AYI;DrIGM8LfW{*F4
(\BLIL9uH([]A\A]A^A_Lf(bff.@AVAUIATL%UH-SHHI}AUfɉ	*YL9IEI}AL$HcAT$\D$L$A(W-)A(4T$L$(fA*Y/)YD$X/HH([]A\A]A^@f*Y(W$)/
(H[]\A\A]A^(AWAVAUATUSH(Ht$H,HHL%E1L-AH
L$McLBT$\D$L$A(W-y(A(m3T$L$(fA*Y(YD$X/BLIL9t$tpH;Sfɉ	*@DAYA;DrHCL@.Lf*Y'W'j.
'\@H([]A\A]A^A_fHh(VH~[AUIATIUHS1HfDI}AUfWP'1fWC'AHH9uH[]A\A]fff.@H~sAUIATE1UHSHHDI}AUf*Y&W&Z0ZW&BDIL9uH[]A\A]AWAVIAUL-pATL%gUHSHTH(IFI>L$HcT$\$L$%$D$Yf(Y-T$L$f($YD$Xf/wAI>AVfII	LH!H*AYLtfW
%I94?H(f([]A\A]A^A_@IFI>fWo%:/
#I>Y$AVfWJ%/$fW8%f(XYf/vX
#AzfW
	%m@SHH0=D$f/H;SHD$
lt$T$\f/r>
ND$f(^#.\$f(f/rH0f([fD$
L$ \^D$-|$L$ D$f(Y\f(
^-T$\$f(\f/H0f([ff(\%d"d"Yd$(ff.Qf(^d$fHff(D$YX6f/sf(L$H;YYD$SL$!f(YYY\f/wbL$ ,D$D$,%\d$f(L$ f(XN!YD$(YYXf/D$(L$(YL$H0[f(=1%]H~CAUIATIUHS1HfDLADHH9uH[]A\A]DAWAVIAUATL%>UH-6SH.HDIFI>HcL$\D$%o fAnfZAYAf(Y)L$f(fA*Y!YD$XZf/wDI>AVfAA	A*AYfA~tW!fA~D9l/HfAn[]A\A]A^A_IFI>f*Y!W5!'
 I>YL$AVf*Y W 'L$W (XY/vX
 AfA~RW
 fA~AH~CAUIATIUHS1HfDLADHH9uH[]A\A]Df.{&ff.{7uf(fuifUHH .D$ud$f.R=/|$%d$H}UfH*YT$T$z
zt$T$\/r-
]D$(^s+\$/rH ]fD$*L$\^D$+|$L$D$(Y\(
^+T$\$\/#H ]Dt$\5fYt$.;Q=d$^|$H f(D$YXO/s(L$H}YYD$UL$*f(*YYD$YY\/w_L$*D$D$*=\|$(L$(XYD$YYX/D$D$YD$H ]@H f]H ]P+)%;ff.HHH?PHHff.HHH?PHff.HHH?PHHff.HGH?f.E„uf.YD„uffff.H$L$YD$X$Hff.UHH0H?D$UH=EfHHHH*YH="H;sD$H0]Y@HEH}HL$ HcT$(\D$L$ D$f(fW%f(u#T$(L$ f(D$YD$Xf/_Hf(D$H0]YfW^)%
\D$H0]Yff.fHHH?$L$PYD$X$HHf.{Bff.{ L$L$HYfDufHYfuL$L$HY@HL$qYD$HfDUHH0D$ f/L$(f/f(f/vf/n@H}UH}D$U
^L$ D$D$}#
^L$(D$D$^#XD$hf/rL$XL$ff/vf/JL$H0]^f(fD\$ f.|d$ ff.D$ HJf(\$(f.{ht$(ff.D$(HL$L$X^H0f(]fD~H2\$(f.|f(zuHL$L$H?U\$ HKf(D$(XYfHnf/wf}DPfaffD$!f(D$^L$ L$!L$f(^T$(T$ f(_\\$f(L$\$T$ D$\f(XD$i!L$H0]\f(qHYf.D{*ff.{HXfufHDuHXUHH$Yf.f(ff.{sHL$L$f(XYY
[f.
}ff.{;f(HT$T$XY$H]^f(@ufufeL$L$f(Xm@}HT$T$XUHHHD$L$H]^f(ÐUHH0H?D$UH=fHHHH*YH=H;s^L$H0f(]!HEH}HL$ HcT$(\D$L$ D$f(fW-ff(T$(L$ f(D$YD$Xf/WH{f(FffW
i\$UfHH0f.zuH0f(]f
H}^L$UH=fL$HHHH*YH=H;HEH}H`L$(HcT$\$ \D$T$D$f(fW--f(\$ T$f(D$L$(YD$Xf/wHL$:L$f(H0f(]bffWL$\ff.fHD$~
fW~
xfW
^L$Hff.fSHH$L$
ff/wFH;Sf/xr
\\f(L$Y$H[\@XYD$X$H[ff.AVfI~SHHL$H;SBf(6\f/vfWwL$H[YfInA^\SHH$L$DH;Sff/v
\^YD$X$H[fH$L$\YD$X$HUHH0H?D$UH=fHHHH*YH=H;s,Xff.QD$H0]YfDHEH}H6L$ HcT$(\D$L$ D$f(fW%f(T$(L$ f(D$YD$Xf/GHf(6ffW
	\f(f(ff.UHH D$L$Y
f.
f({qff.{_f(Hl$\$L$)L$\$l$f(f.wtQYf.wKQf(H ^]Duf(uHL$D$L$\$ff(f(L$%L$f(f(l$d$\$l$d$\$f(ZAWf(AVAUATUSHHHf/
D$f.
zuE1HHL[]A\A]A^A_fDD$fWE1
D$f.IL$H;SL$Yf/L$w@ff(f.>Qf(f(L$1-L$Y
/
X
/
D$0)
Yf(L$ \
#
\-f(
\=^

f(|$8XfI~XfI~^\fI~fDH;SH;f(\3T$ST$
D$f(fT\fIn^L$XD$ YXD$X2L$f/
tL,\$rfInf/0M_=Of/v
f/Gf(L$(D$fInL$(t$8D$D$ Y^XT$XT$ID$fI*YL$0\f\L$H*f.\Eńu3f.:D„u!L$T$WL$T$\f/}@D$f(D$ff.UHHf(f.\^{>ff.{,HT$T$YHH]ufuT$#T$ff.AWfAVH*AUIATIUSHH$t
H9r	$Me$AEf(\A}|$Pf/t$H#	L$PT$Yf(fD$HAEX\$AM(f(L$\$Y\$HH,fL$T$f.Im0f(\$h	Qf(Y	\$HY	%v-	\f(fTf.05d$PXf(t$(fD(D$AE8ffA(H*XXi	Xf(Am@$A\f(\$xA]P=	Y|$8^f(A}H\X!	fD(\$@A]Xf(\^f(YXYf(Yl$H\\$`^A]`Yf(XYfA(AXXL$pAMhAYf(D$AEpfA(^D^Xf(D$XAExfA(XD$ AMl$LH)H$fH;Sd$ H;Yd$Sd$f/d$f(Vf/d$"t$l$@fH*]\YT$0f(^XXD$8\X\$(fTS^\f/L$[L$T$0L,MI)LH?HL1H)H~#D$hYD$(fH*\f/fd$P^d$HI*YI94f(jf/$M)f/L$(MGH[]LA\A]A^A_Df.ADEf/d$Xwcd$0D$"^D$`XD$8!L,MSEJd$0\d$L$YYL$`d$0D$\$x^D$p\f(L,M9EL$d$0\d$X}YYL$pqfDHEI9IVf(ff(H*H^\YH9uIFH9HUff(H*H^\^H9uWf(^tt$hHXkHHf(XYXX^^XT$(YfH*^f(T$0\$t\$T$0f(f(\f/Xd$0f/IFfEfEL*HEfEL*LfL*$L)HH*fE(D$EYfA(fA(D$A^fE(D$AYEYfD(l$DYD$$D$D$~D$$D$fA(^D$QT$HD$$t$Yt$PAYf(^=5L$-H)f(f(D$D$^d$0D$DY$D$D$D$D$\f(^\IfD(^D\D^
6f(A\fEL*DX\$(DY$A^DEXfEM*AYDXf(A^A^AXfD(D\f(E^A\fD(A^D\f(E^A\fD(A^A^Xf(A^A^D\f(E^\A^A\fD(A^\A^D\f(E^\A^A\A^\^L$A^A^XXf/f($YT$\XL,~fDH,ffUH*f(fT\fVf(f(t$P\l$Hf(
f.Bhf/B]J8rz Hj0L$J@Yt$P5	$JH|$HL$8JPYt$(L$xJXL$@J`L$`Jh\$hL$pJpL$JxL$XL$ 
D$hT$L$T$L$Ff.AUIATIUSHH8D$t
H9rWd$-qfMeI*AE\AeAm f($l$0
$YBd$$L$f(AEfYYAeXX
f.Q-f(YXf/aH,Im0$H;S$1f/f(vp@HH9})$H;S$f/1f(HH9|Lf\H)HH*YT$YfH*YT$^f/wH8[]A\A]Ðf.Bf/Bz ZHj0|$9H81[]A\A]f(d$(\$ T$$
d$(T$-$\$ YXf/f(l$ d$$X
$d$l$ f(YXH,ff.Hf.|EurfUHH*f/rYf/rM]O\Yf/f(r&!IH]L)fD1D]Bf;IH]L)UHH$f(L$d\L$ff.P$f/\Yf.ff.H$d$XD$H$$ff(f.%QXD$YXH]D`HYfHH*X$Y;HfHnf.ff.{RHHX]Ð9HD$G@$Yf.%{kff.zufKfDH$$XD$f]HrXft$f(~
$f(UHH0$f(L$T$^vT$ff.
R<$f/\%f(Yf.ff.H\$ d$T$UXT$d$\$ D$(H\$ d$T$T$fd$\$ f(f.QXYXT$(@%0H\$Yd$f(\fd$\$HH*X$Yf.Yff.H\$d$od$\$f(X!f%l$YYf.{Dff.{2f(HT$T$XY$H0]^f(ufuHT$ T$X@KHD$(s@%$5Yf.{sff.f.fDH\$ d$T$Hzd$\$f(Xu\$d$D$f(\$ d$e\$ d$L$f(f.f(f(SHXf(H ^L$\$l$\$L$Y
f(YYYf(YXff.w\Q\YT$\$H;XT$S\$T$f(f(X^f/sY^f(H f([f(\$T$b\$T$f(UHH@D$8f(L$C;Kf/D$/f/D$s#|$f/
-ft$Yl$YXf.Qf(XL$f(Xf.JQ\T$f(f(X^f(YXXL$^L$0&f(^cXD$L$ \f/D$sH}UY<\$0H}f(YXXL$f(L$^\d$(YL$ UL$ f(\Y\f/D$\H}UD$D$(tf(`f/D$vfWXT$8
f(fTT$Xpt$T$\Wf/vfWH@]H}UX\5Y%H@]f^D$f.QD$HYD$
XD$8f/vXf/q\dD=f(|$|$^Xf|$D$0(ND$qf(L$ 4L$ f(f(l$f(hff.fSHH0D$ fWj5D$(H;Sf/D$ D$H;SYD$(T$f(fW$Yf/~f(T$\$\$D$f(L$^XL,MaT$ff.E„EH0L[f/ArA@HHH?D$\$PL$$f(f/vf(fDYHXf/wHÐHD$a~	T$$fWf(~$f(fWf(^f(fTf.v3H,ff(%IfUH*fTXfVf(f/CHsH,HDHf/Ir_H?D$\$APL$$f(f/f(vYHXf/wHfD$5~L$$fWf(~$f(fWf(l^f(fTf.w*f/JHtH,HH,ff(%fUH*fTXfVf(ff.AVSHH(\f(D$D$H;SH;D$S%~\d$fI~
c^L$f(D=f(pfTf.v;H,f=-H*f(fT\
7fUf(fVf/]5f/Kf(L$T$^XT$l$f(fInYf(\^Yf(\^f/H(H,[A^f.f(f(H8H\\T$H?L$D$(f(d$^l$ 4$P4$d$L$T$f/r;l$ \$(Yf(Yff.wPQXH8f(f(\
\fYYf.w*Q\H8f(f($[$f(f($B$f(1HATIIUHI	SHLHI	LHL	IIL	III	LH I	ĸH9wfDH;SD!H9r[]A\DH;SL!H9sH;SL!H9rf.ff.@AWAVAUATIUSHHttHHH?IIH9wqHEAEDjAME9v,D1AAA9sH}UAME9wI IHL[]A\A]A^A_@HEHEuQLbIHHI9v+L1HIIH9sfDH}UIHI9wHL$DHEH}L!I9rL$oDHEH}D!D9wL$ODЉI>@I0fDAWAVAUATAUSHteHGIH?AEu`JL$Dl$AME9v%1AAA9sI>AVAME9wI AHD[]A\A]A^A_@IFI>D!9rD$f.AfAWAVAUATUSHt$H\$PfA։IAMfAAEEF-DD$H?AUDD$A$3EAfA9v^AAƙAAf9r&ID3A$xA<$3AfA9v%uI}AUA$3AfA9wD$H[]A\A]A^A_+A$PA$D!f9s!uI}AUA$D!f9rfD$H[]A\A]A^A_fuDH?AUA$D$fH[]A\A]A^A_@+AxA9+A)ff.@AWAVAUATUSHt$H\$PA։IAMAAEE~H?AUA$3D@A8v^AEAƙAA8r#Ff3A$xDA<$3@A8v%uI}AUDA$3@A8wD$fH[]A\A]A^A_f+A$PA$D!@8s!uI}AUA$D!@8rD$H[]A\A]A^A_uDH?AUA$D$H[]A\A]A^A_D+AxA9+A)ff.@USHHl$ tAHL˅tmA)EH[]fDH?QEAWAVAUATIULSH(HL$HujH~OHHHfInLHHLHH9uHt$HHtLdH([]A\A]A^A_IHH9EH|$~DrE1Dt$D$fI}AUt$I9s$D$19s@I}AUI9wH LJLIL9|$uLf.HEE1HLrH|$H\$fI}AUIHHL9s-HD$1IHH9sI}AUIHH9wHLJDIL9|$ufH|$1fI}AULHDHH9\$ufDH|$n1f.I}AULHDHH9\$uBIII	LHI	LHI	LHI	LHI	LH I	H|$E1fDI}AUL!H9rLJDIL9|$uIII	LHI	LHI	LHI	LHI	H|$E1I}AUD!9wLJDIL9|$u[1OfAWAVAUATMUHSHt$H~pHAHHfnLHfpHLHH9uHH@t,t$HHHA4H9~HAtH9~AtH[]A\A]A^A_@IӃEDrE1Dt$\$H~f.I}AUt$I9v$D$19s@I}AUI9wH L$CIL9uH[]A\A]A^A_fIII	LHI	LHI	LHI	LHA	HE1I}AUD!9rD$CIL9uH[]A\A]A^A_ÐH1DI}AUD$AHH9uH[]A\A]A^A_1zAWAVAUATUSLHfHHAHCHfnLHfaHfpLʐHH9uHHt\Hxf4CHH9~KHxftH9~=HxftH9~/HxftH9~!HxftH9~Hft
H9}ftH[]A\A]A^A_DIAfHEH~DrII1H$A1D$ufI?AWfD9s@D$Af9s1t1fA9vI?AWȉfA9wۿHDfKH;$2t1뒐AHHH	HHH	HHH	HH	HM4I11t@1!fA9sI?AW!fA9rDHfSL9uH[]A\A]A^A_@HI,IHDfCH9mI?AWATfHSH9uP1DAWAVIAUATUSH@t$uVH~<H@HL[]A\A]A^A_@f@t$H@sH9uUH[]A\A]A^A_fDIEH~I,	DzLˉD$11Af.8I}AUDD8nD+D$EϙAA@8r<RDI}AUDA8.DA8tʃDAHHH	HHH	HH	HLM11#I}AU!A8sO!A8st!A8rT$HSI9uH[]A\A]A^A_fT$HSI9ufDHRLM11&|$HKL9 uI}HAU|$SL9uH~[t_AT1I1UI,	SL˅uI<$HAT$ƒSH9tHKH9u[]A\@HL)fAWI@IAVAUATUHSH(LD$HD$HTHFIIM1fHnZ@YL$LL5Lf/^L$I)HDMA\HH;\$AM^ff.E„-VfI*f/cL$LLL|=T\Yf(f/rbHLL$H)IHDMNH([]A\A]A^A_fD1$fL$I)DH~HD$L|H([]A\A]A^A_SHH HH8PHf(X\H8T$PT$f(X\
f(Yf(YXf/nsff.z
tf(L$T$\$5\$fT$YL$^f.wQYCYSH [L$T$L$T$SHH05ȐD$f/HH8PHD$H8Pf(\
|$T$f(fW\f/r9
Yf(\$^.\$f(f/zH0f([ \$ L$\^D$l$L$D$f(Y\f(
ۏ^T$\$ f(\f/H0f([ff(\%ttYd$(ff.MQ^t$fDCKD$fCHCYX3f/sf(HL$YH8YT$PL$f(YYY\f/wbL$ D$D$%\d$f(L$ f(XHYD$(YYXf/D$L$(YL$H0[f(@Hff(D$YX>f/5"DGu	4@GGHGff.HHH8Pf(ύ\fWHÐf.{&ff.{uffuHHH8Pf(m\\fWHff.@Hf.<{Bff.{ L$ML$HYfDufHYfuHL$H8Pf(ی\L$fWHYHHD$H8P\f(fW^D$\uHf(ff.z
uHHL$H8Pf(1\ L$fWjH^f(fHHD$H8P
݋f(\f(HfHnfHn^L$H\f(HY<f.{*ff.{HXfufHDuHH8Pf(A\0fWHXff.@HHH?D$PfWU Yhff.wQYD$HUfHf(Hf.Nf/HH}T$$YxfT$$HH*XY
f.Uff.if(H$X$f(Xf($$tHf(]f\Yf.Rff.f(H$$f(X؋EUEHEff.QXH]YXf(Yf.Jff.f(HRHf(]Xf(Ff[HL$$L$$f(RffsHEH8Pf(\fW$Xf(fHE$H8Pf(g\VfW$f(X@f-fHH8Pf(
\fWTf(Xf(T$$T$$f(Jff.@UfHH0f.$L$%4$f/d$"H}T$ D$YQfT$ HH*X$YD$f.D$8ff.HT$ <T$ f(Xf(L$ L$ t
D$YYD$f.D$9ff.HL$L$XY$H0]^f(\,\$f(Yf.ff.HT$ pT$ f(X؋EMEHEff.QXYX7fFK5-҅Yt$l$f.`ff.BHf(XDHEL$H8Pf(D$\_fWL$XfHT$(\$ LT$(\$ f(fHEH8Pf(D$\fW%T$ f(XfNHET$ H8Pf(D$\T$ f(fW
f(X6ftHH8Pf(D$\.f(fW
X<f(\$(L$ \$(L$ f(ff.@Sf(f(HXf(H G^WGHGY
f(YYYf(YXff.Q\H\$H8YXT$P\$T$f(f(X^f/sY^f(H f([fDL$\$d$)L$\$d$f(9f(\$T$d$\$T$d$f(9Gf(Ѕt%GGHGYXf(@HL$$L$$HYXf(HGf(Ѕt1GGHGYHXf((L$$ L$$Uf(HH GgGHGY
ef.
ff.f(H\$d$L$L$d$\$f(f.QYf.Qf(H ^]D$ML$f(YfDqf(@SHEd$L$H8Pf(؀\L$d$ff(fWSf(L$wL$f(Kf(\$T$d$M\$T$d$f(fSHHHf(f.\^{>ff.{,HT$FT$YH;H[ufuHT$H8PHfHn\f(T$fWfDUHHWt9OGHGHL$L$H]^f(Ef(ȅtEEHEH^]f(fDAVUHSH %D$f/L$f/DHEH8PHEfI~H8P
~^L$fH~fIn
~^L$$fHnX$=~f/rf/d$H []^A^f(fDT$f.b~T$ff.D$Hbf(\$f.(~T$ff.D$H$#$XH []A^^f(fvHEH8Pf(}\\$f.}f(fW
qkHE$H8Pf(r}\a$fWa<fKfffInf(fHn^L$$$f(^T$T$f(_\\$f(L$\$T$$\f(X$L$H []\A^f(@UHH($Yf.g|f(ff.{sHL$mL$f(XYY
f.
#|ff.{;f(HT$)T$XY$H]^f(@ufufeHL$H8Pf({\L$f(fWXL]HET$H8Pf(^{\MfWT$XGfDHHD$H8Pf({\fW`YD$HDfUHH*f/rYf/rS]Dz\Yf/f(rIH]L)fDIH]L)]
f.AWAVAUIATUHSHHhHT$PH
E1HHhL[]A\A]A^A_L$MI)H9fH*fI~ffIn\$WfDH;L$SfL$I*f(If(^XL$H,fH*\M9tf/L$wfIn\L,L)L;l$PLO>H9fL$HHNfMHMfI)H*I9HD$8LI*LOfIH*fI*L)|$f(^f(YXD$fH*ID$Y%x\YfH*Y^Xtf.!f(Qf(IGfIYT$0M)XL$(\$XD$ fH*HD$8HH*YfI*^RL,fID$H*誥HD$8D$fL)HH*芥L\$L)HXfHH*\$_XD$KD&Lt$@D$fH*;d$L9|$8L$(T$0Xd$HY
$D$w%XvwXf(fTf.]T$0fDH;SH;D$SL$|$\ڿYD$ ^XD$f/wf/D$0sML,fID$M)H*aHD$8D$(fL)HH*Ad$(IFXfH*d$(XD$(HD$@JD D$(fH*XD$(T$HL$\U\Y\f/s=f(T$\Yf/5vf(T$Xf/L;l$PMOM)L9MOffH*fI~DH,f5ufUH*f(fT\fVf(H\$Xf(T$ \$`T$ \$f(ff.[ff.ff.f/IrfDHH?D$APfWo:L$$t\$^f(HH,f[ff.SHH@D$8f(L$ wtf/D$ o|$ f/gtfl$D$^XD$0,f(^+XD$L$\f/D$s}H;SYp\$0H;f(YXXL$f(L$ ^\d$(YL$SL$f(\Y\f/D$^H;SD$D$(?f(+f/D$vfWýXT$8
uf(fTysT$X;v|$T$\"f/w,H@[fDH;SX\sYH@[fWHH@[f
м-rft$Yl$YXf.w[Qf(XL$f(Xf.wTQ\T$ f(f(X^f(YXXL$^L$0@f(*|$f(f(L$L$f(SHH05rD$ \f(D$(H;Sf/D$ D$H;SYD$(qT$\f(Yf/r~f(T$\$\$D$f(L$^zqXyL,MaT$ff.E„EH0L[f/ArAHH%.200s() keywords must be strings%s() got an unexpected keyword argument '%U' while calling a Python objectNULL result without error in PyObject_Call__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)value too large to convert to int%.200s does not export expected C variable %.200sC variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)%.200s does not export expected C function %.200sC function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)Interpreter change detected - this module can only be loaded into one interpreter per process.too many values to unpack (expected %zd)%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectinvalid vtable found for imported typeCannot convert %.200s to %.200scalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseException'%.200s' object is unsliceable%s() got multiple values for keyword argument '%U'numpy/random/mtrand.cpython-312-x86_64-linux-gnu.so.p/numpy/random/mtrand.pyx.cnumpy.random.mtrand.RandomState.rayleigh%.200s() takes %.8s %zd positional argument%.1s (%zd given)numpy.random.mtrand.RandomState.lognormalnumpy.random.mtrand.RandomState.laplacenumpy.random.mtrand.RandomState.standard_cauchynumpy.random.mtrand.RandomState.noncentral_fnumpy.random.mtrand.RandomState.gammanumpy.random.mtrand.RandomState.standard_normalnumpy.random.mtrand.RandomState.standard_exponentialnumpy.random.mtrand.RandomState.exponentialnumpy.random.mtrand.RandomState.randomnumpy.random.mtrand.RandomState.random_samplenumpy.random.mtrand.RandomState.__setstate__numpy.random.mtrand.RandomState.__getstate__numpy.random.mtrand.RandomState.__str__numpy.random.mtrand.RandomState._initialize_bit_generatornumpy.random.mtrand.RandomState.noncentral_chisquarenumpy.random.mtrand.RandomState.fnumpy.random.mtrand.RandomState.waldnumpy.random.mtrand.RandomState.vonmisesnumpy.random.mtrand.RandomState.betacannot fit '%.200s' into an index-sized integer'%.200s' object is not subscriptableneed more than %zd value%.1s to unpacknumpy.random.mtrand.RandomState.__reduce__numpy.random.mtrand.RandomState.randnnumpy.random.mtrand.RandomState.randnumpy.random.mtrand.RandomState.__repr__numpy.random.mtrand.RandomState.set_statenumpy.random.mtrand.RandomState.paretonumpy.random.mtrand.RandomState.standard_gammanumpy.random.mtrand.RandomState.standard_tnumpy.random.mtrand.RandomState.powernumpy.random.mtrand.RandomState.weibullnumpy.random.mtrand.RandomState.chisquarenumpy.random.mtrand.RandomState.shufflejoin() result is too long for a Python stringModule 'mtrand' has already been imported. Re-initialisation is not supported.compile time Python version %d.%d of module '%.100s' %s runtime version %d.%dbase class '%.200s' is not a heap typeextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base typemultiple bases have vtable conflict: '%.200s' and '%.200s'numpy.random._bounded_integersPyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)int (double, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)int (PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)PyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *)PyObject *(PyObject *, PyArrayObject *)PyObject *(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)PyObject *(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)PyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)_ARRAY_API is not PyCapsule objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule compiled against API version 0x%x but this version of numpy is 0x%x . Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem .FATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtimenumpy.random.mtrand.get_bit_generatornumpy.random.mtrand.set_bit_generatornumpy.random.mtrand.int64_to_longnumpy.random.mtrand.RandomState.logseriesnumpy.random.mtrand.RandomState.geometricnumpy.random.mtrand.RandomState.zipfnumpy.random.mtrand.RandomState.poissonnumpy.random.mtrand.RandomState.negative_binomialnumpy.random.mtrand.RandomState.seednumpy.random.mtrand.RandomState.tomaxintnumpy.random.mtrand.RandomState.__init__hasattr(): attribute name must be stringnumpy.random.mtrand.RandomState.random_integersnumpy.random.mtrand.RandomState.get_statenumpy.random.mtrand.RandomState.multivariate_normalnumpy.random.mtrand.RandomState.uniformnumpy.random.mtrand.RandomState.dirichletnumpy.random.mtrand.RandomState.bytesnumpy.random.mtrand.RandomState.choice'%.200s' object does not support slice %.10snumpy.random.mtrand.RandomState.hypergeometricnumpy.random.mtrand.RandomState.triangularnumpy.random.mtrand.RandomState.permutationnumpy.random.mtrand.RandomState.normalnumpy.random.mtrand.RandomState.multinomialnumpy.random.mtrand.RandomState.logisticnumpy.random.mtrand.RandomState.gumbelnumpy.random.mtrand.RandomState.randintnumpy.random.mtrand.RandomState.binomialnumpy.random.mtrand.RandomState
    RandomState(seed=None)

    Container for the slow Mersenne Twister pseudo-random number generator.
    Consider using a different BitGenerator with the Generator container
    instead.

    `RandomState` and `Generator` expose a number of methods for generating
    random numbers drawn from a variety of probability distributions. In
    addition to the distribution-specific arguments, each method takes a
    keyword argument `size` that defaults to ``None``. If `size` is ``None``,
    then a single value is generated and returned. If `size` is an integer,
    then a 1-D array filled with generated values is returned. If `size` is a
    tuple, then an array with that shape is filled and returned.

    **Compatibility Guarantee**

    A fixed bit generator using a fixed seed and a fixed series of calls to
    'RandomState' methods using the same parameters will always produce the
    same results up to roundoff error except when the values were incorrect.
    `RandomState` is effectively frozen and will only receive updates that
    are required by changes in the internals of Numpy. More substantial
    changes, including algorithmic improvements, are reserved for
    `Generator`.

    Parameters
    ----------
    seed : {None, int, array_like, BitGenerator}, optional
        Random seed used to initialize the pseudo-random number generator or
        an instantized BitGenerator.  If an integer or array, used as a seed for
        the MT19937 BitGenerator. Values can be any integer between 0 and
        2**32 - 1 inclusive, an array (or other sequence) of such integers,
        or ``None`` (the default).  If `seed` is ``None``, then the `MT19937`
        BitGenerator is initialized by reading data from ``/dev/urandom``
        (or the Windows analogue) if available or seed from the clock
        otherwise.

    Notes
    -----
    The Python stdlib module "random" also contains a Mersenne Twister
    pseudo-random number generator with a number of methods that are similar
    to the ones available in `RandomState`. `RandomState`, besides being
    NumPy-aware, has the advantage that it provides a much larger number
    of probability distributions to choose from.

    See Also
    --------
    Generator
    MT19937
    numpy.random.BitGenerator

    an integer is required__pyx_capi__name__loader__loader__file__origin__package__parent__path__submodule_search_locationsMissing type objectcannot import name %S%s (%s:%d)at leastat mostrayleighnumpy/random/mtrand.pyxlognormallaplacestandard_cauchynoncentral_fstandard_normalstandard_exponentialrandomrandom_sample__setstate__exactly__getstate__BitGeneratornoncentral_chisquarewaldvonmisesbeta__reduce__randnset_stateparetostandard_gammastandard_tpowerweibullname '%U' is not definedshufflebuiltinscython_runtime__builtins__does not match4294967296complexnumpydtypeflatiterbroadcastndarraygenericnumberunsignedintegerinexactcomplexfloatingflexiblecharacterufuncnumpy.random.bit_generatorSeedSequenceSeedlessSequencenumpy.random._commondoubleLEGACY_POISSON_LAM_MAXuint64_tMAXSIZE_rand_uint64_rand_uint32_rand_uint16_rand_uint8_rand_bool_rand_int64_rand_int32_rand_int16_rand_int8check_constraintcheck_array_constraintdouble (double *, npy_intp)kahan_sumdouble_fillvalidate_output_shapecontdisccont_broadcast_3discrete_broadcast_iiinumpy.core._multiarray_umath_ARRAY_API_ARRAY_API is NULL pointernumpy/__init__.cython-30.pxdnumpy.import_arrayinit numpy.random.mtrandnumpy.random.mtrand.ranfnumpy.random.mtrand.sampleset_bit_generatorlogserieszipfpoissonnegative_binomialtomaxint__init__numpy.random.mtrand.seedrandom_integersget_statemultivariate_normaluniformdirichletbytesassignmentdeletionchoicehypergeometrictriangularpermutationmultinomiallogisticgumbelrandintnumpy.PyArray_MultiIterNew2numpy.PyArray_MultiIterNew3__repr__get_bit_generatorbYP&-&&&&&'3'h''Ĉ&}}}Ȫؠ|
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    
    Sets the singleton RandomState's bit generator

    Parameters
    ----------
    bitgen
        A bit generator instance

    Notes
    -----
    The singleton RandomState provides the random variate generators in the
    ``numpy.random``namespace. This function, and its counterpart get method,
    provides a path to hot-swap the default MT19937 bit generator with a
    user provided alternative. These function are intended to provide
    a continuous path where a single underlying bit generator can be
    used both with an instance of ``Generator`` and with the singleton
    instance of RandomState.

    See Also
    --------
    get_bit_generator
    numpy.random.Generator
    
    Returns the singleton RandomState's bit generator

    Returns
    -------
    BitGenerator
        The bit generator that underlies the singleton RandomState instance

    Notes
    -----
    The singleton RandomState provides the random variate generators in the
    ``numpy.random`` namespace. This function, and its counterpart set method,
    provides a path to hot-swap the default MT19937 bit generator with a
    user provided alternative. These function are intended to provide
    a continuous path where a single underlying bit generator can be
    used both with an instance of ``Generator`` and with the singleton
    instance of RandomState.

    See Also
    --------
    set_bit_generator
    numpy.random.Generator
    
    seed(seed=None)

    Reseed the singleton RandomState instance.

    Notes
    -----
    This is a convenience, legacy function that exists to support
    older code that uses the singleton RandomState. Best practice
    is to use a dedicated ``Generator`` instance rather than
    the random variate generation methods exposed directly in
    the random module.

    See Also
    --------
    numpy.random.Generator
    
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the
            `~numpy.random.Generator.permutation`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        random.Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the `~numpy.random.Generator.shuffle`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        random.Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the `~numpy.random.Generator.dirichlet`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        random.Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the `~numpy.random.Generator.multinomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.multivariate_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = np.random.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        .. note::
            New code should use the `~numpy.random.Generator.logseries`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the
            `~numpy.random.Generator.hypergeometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the `~numpy.random.Generator.geometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        random.Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the `~numpy.random.Generator.zipf`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.zipf(a, n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the `~numpy.random.Generator.poisson`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        random.Generator.poisson: which should be used for new code.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the
            `~numpy.random.Generator.negative_binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        See Also
        --------
        random.Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the `~numpy.random.Generator.binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the `~numpy.random.Generator.triangular`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        random.Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the `~numpy.random.Generator.wald`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        random.Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the `~numpy.random.Generator.rayleigh`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        random.Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the `~numpy.random.Generator.lognormal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        random.Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the `~numpy.random.Generator.logistic`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the `~numpy.random.Generator.gumbel`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        random.Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the `~numpy.random.Generator.laplace`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        random.Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the `~numpy.random.Generator.power`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        See Also
        --------
        random.Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the `~numpy.random.Generator.weibull`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        random.Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the `~numpy.random.Generator.pareto`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the `~numpy.random.Generator.vonmises`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the `~numpy.random.Generator.standard_t`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        random.Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_cauchy`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        random.Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        random.Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the `~numpy.random.Generator.chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        random.Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        random.Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the `~numpy.random.Generator.f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the `~numpy.random.Generator.gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        random_integers(low, high=None, size=None)

        Random integers of type `np.int_` between `low` and `high`, inclusive.

        Return random integers of type `np.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `np.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use::

            sigma * np.random.randn(...) + mu

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the `~numpy.random.Generator.uniform`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The high limit may be included in the 
            returned array of floats due to floating-point rounding in the 
            equation ``low + (high-low) * random_sample()``.  The default value 
            is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        random.Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        5.0


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. versionadded:: 1.7.0

        .. note::
            New code should use the `~numpy.random.Generator.choice`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if it were ``np.arange(a)``
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        random.Generator.choice: which should be used in new code

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the `~numpy.random.Generator.bytes`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        See Also
        --------
        random.Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        b' eh\x85\x022SZ\xbf\xa4' #random
        
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the `~numpy.random.Generator.integers`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        random.Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo(np.int_).max``]. The `np.int_` type translates to the C long
        integer type and its precision is platform dependent.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        random.Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        See Also
        --------
        random.Generator.exponential: which should be used for new code.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution.  It has the probability
        distribution function

        .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                         (1 - x)^{\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                                     (1 - t)^{\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        .. note::
            New code should use the `~numpy.random.Generator.beta`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.


        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        See Also
        --------
        random.Generator.beta: which should be used for new code.
        
        random(size=None)

        Return random floats in the half-open interval [0.0, 1.0). Alias for
        `random_sample` to ease forward-porting to the new random API.
        
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the `~numpy.random.Generator.random`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        random.Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        
        set_state(state)

        Set the internal state of the generator from a tuple.

        For use if one has reason to manually (re-)set the internal state of
        the bit generator used by the RandomState instance. By default,
        RandomState uses the "Mersenne Twister"[1]_ pseudo-random number
        generating algorithm.

        Parameters
        ----------
        state : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            The `state` tuple has the following items:

            1. the string 'MT19937', specifying the Mersenne Twister algorithm.
            2. a 1-D array of 624 unsigned integers ``keys``.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If state is a dictionary, it is directly set using the BitGenerators
            `state` property.

        Returns
        -------
        out : None
            Returns 'None' on success.

        See Also
        --------
        get_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        For backwards compatibility, the form (str, array of 624 uints, int) is
        also accepted although it is missing some information about the cached
        Gaussian value: ``state = ('MT19937', keys, pos)``.

        References
        ----------
        .. [1] M. Matsumoto and T. Nishimura, "Mersenne Twister: A
           623-dimensionally equidistributed uniform pseudorandom number
           generator," *ACM Trans. on Modeling and Computer Simulation*,
           Vol. 8, No. 1, pp. 3-30, Jan. 1998.

        
        get_state(legacy=True)

        Return a tuple representing the internal state of the generator.

        For more details, see `set_state`.

        Parameters
        ----------
        legacy : bool, optional
            Flag indicating to return a legacy tuple state when the BitGenerator
            is MT19937, instead of a dict. Raises ValueError if the underlying
            bit generator is not an instance of MT19937.

        Returns
        -------
        out : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            If legacy is True, the returned tuple has the following items:

            1. the string 'MT19937'.
            2. a 1-D array of 624 unsigned integer keys.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If `legacy` is False, or the BitGenerator is not MT19937, then
            state is returned as a dictionary.

        See Also
        --------
        set_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        
        seed(seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        This function is deprecated. Please call randint({low}, {high} + 1) insteadx must be an integer or at least 1-dimensionalprobabilities are not non-negativenumpy.core.umath failed to importmean and cov must have same lengthlegacy can only be True when the underlyign bitgenerator is an instance of MT19937.get_state and legacy can only be used with the MT19937 BitGenerator. To silence this warning, set `legacy` to False.covariance is not symmetric positive-semidefinite.cov must be 2 dimensional and squarecheck_valid must equal 'warn', 'raise', or 'ignore'can only re-seed a MT19937 BitGeneratora must be 1-dimensional or an integerThis function is deprecated. Please call randint(1, {low} + 1) insteadShuffling a one dimensional array subclass containing objects gives incorrect results for most array subclasses.  Please use the new random number API instead: https://numpy.org/doc/stable/reference/random/index.html
The new API fixes this issue. This version will not be fixed due to stability guarantees of the API.RandomState.triangular (line 3244)RandomState.standard_t (line 2150)RandomState.standard_normal (line 1385)RandomState.standard_exponential (line 577)RandomState.standard_cauchy (line 2075)RandomState.random_sample (line 385)RandomState.random_integers (line 1289)RandomState.permutation (line 4668)RandomState.noncentral_f (line 1823)RandomState.noncentral_chisquare (line 1986)RandomState.negative_binomial (line 3505)RandomState.multinomial (line 4257)RandomState.exponential (line 500)Providing a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.
In future version, providing byteorder will raise a ValueErrorNegative dimensions are not allowedInvalid bit generator. The bit generator must be instantized.Fewer non-zero entries in p than sizeCannot take a larger sample than population when 'replace=False'
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the `~numpy.random.Generator.zipf`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.zipf(a, n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the `~numpy.random.Generator.weibull`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        random.Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the `~numpy.random.Generator.vonmises`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the `~numpy.random.Generator.uniform`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The high limit may be included in the 
            returned array of floats due to floating-point rounding in the 
            equation ``low + (high-low) * random_sample()``.  The default value 
            is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        random.Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        5.0


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the `~numpy.random.Generator.triangular`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        random.Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo(np.int_).max``]. The `np.int_` type translates to the C long
        integer type and its precision is platform dependent.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        sum(pvals[:-1].astype(np.float64)) > 1.0. The pvals array is cast to 64-bit floating point prior to checking the sum. Precision changes when casting may cause problems even if the sum of the original pvals is valid.state must be a dict or a tuple.
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the `~numpy.random.Generator.standard_t`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        random.Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        set_state can only be used with legacy MT19937 state instances.
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the `~numpy.random.Generator.rayleigh`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        random.Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        
        random_integers(low, high=None, size=None)

        Random integers of type `np.int_` between `low` and `high`, inclusive.

        Return random integers of type `np.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `np.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the `~numpy.random.Generator.integers`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        random.Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the `~numpy.random.Generator.power`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        See Also
        --------
        random.Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the `~numpy.random.Generator.pareto`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        numpy.core.multiarray failed to import
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        random.Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        random.Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the
            `~numpy.random.Generator.negative_binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        See Also
        --------
        random.Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.multivariate_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = np.random.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the `~numpy.random.Generator.multinomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        .. note::
            New code should use the `~numpy.random.Generator.logseries`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the `~numpy.random.Generator.lognormal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        random.Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the `~numpy.random.Generator.logistic`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the
            `~numpy.random.Generator.hypergeometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the `~numpy.random.Generator.gumbel`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        random.Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the `~numpy.random.Generator.geometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        random.Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the `~numpy.random.Generator.gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the `~numpy.random.Generator.f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        See Also
        --------
        random.Generator.exponential: which should be used for new code.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. versionadded:: 1.7.0

        .. note::
            New code should use the `~numpy.random.Generator.choice`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if it were ``np.arange(a)``
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        random.Generator.choice: which should be used in new code

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the `~numpy.random.Generator.chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        random.Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the `~numpy.random.Generator.bytes`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        See Also
        --------
        random.Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        b' eh\x85\x022SZ\xbf\xa4' #random
        
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the `~numpy.random.Generator.binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        a must be greater than 0 unless no samples are taken'a' cannot be empty unless no samples are takenUnsupported dtype %r for randintRandomState.standard_gamma (line 1563)RandomState.multivariate_normal (line 4058)RandomState.logseries (line 3969)RandomState.lognormal (line 2974)RandomState.hypergeometric (line 3834)RandomState.geometric (line 3772)RandomState.dirichlet (line 4394)RandomState.chisquare (line 1910)
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the `~numpy.random.Generator.wald`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        random.Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        random.Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_cauchy`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        random.Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the `~numpy.random.Generator.shuffle`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        random.Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        
        seed(seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the `~numpy.random.Generator.random`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        random.Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use::

            sigma * np.random.randn(...) + mu

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the `~numpy.random.Generator.poisson`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        random.Generator.poisson: which should be used for new code.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the
            `~numpy.random.Generator.permutation`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        random.Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        ' object which is not a subclass of 'Sequence'; `shuffle` is not guaranteed to behave correctly. E.g., non-numpy array/tensor objects with view semantics may contain duplicates after shuffling.
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the `~numpy.random.Generator.laplace`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        random.Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the `~numpy.random.Generator.dirichlet`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        random.Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        RandomState.vonmises (line 2265)RandomState.rayleigh (line 3090)RandomState.logistic (line 2888)RandomState.binomial (line 3353)state dictionary is not valid.probabilities do not sum to 1RandomState.weibull (line 2457)RandomState.uniform (line 1050)RandomState.tomaxint (line 621)RandomState.shuffle (line 4543)RandomState.poisson (line 3593)RandomState.laplace (line 2670)pvals must be a 1-d sequenceRandomState.randint (line 679)RandomState.pareto (line 2354)RandomState.normal (line 1454)RandomState.gumbel (line 2764)'a' and 'p' must have same sizeRandomState.randn (line 1221)RandomState.power (line 2561)RandomState.gamma (line 1645)RandomState.choice (line 841)mean must be 1 dimensionalRange exceeds valid boundsRandomState.zipf (line 3676)RandomState.wald (line 3167)RandomState.rand (line 1177)RandomState.bytes (line 805)probabilities contain NaNRandomState.seed (line 228)'p' must be 1-dimensionalnumpy/random/mtrand.pyxa must be 1-dimensionalRandomState.f (line 1729)standard_exponentialnoncentral_chisquareyou are shuffling a 'numpy.random.mtrandmultivariate_normalngood + nbad < nsamplecline_in_tracebackarray is read-onlyDeprecationWarningset_bit_generatornegative_binomialget_bit_generator__randomstate_ctormay_share_memorysum(pvals[:-1]) > 1.0standard_normalstandard_cauchyrandom_integers_poisson_lam_maxcollections.abc_bit_generatorstandard_gamma_legacy_seedinghypergeometricRuntimeWarningrandom_samplecount_nonzero__class_getitem__bit_generatorOverflowErrorsearchsortedreturn_indexnumpy.linalgnoncentral_fnewbyteorder_initializingpermutationmultinomialexponentialcheck_validUserWarningRandomStateImportErrortriangularstandard_tstacklevel__pyx_vtable__mode > rightlogical_orless_equalleft == rightissubdtypeempty_likeValueErrorIndexErrorwriteablesingletonset_statelogserieslognormalleft > modeisenabledhas_gaussget_stategeometricdirichletchisquareTypeErrorMT19937warningsvonmisessubtractreversedreducerayleighoperatorlogisticitemsizeisscalarisnativeisfinitebinomialallcloseSequenceweibulluniformtobytesstridesshufflereshapereplacerandintpoissonnsample_mt19937laplacegreaterfloat64disablecastingcapsulebg_type at 0x{:X}asarrayalpha <= 0_MT19937unsafeuniqueuint64uint32uint16sample__reduce__random_rand_pickleparetoobject_normallengthlegacykwargs__import__ignoregumbelformatenabledoublecumsumchoicebitgenastypearangezerosuint8statesigmashapescalerightravelrangerandnraisepvalspowernumpyngoodkappaisnanint64int32int16indexgaussgammaflagsfinfoequal__enter__emptydtypedfnumdfden__class__bytesarrayalpha__all__zipfwarnwaldtype__test__takesqrt__spec__sortsizesideseedrtolranfrandprodnoncndimnbad__name__modemean__main__locklessleftitemintpint8high__exit__copybool_betaatolargstolsvdsum__str__poslowloclamkeygetepsdotcovanyalladd?*<u4npmuidgcdf.)(xpnlfbaT@?:0yE>qh???/*p?3f?(_?xY?յS?N?J?F?DB?Qt??u+<?
9?6??3?n0?-?d+?(?6&?XS$?"?Y??m????i+?q\?V??(
?s~?>	?A?Į?"?ʝ?G??i>l>7>>*J>>>^>>F>>7P>>K{>>>u>;->>>|>eO>4(>8>L>N>ȿ>>>>·>ε>߳>>>0>U>~>|>ަ>Y>IP>w>ҟ>B>e>)>~>_>>C>{>>J>﷍>X(>'>N>Í>x>b>x>>!>^}>;z>Хw>@t>wr>b<o>yl>i>g>Sd>3a>^>]\>&Y>z)W>T>P	R>O>L>5~J>3H>E>nC>@>VK>>;>9>07>4>2>>0>p->+>s)>7'>%>"> >s>L>*>=>T>T>4>>y
>ϣ>	>>L>>l>=+==0
=C==8==hp==0==
=n==|===;=ں=Z=o,=ް=ߗ=.W===%==r=W=	C=4=M,=4*=D.=y8=H=~=x=<s=rm=g=Ub=\=MW=
Q=TvL=G=AA=<=X7=/2=-=(=Y"===9=e=
==5='<t<<<7<8S<C<<\<I<
<<Oޑ<+<"<t<ɵe<V<SH<9<t+<ƅ<O<w<;O;$;ԟ;9;b;H6;];]:X}:9e'52V227222f23ن33H3(&3o.3z63oN>3E3lM3FT3/[3b3i34p3fw3&~3[3B3ψ3g37!3>3T3d3n3r3Fq3j3_31P3r<3$3k	33ȸ3q3|{3P3#3C333dY3"3+3®3r35333x37333p3-33731b33l44(44h4C44
4`4M47 44?4nB44L4i4a4T044542`44p. 4!4"4i$4%4@'4t(4>*4+4,4j.4/4'P1424):4454&)7484c:4;4$=4+>4@4A4KC4vD4B(F4G4:I4J4rTL4M4GuO4Q4R44T4U4EiW4Y4 Z4G\4]4_4:a4b4d4Bf4\g4ji4bk4m4n4p4\r4}"t4Yu4Hw4[y4X{46.}4 4q4a4]S4F4N<434,4+(4{%4$4o&4,*4'04m84
C4P4_4q474{4w4>ԕ44s4<4d444$4(4a44lߢ4$4l44x
4_444{4 4EP4±4{:4귴4);4nķ4S444<*4տ44A4.44ע44f4RW4R4*Y4Fk44δ444444g44k4<444y44u4_45555@5ó
55]5^555q5v
5!5%5V*5s/5;S55:<5D5NO5^5Nv5QHqoMֻanjDotTrotou$w'xx,jyy7\z׻z{W{S{{.|3|]|ȃ|||I||}C0}F}Z}m}}S}(}}-}}"}}|}M}~i
~~~B(~o0~C8~?~F~M~T~Z~a~f~l~r~]w~v|~`~ ~~$~m~~~w~:~ަ~f~ѭ~#~Z~y~~q~K~~~^~~a~~~`~~~~~~~~f~*~~~-~~J~~=~~~\~~~$~U~}~~~~~pH`		i
	6H

A!B+m5XttW3	`wK\
L
s


G	{V~~~d~~x~~K~~~~~~~~~)~~~a~~~{~;~~A~~~m~~z~~~"~k~]~~~ԃ~|~s~j~Ua~W~K~?~2~$~~~
}}}	}}i}A}}|Q|D|{3N{zeyww7ms?7E?P?'{{?*!?bv?mU?9U1T?/v?x]?&1$-?~	n?cK[!?I?\Omg?f?uLi=?sڂl?x?Qf?ij?%ᨯC?+?Dܻ?z?cE#;?^E#?$O?2m?P"K?>?{s?%;?omo?3;?J9?++?*T[?};1s?HeC?$`?vE!=?ſ-r?MBц?K=?Q}6Ei?7u?!?z}k?~?@?`x?*?8?Qi?oTC?_(4?ָ?@je?!u v?7Zi?{	?I?]T?9]??}?8aD:?Yζi?Ɲҷ?r^sSw?ꍰ07?d>[?%۹?
Ə{?'HB>?vX#?l1&?:l?磽!O?ލ?&?ڋ?タ+	j?A1?N0Z?0H?}G?(V?5$1!?pB9 ?b"FS?)vEW(?vG}rO?~/?	{^?Z??ބS?i"?lR?3Sn?>N?Ґ]b?,|y2?jG>?TLҫ?~>\O??@YH?/֎@?9O"H?>?1 7?8?Ox?]4?5D9g?r|?>ܸ$8?[B/?I<Kܒ?\*A??#>䠟?O?y%d?bPޱ?c?PR?j?F}?9(Q1?c?(ڦ^w?0U^Q?1j?T	ξ?x.BTv?Imb.?<X?0?-ɰY?j8?w?Ք&?BE?n}g?4
?@`r*{?x{8?e=?f1 o?xyt?/q 3? ?/T{i?Pu?nz6?˦?fu?<Ã?̹F?az??M?Wk[?..?&qW?He5TF?eTeCӺ?8=]a?(FM?pk3G?t刯?;SZ?;,`4?׀sǷ?<W[?H? 0܍?\?>?6YJ?)ِ?\C}?%d?w?SN?эv?pa?,Q&?@oű?SuFe?PV?;?I?viׯ?4D?.g?X1Iα?Jy?!dJ?پz?j»?8G;?L|{ʎ?mwn?k9:9??Ry?A&E?U?Ŗ<?k&_?G??~#?V#?_?S?Q|z?
Y&?$?htQz?3Tݜ?pXP?N梚?H*g?gS(u?1c?w@rT?Q=I?QA?]1%<?2:;?__rTE>?	RD?lj?W'n?-BU؊?h?t4?n?boQ?qvi?_)N?]tQW}?6H#z? 67w?"Ηs?C@Wi=q?ḰXl?f?$ka?%>T+Y?
O?K2=?]d<A]X`<+M[Ij<[5q<s*J"u<zPx<̷y8{<m}<<\I;<p$p<3&ڐ<n=<!ń<Jͅ<+@φ<ɇ<o`TY<7"U<R]ȗ<ģݥ}<?{_<6|M=<Zsxf<O_<	2h]ď<XujvK<GH<I<K<I>&<.8eG<h#ឪ<K&<mm<b!SΓ<Hgp(.<5_\<k<Mox)J<=<.ǘ<hm-a<DbS<yy<sy#nt<r~|oϗ<S*<+/w<*Pޘ<DS8<8Bޑ<u,<JBD<aҖS%<$D<Ly_N<?<Y<pW<Z+<<k^<WBju<1|<Dσe<bA<<W+Fl<eß<<
<b
]9<vre<rK㐠<7q<f/z |<9R<}po0@<wl<#=	<R=ġ<ĩ<'<)³MH<;t<͋tɠ<];d!͢<!<v|
&<R<F<L<m3أ<	O<lF2<lq_<ă<<k<E<ف<,gC<'o1Aq<Nk=<5[ͥ<&V<.s*<\X<E<<~ <Y$<PS<aC<0w1s<
$v䢧<}kҧ<wr<*ߺ3<aYc<T.<`HŨ<<s\'<5X<@9<]}<Qܨ<-YЊ!<V5S<2<ze<ʝ(<n <B%T<O2{<&x<-@<-BNS'<ꂲ\<##_<l\Ȭ<q탫<0AM5<Cl<
S<5J7ۭ<P&7<R|K<#O<xvJk<h[<n0<^Qk<ƥ<	
<z7<94,<$kJ<&h<:ω<3s<oŰ<P<f<Jj$<+:oD<ąEe<o< x
<Z*xaȱ<p3<<POR3.<;@P<as<+SB<QE<p-|޲<eY&Y<Ч*'<e;L<Vr<CQ4<zD<ޭ</<B3<,[<2Ә<L]<'{0״<O<q+<Z1W<aDL<8a<dܵ<y
<.{$U8<2`Og<HJ<{/eǶ<%<\}*<q<]<qkҐ<v}Gŷ<n<þ,0<Bsh9h<[i΅<6;ٸ<DuZ<*4O<Ќ<$:ʹ<xI>V
<;LC%K<ꆭh<E؂3Ѻ<
<P]<^vґ<wKT<A><B<޼<8'k1<;o<NP<`	n;<*<JPg<nb<C˿<.b<V<N<H]x1<C<*DugxV<³<|ɠ<Y+=<I<D<^'T<aN<bf7<QG׹<s<J<sz<rKmg</P<染<{H
<qQ<~)<Ɨ$'R~1[}<?n2|D'er9\-k[~p,4ȝ	6xq{3|Zlo	B{>
NVeΙVn6nvKzicp%E tQ)2U1WQ9Lin?23F:L"3\LQ	V	f[_rWDdx	h+*k2=Ko:qr	Mu\x?A{FS~8;b=ZV`bBtu9=JE>XدGwdO 8cxAFẙi&zqVYםΡag6	X83:뇡koɣj_ۤ|	Mg^ݧt|Ψ_ΓXp2X^ttH蟿W;ޭl~$\z[߁İPp:J+N!Xɦ֬ᆴX7(.
Ɉ?5}h.G{tr&oya=cA/˺DH0⤮<)9O@ᣩTrVj֋@?˷dsI^i@(0߾ta&⊂l1EA1T[n&mi#d)B}QJwt}B <
EOvpc/F<Ң"Ae
އ0~Rfq(*QtH3D@M`P}hwx%ƿ8*JG+[EliPIw+	E>ҙ02yΩ4A(Nt.Ȱ--̕^&܌z#;ޖu~g6X .pmF3n
bH<Y>޵LaEZvpR(-x_b˿ӰdyQӶVg<7܆ut7$MH𯋉ld"rqտH)݄
/0wپ}2}K	D5z&R cM,}uc?Ѡp5.bJ3ʸT[vv+\[U@ضBi"7oLeiFγ>SR(D2Z> B0$y1gWr-ެ
@樫(afoe<P&{œƢ}
k3y+īD/x[Ux?ЫÕΩsG*E6&9xB|*Xw$ q*54jfcOfZrNrPo\fDY6
4P4&{>W-|&aY+M?V#z?u?q?}n?k?Lh?e?Rc?`?Zw^?*+\?Y?RW?U?_S?XQ?߱O?M?3K?J?GH?F?jD?`C?(`A?j??>?x<?:?0O9?7?:6?4?993?1?%I0?C.?Mi-?!+?*?5)?''?y&?!%?C#?x"?(!???J??$??G?c
?Q??!l?:???@?
?d?)@?i
????4??s?]?I?6?K>,>N>>q>>>j>>k>>Π>>F>>>'>\>#>u>J>*>_F>d>+>$>w>>>JK>y>|>iݿ>>I>;>ʾ>t>5<>	~>>>O>>>~3>T>ե>(>g~>ՠ>G/>>>F>J>	>:n>bԓ>Q<>>x>~>>>^>Ј>D>l>1>>%>\D>@|>?y>Bv>Hs>Qp>#^m>mj>|g>md>a>^>$[>
Y>=3V>[S>P>M>J>~H>UE>B>?>=>S:>7>"4>=22>T/>d,>m+*>m'>c$>N?">,>>m>t>F>>1*>
>>Y>>ʗ>>I=_={==^==&=_=g=='0===P6=˙=\=	s==d=
=yo=/=6=.=fЍ=x=i'=܀=a1y=p=xIh=_==W=TO=G=>=N6=.=&===-H==<א<̀<<<.<X<i<H<Rx<i$]< B<\'<,
<;G;P;*;.0:I4_h2z3+3@3aQ3i`3{am3Ay3i3*353=3r333|ϡ3ڍ3+333^33׶3iż3-¿3c3%3uY3<3L3gv3;3k3-3$3!333P3P33<3p~3չ3^3J3I3<o33m33j4r4Uw4z45|4{4y4Bv4q48j	4a
4FX49M4@
4834]$4U4,444S44۝4Æ4n4V4w<4$"44V44ޱ454u4,W 47!4"4"4#4ҵ$4@%4Mr&4P'4_-(4p
)47)4*4+4|,4W-43.4/4~/40414|24W34244
545464"74@y84sT94/:4*;4;4n<4R=4hz>4V?4=3@4A4A4qB4C4D4udE4-CF4K"G4H4H41I4J4vK4\fL4HM4+N4aO4O4bP4ٽQ4R4ԊS4crT4ZU4CV4-W4ZX4Y4UY4Z4[4(\4_]4^4_4C`4va4alb40cc47[d4~Te4Of4Jg42Hh4Fi4Fj4Hk4Kl4MPm4Vn4^o48hp4sq4r4s4
t4u4v4Cw4x4 z42{40S|4u}4~44v4@
4L4>4ق4v444lV44R4F44p4
I44"4_44Ќ4l4L4`4ԏ4坐4<j4-:4
44v444np4g_4S4 N4N4U4c4>y4ݖ4%44r&4k44(4444.4Q4N4t44\۶4H94̻4p44~X4w4p_4~444wE`mru\zw8xky5zz/
{ԃ{{7|3}|&|H|}C}g}ۇ}}a}g}]}~~4%~5~C~Q~g^~ij~u~>~2~~r~դ~Ƭ~N~u~C~~~~k~~~~~~t~~~6
< :#%](*.-z/13579;=?EABD:FGNIJ8LMNLPQR
T=UdVWXYZ[\]^~__`;abbcod.eefLggh<iipjkkll!mmnnnhoo5pppLqqq?rrrsPssss'tSt|tttttu$u3u?uFuJuKuGu?u4u$uuttttrtEttssfs#srr:rqq#qpMpo_onXnm7mlkOkjiiThgfedcba`]_!^\[ZXWuUSQ"P/N"LIGSEB(@Z=d:A73e0,(_$	F~>~~7~~/~7~~
~
~w~G]~>~Y~,}6}b}|O|06{x?yjD?l[T?w'??o?Wp?xI?-3?x^j??N?R:e?4:>?l?*?%z?PՋt?4?e;?$"?zaWF}?Gz‘B?Oq1?
OU?ߺH?7a?nV,? K?Xhw?հ<?Vp\?m?)?zP?ZcX?*;Q^?#*'g?U7?e&$	?jJo?\Ȭ)?L&?FS?leZ&?g ?NIO??xRr!?P_hy?y6IJO?_5%?[X~?1>?bU?+À?PX?5:pɗ0?8d?;U?J?͓?)m?ېZ]G?/|!? ?iT??Wq?P<p?9h?^C?81H?Y2?BA?p?]v?6<}n?.?K?*1)?ʸ?{w??z/)B?~q?T n?Nj#z?_88?	:vG?V2?3&dt?64?m[?HsU?t?,o5?ja|?mq֤?xz?1b<?RN?Z_:)?ؤJS?M H?>F9?ߓ^??ۮY?3???i?Z8o?
O5?ٸ?P?R9?igP?La;?L?!ވ?%o?{7=8?Ҁt?DvC?6?=p\?;So&?mj?W?j?$O?z5Ѽ?Ҏ?C|P?yh|?%H?/ZM?f!w;??>ǭ?MAz?G?y?.?P9կ?TT}?g4K?#$O?	Y?BM?6C;?B"_U?~t$?œ߉?52?Ҙl'?DɤT?<(i?qE8
?
Uī?OQM?o^?Sq͒?Gط5?zx?1zd}?:R!?Wg?~&~k?=~-2?ZҿҶ?'|j_]?it?[?8R?uqb?#h?z|J?G~`?\!>?GF?vJ?l󈬚?5hȩmE?㭍?-l?uG?1i%?調?M?e*|?zè?^V?4<%F?B}u?c-@c?n?	R=?Kr?*}T#?,"k>?R)?K{o?vaӽ?命8?
t;I_?h?3xk?3Ӻ?b3<?[?u0?R({?>?vZ9S?LJisk?M$a.?ftW?+?"@|?&#?p>_?1fҲ?
DE?}?/?%,?0?5nl+,&?QG?b.	?,*(>?p_8?cU)?h*?'wާ?dИۦ?ԭ<ڥ?]']ۤ?ݣ?=|?j?.?ĥׁ?u?	̓0?"NR?
y?ڥ?d֔?^8
?0`4I?IrO*?O'?x
A?B?/)?7h`|?]٨v?p?gC_e?T?yx;I<<[,<P<a;D8|</<L.#<a8/M<trtZ/<L-H2<'2M<C];<w6A<z'<c8.<W?<</<U9<=6<tbu%<<~1<=|ak<pҦ<F6<w*<CFE<w
CSU<v{d<N.<,Gc<F8ɹ<,<Ywmgb<0n<lm<)zBU<:R6<2*<NYp><a;2<&rԬ<H<)g<ø#ί<Sv:<ҵ=<oz3郮<΂:ɮ<&b
<TQ<ׇm<.}Sد<4BV
<9@.<N<r[Vo<q<a}<Kf=ϰ<kK<2 <1G-<A>L< Ŀk<4x<mQ<*fƱ<.<@<re <}><k[<f*y<ǁ<.b<Sbв<<Hn
<0'<^&pDD<Rʺ`<jXj}<doݙ<=;<Vҳ<Zr޾<tq
<]t-&<0<C<]s^<6fz</H2<]A<Iδ<8<bU^<Z
M!<Ofj<<ȲNwX<x_Ut<Ɓ<Y$#<=s}rƵ<ӌ/{<8^O<`<4<&O<rWj<71B<P)<C<R(abض<Ta1<h'<iQ*<pE<s5ea<I|<M<	<ʳ<"LϷ<s<ꆤg<v"<΢=<NY<~zou<-G_Ð<C<eȸ<'jDQI<s):<G(8<
F8<ybT<pp<1*.ˌ<?<,ՌyŹ<to+<J&r<69<[Ȣ!7<T<JrZq<=1dL<>V<ZxȺ<6<O<[| <
><=A[<'?}y<<d<n%k<.kӻ<<lH<-z.<
nM<fl<f<6<;ɼ<7h0^<n2	< 7(<G3H<#i<s<pn 	<Iʽ<7.R<I
<Ft.<P<%/r<
*K!<o<:v#پ<a<!SŠ2<mMB<h _f<f<"q</`ӿ<Y<uG<Gɏ!<4<>NG<~;[<h&#n<.c<T<quͪ<H=<0=4<e<<Ap n<5]!)<m	i?<;.`HdU<;k<at߂<NV</w<q<9<Ÿ<<ozG-<$EG<XvǼa<.Y|<xw.<R
*S7<ۖ1<x
<V<h^{*<I<@3zi<
AV<pu<'<u`<幜<^T=<:Dd<Cub<'Zks<
%<AS<B~:R@<Jq<ٍq<:$<Li<j{S<埾@<2	k<4z_('<s	Vy<-<4)9<|<Do.<W@<Zwx܏<x8<3	;<j%=BT
~Q~U~KD
Ga7\%aFOaSuzpD(|Wc%WM$	t`K[oT`gtSwf#Wl`0H7[z1z(zK^2#9MM0MFPrOxS왎2ȩn{TH,ҭ^p .]M[\}r;/4d6dcNQp.t@e$oX%L(<Y?1څAJU3[*Й4wFg\	LӺ$ҮxNYȥ>xo6xu{fUY>9>{ppCBwS(:5^dܓAN}8)	YfHqն&|s	f2,2Ztզޗ <ex/vJ*5b1Vv _|I>.nZR'ӯB)[l@uPҍ'TȈt(5wI'L/$;nXMØT`OArW,+jtȳRfARnqӊ<KZW$eKs)
4<=>)G'QA@Y.(5bXjz>lq{2Xx{~JH҄Cc`Qz%~ )Q\HsrUb'Bkq-hnק
Ψ;3Kd)P^٨Tv$Hx"$ 5..&$ŗ:
<GuU@z6={7t^l~Rd(E[WNQJGP,S<*0b$Z<^G*	I'l!v~"9,d8ܦ7r68+iS"A</j#D/s
4n0x
y1WbɆf55Lo)BoBK-YW"&㎍xs?ٍL;V/G;(GG?v]zY@3HjuL*ث}~08B8srpX6ԋ75]/WUx<ghq+~Ň;	u)F.uHeIǴv^ب"-n"/+:e4Tt(*X@EH,0fJ3KZ@5gG8?SˆB?AAz?<ٰj_?$+K?88C?J?llf?UUUUUU?dg??~)@ lѿ3	;
@UUUUUU?"@m{?@̶e*$@=
ףp=@n?[	m?h|?5?333333@r?$~?B>٬@r鷯?Q?Q?9v?(\@ffffff@0C.@4@x&?@?UUUUUU?a@X@`@|@@MA>@@-DT!	@h㈵>.A-DT!	-DT!@C3N@Si@?>Aޓ=?3?r?q?0@;P t			@

L
nl!&bp70 `4l @T0	P	`|

0
,  `8
L



P
D`8P p	
$
8p" 'h)`15`8<;p>xPBDDIKPORZ a@h`oXv(@}4   ! !0(!!p"@"`#$$L%P%p4&h&'$(p(@( )@#d)p)*/*5P+9+ A,G<-\-Pe-qP../@/800"0T1(202@K\3@R4x4D56 77 7P7`78X8088T9@990:h::`: (;pd;x;p;;;< < 4<PL<<<0<P<=`0=pT=t== =p=>p4>T>l>@>`>?$?t? ??(@L@p@@@@@@`
@ADAhAA A4BB0,CXCC<DDp! E!PE#E$EP'F'(F'@F (XF(|F)Fp)F)FP*F*G-<G1`G2G 3G3G5G5H06(H8|H0:Hp:H;H@0I@DI @XI@pI@I@CIzRx$PFJw?;*3$"D%4X$EBDD d
GBIAAB<hDH
DTBBB D(C0G@a
0C(A BBBAa0A(A BBB\(BED D(D0|
(D ABBHQ
(D DBBCD
(A ABBEdxDxBFB B(A0A8DP8D0A(B BBB%4hADD m
CAFM
CAG @A@
Gs
E@0BAD 
DBI_
DBK`
DBJ t8Ai
NK8BEH A(A0m(D BBBDBEL E(A0A8E@8A0A(B BBBDBEL E(A0A8E@8A0A(B BBB8dUzBBE A(A0d(D BBBc8QD t
H(|BAG \
DBDP7BHE A(D0JGfAV0D(A BBB\PJBBD D(D@[
(A ABBG^
(G ABBFy
(F ABBD,ZI P
ADH` H\BBE D(D0h
(J BBBGO
(D BBBG@,BAD D0
 AABG`
 DABItpBEG L(D0A8FPXXO`MhGpGxGGGGGJEIP`8D0A(B BBB( yAOGxCAhkAw
Hj$4nBDA cAB\8pBDD0
ABHu
ABHp <DE
G\
D4tBDG M
ABCD
DBF40AAG a
CABi
CAC@hDBED G0^
 ABBKD
 DBBLXBED A(F0~
(D ABBGL
(D ABBKD(D DBBPBBA 
BBDD
BBHH
IBMA
EBH|\fBBB B(A0A8DPz
8A0A(B BBBF
8C0A(B BBBKy
8A0A(B BBBE`BBB B(A0A8GPn
8A0A(B BBBG}
8D0A(B BBBFd@	,BEE F(D0A8D+
8F0A(B BBBKI
8A0A(B BBBA 	CAZ
E
AL	'BED D(GP1
(C ABBA
(F ABBK(
kAG 
ADV
AAH
\
`BGE D(G0q
(D BBBDi
(L BBBED
(L BBBJi
(D EBBA_(I BBBH
FBBB E(A0D8D@^
8D0A(B BBBAd,	BBB B(D0A8Fp-
8A0A(B BBBFq
8A0A(B BBBEXBIB B(A0D8GL`F^
8A0A(B BBBJMRAABADBFJy
8A0A(B BBBD4
BIG A(O0P=REFFBFAEFJc
0A(A BBBEVRF\
0C(A BBBKf
0A(A BBBBBIG A(Q0P;REFFBFAEFJc
0A(A BBBEVRF\
0C(A BBBKf
0A(A BBBB
BIB B(A0D8GpjxZBHBBABBAJpy
8A0A(B BBBHLxHYxFp^
8A0A(B BBBE({BIE B(D0A8DFMLAEFAEFJc
8A0A(B BBBHzWRF\
8C0A(B BBBG
8A0A(B BBBJGW_AV`GtHBIG B(A0N8PLOFFBFABFJc
8A0A(B BBBHVKF\
8C0A(B BBBI
8A0A(B BBBHBIB B(D0A8GpkxLLAABAABAJpy
8A0A(B BBBDLxHYxFp^
8A0A(B BBBE`!BIB B(D0A8GpkxLLAABAABAJpy
8A0A(B BBBDLxHYxFp^
8A0A(B BBBE0#XBIB B(A0D8GL`F^
8A0A(B BBBJMRAABADBFJy
8A0A(B BBBDT%BIB B(D0A8G`hHpYhF`_
8D0A(B BBBApx)BIB B(A0D8Gp
8A0A(B BBBELxHYxFp^
8A0A(B BBBEh+"BIB E(A0D8D`n
8A0A(B BBBEDhVp_hF`^
8A0A(B BBBAG
8C0A(B BBBE|8/BBB A(D0
(D BBBGq
(D EBBB\
(D BBBJt8N@g8A0G
(A BBBH`t1BBB D(D0
(D BBBE
(D BBBJU
(D BBBA`4>BBA D(G@A
(A ABBIv
(A ABBDB
(C ABBF<7BMG R(D0A8D4PHFFBFAEFJc
8A0A(B BBBDWRF\
8C0A(B BBBH|
8A0A(B BBBBZW_A>BMG O(D0A8D7PHFFBFAEFJc
8A0A(B BBBDWRF\
8C0A(B BBBH|
8A0A(B BBBBZW_A`DBMG R(D0A8D4PHFFBFAEFJc
8A0A(B BBBDWRF\
8C0A(B BBBH|
8A0A(B BBBBZW_AJBMG R(D0A8D4PHFFBFAEFJc
8A0A(B BBBDWRF\
8C0A(B BBBH|
8A0A(B BBBBZW_A|QBMG R(D0A8D4PHFFBFAEFJc
8A0A(B BBBDWRF\
8C0A(B BBBH|
8A0A(B BBBBZW_A`LPWBBB B(D0D8D`Z
8D0A(B BBBE
8A0A(B BBBFX]zBBB B(A0A8Dp2
8D0A(B BBBCxNgxApHl)BBB B(D0D8DP
8D0A(B BBBEHXr)BBB B(D0D8DP
8D0A(B BBBE|xBBB B(A0A8G`
8A0A(B BBBK^
8A0A(B BBBH
8C0A(B BBBA$8@LbBB A(A0D@S
0D(A BBBFHlBEB A(A0
(D DDBEF(D BBB\PRBIB B(D0A8G	W_F_
8D0A(B BBBD<PBIB B(D0A8GORF^
8A0A(B BBBAmLTAABADBFJw
8A0A(B BBBG|BIB B(D0A8GORF^
8A0A(B BBBCmLTAABADBFJw
8A0A(B BBBGBIB B(D0A8GORF^
8A0A(B BBBAmLTAABADBFJw
8A0A(B BBBG(ԧBIB B(D0A8GORF^
8A0A(B BBBAmLTAABADBFJw
8A0A(B BBBGBIB B(D0A8GORF^
8A0A(B BBBAmLTAABADBFJw
8A0A(B BBBGp,BIB B(D0A8GORF^
8A0A(B BBBAmLTAABADBFJw
8A0A(B BBBG@XBBE A(A0D@z
0D(A BBBD0X4YBDG g
DBFNDB\`0BIB B(D0A8J^	V_Fb
8D0A(B BBBJhYBBB B(A0A8G(bHHK
DEFFBBAI_JHFFBBBISFHFFBBAIIMHFFBBAI_MHFFBBFIL8A0A(B BBB@!BAD0l
ABJV
ABGo
CBDHH!BBB B(D0A8D`=
8D0A(B BBBEH!BBB B(D0A8D`=
8D0A(B BBBE`!|BIB A(D0D`
0A(A BBBEDhVp_hF`^
0A(A BBBC@D"4BBB E(A0DP
0A(B BBBF".BIB B(D0A8GORF^
8A0A(B BBBAmNIABBDEFBVY
8A0A(B BBBE,#`.BIB B(D0A8GORF^
8A0A(B BBBAmNIABBDEFBVY
8A0A(B BBBE#.BIB B(D0A8GORF^
8A0A(B BBBAmNIABBDEFBVY
8A0A(B BBBEt$x
BIB A(D0GpxL`xFp^
0A(A BBBFxPGHBADEFAQp\
0A(A BBBB%
BMG B(Q0A8GQLFBFAEFATF
8A0A(B BBBKVRF\
8C0A(B BBBAW_A
8A0A(B BBBH%hBIE B(A0A8Gp%
8A0A(B BBBFLxHYxFp^
8A0A(B BBBE
8C0A(B BBBE\`&BIB B(A0D8DHYF_
8D0A(B BBBAX&/BIB B(D0A8DpdxIYxFpb
8D0A(B BBBET'P7BIB B(A0D8D`lhHpYhF`_
8D0A(B BBBI\t'BBIG B(A0Q8PVKF_
8D0A(B BBBE\'(W&BIB B(D0A8GIYF_
8D0A(B BBBHl4(f*BBMG B(A0A8`VRFb
8D0A(B BBBJW_A(BIG B(A0Q8PFSAFBABBAOVRF_
8D0A(B BBBEFORFBABGATX\)v!BIB B(A0A8JORFb
8D0A(B BBBF\)"BIB E(D0A8DW_F_
8D0A(B BBBD\*7BIB B(D0A8GWKFb
8D0A(B BBBIx*#BIB B(A0A8J
VFFGFDBTVRFb
8D0A(B BBBIHSEGFBBFBTW_AsV`GL+ BIB B(A0A8J$	VFBBBABTVRFb
8D0A(B BBBIwMBMMGABBAWW_AV`G\ ,WBIB B(A0D8GV_F_
8D0A(B BBBE,BIG B(Q0F8K_MKAFBFAEAJc
8A0A(B BBBFVRF\
8C0A(B BBBId
8A0A(B BBBBl<- M&BMG B(D0Q8GU
WRFb
8D0A(B BBBI0W_A-DBIG B(Q0F8KXSEFFBFAEFJc
8A0A(B BBBCVRF\
8C0A(B BBBId
8A0A(B BBBBh.DJBIG B(Q0F8KXSEFFBFAEFJc
8A0A(B BBBCVRF\
8C0A(B BBBId
8A0A(B BBBB$/P%BIB B(A0A8GMXB
8D0A(B BBBBVKFM]A*M[AM^BkMYBK_AM[A
M^BKZAl$0ua$BMG E(A0A8Wu	WRFb
8D0A(B BBBIV`G0(0AED@`
EAH0d%G]0|	81xIGED D(F0a(A ABBG8@1YGED D(F0t(A ABBDH|1BEH H(KP
(E ABBK[(A AFBT1aKEE I(H0D8G`	
8A0A(B BBBDXT 2-BBE H(H0K@
0D(A BBBEm0A(A FBBHx2tpBBB B(A0A8D`>
8A0A(B BBBJ82aGED D(F0v(A ABBJ<3̞yGED D(G0O(A ABBHH@3BBE I(H0K8K`
8E0A(B BBBE43PPAG@y
EJx
EC(
AE83hIGED D(F0b(A ABBFH4|BBE B(H0H8KP
8F0A(B BBBD8L4IGED D(F0b(A ABBF47H40AG0
ACq
AFB
AEJ
EAJ
AE4GJ5GJ5GJ05	D55X5$D _0p53AG@F
AI
ALeA5(D c 5 lD i
KJ
NW5lD U45tAG@
AO
EG1A 06PDe
GJ
FK T6(AG 
AMx6/AG ]A 6$ AG@F
EM,6 SAK@L
EC
EG6PCD z(7AG V
AIXA$07iBFG0IAKX74NAG DAx7d(D _ 7|BAG@\
AK 7AG0
EFH7BFB B(A0A8Gg
8D0A(B BBBG $8xuAG @
DLLH8Դ
BFG E(D0A8J
8A0A(E BBBFL8DRBED A(G`e
(A ABBBt
(C ABBA08Tka
LnJHA
GL,9AG 
AFY
EB L9&AG@
AL p9IO0
EA,9xCAGP#
AD_
AH 9AG@
DD9t_D Z:D  :d5D b
J
I(<:VBAG@CFB h:	L@
Mr
E0:MGG T
ABFhH:ZBBB B(D0A8D@}
8D0A(B BBBEH;0BBB B(D0A8DPm
8D0A(B BBBExX;BDB B(A0A8DP
8A0A(B BBBDC
8A0A(B BBBCa
8A0A(B BBBEx;BDB B(A0A8DP
8A0A(B BBBCB
8A0A(B BBBD`
8A0A(B BBBF(P<IACD g
AAGH|< BBB B(D0D8D`b
8A0A(B BBBH<BBB B(D0D8DP
8A0A(B BBBE
8A0A(B BBBCd
8A0A(B BBBBm
8A0A(B BBBAd`=L{BBB B(A0A8GP
8A0A(B BBBFI
8A0A(B BBBEx=d`BBE B(A0A8DPR
8K0A(B BBBI_
8A0A(B BBBGL
8A0A(B BBBJ,D>HwKHE }ABHdt>BIB B(A0D8D`'
8A0A(B BBBGB8A0A(B BBB >AG0
AA4?AG@
EAx
EC>
AI8?4%L?P/Djd?havj |?D i
KJ
Nx?,HD C?dg\ ~?YD H ?qDe
GJ
Fl@`HD |
A4(@AO 
EC
ATz
EI `@lAK@
AQ @8AW0
EG@4`t _@|]D g
U @AK0
EH A,AG C
AL$$AzAG s
ALhEPLABAD D@
 AAFK
 AABR; AAF A\JAG 
AMA;D v(AMa
Jn
JL
DAHBBBB E(A0D8G[
8D0A(B BBBATBhB|Bn\ LB4BAGP
AG^
AAL
AC B|AG@
DD33
+5P


o`
V
 
5  `	ooono 
6PFPVPfPvPPPPPPPPPQQ&Q6QFQVQfQvQQQQQQQQQRR&R6RFRVRfRvRRRRRRRRRSS&S6SFSVSfSvSSSSSSSSSTT&T6TFTVTfTvTTTTTTTTTUU&U6UFUVUfUvUUUUUUUUUVV&V6VFVVVfVvVVVVVVVVVWW&W6WFWVWfWvWWWWWWWWWXX&X6XFXVXfXvXXXXXXXX[
 
m[R``:D04F`

4A7߹Dߴʴ!  2 @@0`0 Ѹ`@<P^Vl*"] |,rкg@_`OC
@DL0{ 8У*sP!@ spR <@c]kPl ```agr@Pd`h\lZ@Rȸ CP5+pyb@s@]6m`2<) wz v[`_ cZ` `GCC: (GNU) 10.2.1 20210130 (Red Hat 10.2.1-11)8`n  5	P
 PX
I
P



 




4%H04E}4h
@
45'6A6{`7%7h88`:7XQyYksZm[z

0;c;Q<\#<JE=h>?]^y
A
 	9
`&b
	v
	
 >
		
h	
$
	
<
	P
 	!w
@	
`|	"
	
 |	"
#7
	W
`	{
{	"
	
{	'
@	 
	!=
`{	"e
 {	"
$
z	,
@*
-0
%Y
	~
	
$
 	 
@		
 	9	
	^	
 		
@(	
%	
	!	
	

	 C

(l

,

z	'

@(

#
	 5
#^
	 
`	!
	
	 
	
	:
	Q
@		b
>
$	
 G
L
X	

`z	!#

	7

x	J

	V

	a

	l

	x

	

	

"	

	 

 z	0

	
&.
y	5V
	b
	n
	|
0		
	
	
	
	
	
	
	
	
	
	+
	8
 	B
	O
	_
 		p
j	
	
`	
	
	
	
 h	
(A
	Q
	a
	u
`4
H	

^	6	
	
Q	

	

	3
	N
P	f
	s
	
	
 %
3
	

	
	
	
8	
/
	aV
	f
	r
	
	
	
h	
	
	

	
	
		
	
`F	
0
	:
@8	b
y	p
s	~
	
	
m	
 ,	
g	

	
(	

$	{&
	2
	L
	
^
`u
	
	
`	!
	

	
	
	n,
	7
	F
	U
a	c
X	x
[	
U	
O	
	
}	
	

		
I	
		
		
X	"
x	/
		@
C	N
	Z
	i
	s
	
	
	

s	
	
H	
	
T 
	7
	F
n	S
8	f
	r
i	
(	
		
`p
	


	

?
	K
`		X
	q
V	~
#
	
Q	
	

		
	
x	
 QA
	]
 
	
H		
C	
>	
`	


H	


=	
	6
9	C
@	`

8	

p

x	
 }
	
	
7	%
|'M
"v
(	

	
	
p	
 	
		
	
	8
h	G
lo
h	
 	
`	
	
 		
0	
	
1	"
^
J
@#s
`	
p	
4	
+	
`	
	
%	
/	)
Z	8
	q_
	o
`Sv
	
`	(	
S	
 	
@H
	1
	X
	q
*	~
	
	
		
 > 

H	
	
	 
x	 
	
( 
		9 

	G 
%	T 
<	c 
	q 
	
 
 	 
 	w 
@	 
	
 
=@!
	!
p	,!
`	S!
	`!
	n!
	
!
	!
	!
		!
	!
	!
	!
	A
"
 	#"
	6J"
p	a"
	"
	"
 	z"
	"
@,#
	#
P	6#
,!^#
	j#
h	z#
		#
	#
	#
 +#
	#
	#
		#
`	
$
	$
%SA$
	T$
 
|$
	$
	$
5	$
.	$
'	$
	$
X	$

%
 	%
	%%
		6%

^%
	k%
|	k%
	%
p		%
P	%

%
	
%
	&
/-&
`	I&
	W&
	d&
&0Ak&n&A'A'C?'DN'pEw' F'F'`G'0H'H(If(PLA( Ni(QCz(@S'(pUk(V(V(V(pW)`YF/)Z	B)
S)PdX)p
)g)Pl#*pc*s{*0{H*+0[+X+@+ ,
8,"t,,,p>.-H
G--У--,.0a.Px.z.).)/V/P
{/g///>/R30@
K0@0
0021j1P!1 '1@)Y1)0
2 
'2RY?28
\20
}2(
2
2
2 
2`
*3
[3
3
3
3
,4
d4
4
4
5
?5
v5
5
5
6
>6x
t6h
6`
6X
7 

7
 57
 j7`
 7@
 7 
 7Z$8[J8`_r8c8f48m.9@s.F9py.{99P9*:c:: :к;&;;*B;";<v!;P^")<l7`<6#<Z <zW=N=M&=`=`=`%3>a$l>
h|>
 > 
0>`
>
P?
 w8?
 s?
?
@?
%@
u[@
`
@
 6@
SA
@vQA
A

A
A
 |q/B
r(	fB
gB
@_zB
`O C
@D`C
 8C
*C
p
D
@6	CD
 D
A
D
 E

@E
xE

E

E
 
!F
!YF
`pF
rF
`h 
G
\k>G
@R
zG
 CG
5
G
+	0H
fH
@{H
nH
I
bI
`QI
aI
 J
 TJ
h{J
 hJ
J
`K
`2K=K@3?Kp3RK3hK
tK
K3K
qLK`K

K

K

K
	L

L

L
7
L
?
(L
/
2L$POL
'
XL
+
aL
#
jLL`mL`n2KL
L@6LaILLpVMJ#M4S2M02;MrHIMP=ubM@3/yM
MsqM pM q%M@)7M=
NU!N|`/N7B?N[N`.(P0:jN@NPaN`N`f{NkNPq/N@7NN~OY5O[ZKO,_O)wOY	O\O tHO5COh`OM&O"yPP{8&P`_DP /PP -3cP
pP.l}PЉP%P,5P/LpXVPrgPp-Pp3 Q@,Qqa1QV_IQ9[QQCkQpdQ0'Q`,Q 	Q@sYQ,$Q;Q1PRz#Rq0RaQRZaRPmRKR 
R#RRwR"aR7(R]qNJSЄ;S,	GS6iUS0IrSP}S(ISSnS@kwSI
S
T
Tp)THRCTptS0W5_T&I{T|]TTTTTTT
UU/U=U YUfUsUUUUUUUUVV1VBVOVfVyVVVVVVVW W2WGWTWZWqWWWWWWWg.W	XX3XCX\XpXXXXXXXXYY%YGYYTYoYYYYYYYYYZZ&Z5ZHZfZvZ ZZZZZZZ[[*[;[J[][k[[[[[[[[\\0\?\P\`\o\\\\23\\\\\]]+]7]I]^]o]{]]]]]]]]!^3^B^S^h^t^^^^^^^^^__(_D_U_ o_________``*`"F`	PL`^`l`y````mtrand.pyx.c__pyx_f_5numpy_6random_6mtrand_11RandomState__reset_gauss__pyx_tp_traverse_5numpy_6random_6mtrand_RandomState__pyx_tp_new_5numpy_6random_6mtrand_RandomState__pyx_vtabptr_5numpy_6random_6mtrand_RandomState__pyx_mstate_global_static__Pyx_CheckKeywordStrings__Pyx_PyObject_Call__Pyx_PyObject_GetAttrStr__pyx_f_5numpy_6random_6mtrand_11RandomState__shuffle_rawPy_XDECREF__pyx_setprop_5numpy_6random_6mtrand_11RandomState__bit_generator__Pyx_PyNumber_IntOrLongWrongResultType__Pyx_PyInt_As_int__pyx_tp_dealloc_5numpy_6random_6mtrand_RandomState__Pyx_copy_spec_to_module__Pyx_ImportVoidPtr_3_0_8__Pyx_ImportFunction_3_0_8__pyx_pymod_createmain_interpreter_id.0__pyx_m__Pyx_IsSubtype__Pyx_IternextUnpackEndCheck.part.0__Pyx_PyDict_GetItem__Pyx_ImportType_3_0_8.constprop.0__Pyx_SetItemInt_Fast.constprop.0__Pyx_PyInt_BoolEqObjC.constprop.0__Pyx__PyObject_LookupSpecial.constprop.0__Pyx_GetItemInt_Fast.constprop.0__Pyx_PyCode_New.constprop.0__Pyx_CreateStringTabAndInitStrings__pyx_k_Cannot_take_a_larger_sample_than__pyx_k_DeprecationWarning__pyx_k_Fewer_non_zero_entries_in_p_than__pyx_k_ImportError__pyx_k_IndexError__pyx_k_Invalid_bit_generator_The_bit_ge__pyx_k_MT19937__pyx_k_MT19937_2__pyx_k_Negative_dimensions_are_not_allo__pyx_k_OverflowError__pyx_k_Providing_a_dtype_with_a_non_nat__pyx_k_RandomState__pyx_k_RandomState_binomial_line_3353__pyx_k_RandomState_bytes_line_805__pyx_k_RandomState_chisquare_line_1910__pyx_k_RandomState_choice_line_841__pyx_k_RandomState_dirichlet_line_4394__pyx_k_RandomState_exponential_line_500__pyx_k_RandomState_f_line_1729__pyx_k_RandomState_gamma_line_1645__pyx_k_RandomState_geometric_line_3772__pyx_k_RandomState_gumbel_line_2764__pyx_k_RandomState_hypergeometric_line__pyx_k_RandomState_laplace_line_2670__pyx_k_RandomState_logistic_line_2888__pyx_k_RandomState_lognormal_line_2974__pyx_k_RandomState_logseries_line_3969__pyx_k_RandomState_multinomial_line_425__pyx_k_RandomState_multivariate_normal__pyx_k_RandomState_negative_binomial_li__pyx_k_RandomState_noncentral_chisquare__pyx_k_RandomState_noncentral_f_line_18__pyx_k_RandomState_normal_line_1454__pyx_k_RandomState_pareto_line_2354__pyx_k_RandomState_permutation_line_466__pyx_k_RandomState_poisson_line_3593__pyx_k_RandomState_power_line_2561__pyx_k_RandomState_rand_line_1177__pyx_k_RandomState_randint_line_679__pyx_k_RandomState_randn_line_1221__pyx_k_RandomState_random_integers_line__pyx_k_RandomState_random_sample_line_3__pyx_k_RandomState_rayleigh_line_3090__pyx_k_RandomState_seed_line_228__pyx_k_RandomState_shuffle_line_4543__pyx_k_RandomState_standard_cauchy_line__pyx_k_RandomState_standard_exponential__pyx_k_RandomState_standard_gamma_line__pyx_k_RandomState_standard_normal_line__pyx_k_RandomState_standard_t_line_2150__pyx_k_RandomState_tomaxint_line_621__pyx_k_RandomState_triangular_line_3244__pyx_k_RandomState_uniform_line_1050__pyx_k_RandomState_vonmises_line_2265__pyx_k_RandomState_wald_line_3167__pyx_k_RandomState_weibull_line_2457__pyx_k_RandomState_zipf_line_3676__pyx_k_Range_exceeds_valid_bounds__pyx_k_RuntimeWarning__pyx_k_Sequence__pyx_k_Shuffling_a_one_dimensional_arra__pyx_k_T__pyx_k_This_function_is_deprecated_Plea__pyx_k_This_function_is_deprecated_Plea_2__pyx_k_TypeError__pyx_k_Unsupported_dtype_r_for_randint__pyx_k_UserWarning__pyx_k_ValueError__pyx_k__16__pyx_k__4__pyx_k__5__pyx_k__53__pyx_k__6__pyx_k__62__pyx_k_a__pyx_k_a_and_p_must_have_same_size__pyx_k_a_cannot_be_empty_unless_no_sam__pyx_k_a_must_be_1_dimensional__pyx_k_a_must_be_1_dimensional_or_an_in__pyx_k_a_must_be_greater_than_0_unless__pyx_k_add__pyx_k_all__pyx_k_all_2__pyx_k_allclose__pyx_k_alpha__pyx_k_alpha_0__pyx_k_any__pyx_k_arange__pyx_k_args__pyx_k_array__pyx_k_array_is_read_only__pyx_k_asarray__pyx_k_astype__pyx_k_at_0x_X__pyx_k_atol__pyx_k_b__pyx_k_beta__pyx_k_bg_type__pyx_k_binomial__pyx_k_binomial_n_p_size_None_Draw_sam__pyx_k_bit_generator__pyx_k_bit_generator_2__pyx_k_bitgen__pyx_k_bool__pyx_k_bytes__pyx_k_bytes_length_Return_random_byte__pyx_k_can_only_re_seed_a_MT19937_BitGe__pyx_k_capsule__pyx_k_casting__pyx_k_check_valid__pyx_k_check_valid_must_equal_warn_rais__pyx_k_chisquare__pyx_k_chisquare_df_size_None_Draw_sam__pyx_k_choice__pyx_k_choice_a_size_None_replace_True__pyx_k_class__pyx_k_class_getitem__pyx_k_cline_in_traceback__pyx_k_collections_abc__pyx_k_copy__pyx_k_count_nonzero__pyx_k_cov__pyx_k_cov_must_be_2_dimensional_and_sq__pyx_k_covariance_is_not_symmetric_posi__pyx_k_cumsum__pyx_k_df__pyx_k_dfden__pyx_k_dfnum__pyx_k_dirichlet__pyx_k_dirichlet_alpha_size_None_Draw__pyx_k_disable__pyx_k_dot__pyx_k_double__pyx_k_dtype__pyx_k_empty__pyx_k_empty_like__pyx_k_enable__pyx_k_enter__pyx_k_eps__pyx_k_equal__pyx_k_exit__pyx_k_exponential__pyx_k_exponential_scale_1_0_size_None__pyx_k_f__pyx_k_f_dfnum_dfden_size_None_Draw_sa__pyx_k_finfo__pyx_k_flags__pyx_k_float64__pyx_k_format__pyx_k_gamma__pyx_k_gamma_shape_scale_1_0_size_None__pyx_k_gauss__pyx_k_gc__pyx_k_geometric__pyx_k_geometric_p_size_None_Draw_samp__pyx_k_get__pyx_k_get_bit_generator__pyx_k_get_state__pyx_k_get_state_and_legacy_can_only_be__pyx_k_greater__pyx_k_gumbel__pyx_k_gumbel_loc_0_0_scale_1_0_size_N__pyx_k_has_gauss__pyx_k_high__pyx_k_hypergeometric__pyx_k_hypergeometric_ngood_nbad_nsamp__pyx_k_id__pyx_k_ignore__pyx_k_import__pyx_k_index__pyx_k_initializing__pyx_k_int16__pyx_k_int32__pyx_k_int64__pyx_k_int8__pyx_k_intp__pyx_k_isenabled__pyx_k_isfinite__pyx_k_isnan__pyx_k_isnative__pyx_k_isscalar__pyx_k_issubdtype__pyx_k_item__pyx_k_itemsize__pyx_k_kappa__pyx_k_key__pyx_k_kwargs__pyx_k_l__pyx_k_lam__pyx_k_laplace__pyx_k_laplace_loc_0_0_scale_1_0_size__pyx_k_left__pyx_k_left_mode__pyx_k_left_right__pyx_k_legacy__pyx_k_legacy_can_only_be_True_when_the__pyx_k_legacy_seeding__pyx_k_length__pyx_k_less__pyx_k_less_equal__pyx_k_loc__pyx_k_lock__pyx_k_logical_or__pyx_k_logistic__pyx_k_logistic_loc_0_0_scale_1_0_size__pyx_k_lognormal__pyx_k_lognormal_mean_0_0_sigma_1_0_si__pyx_k_logseries__pyx_k_logseries_p_size_None_Draw_samp__pyx_k_low__pyx_k_main__pyx_k_may_share_memory__pyx_k_mean__pyx_k_mean_and_cov_must_have_same_leng__pyx_k_mean_must_be_1_dimensional__pyx_k_mode__pyx_k_mode_right__pyx_k_mt19937__pyx_k_mu__pyx_k_multinomial__pyx_k_multinomial_n_pvals_size_None_D__pyx_k_multivariate_normal__pyx_k_multivariate_normal_mean_cov_si__pyx_k_n__pyx_k_name__pyx_k_nbad__pyx_k_ndim__pyx_k_negative_binomial__pyx_k_negative_binomial_n_p_size_None__pyx_k_newbyteorder__pyx_k_ngood__pyx_k_ngood_nbad_nsample__pyx_k_nonc__pyx_k_noncentral_chisquare__pyx_k_noncentral_chisquare_df_nonc_si__pyx_k_noncentral_f__pyx_k_noncentral_f_dfnum_dfden_nonc_s__pyx_k_normal__pyx_k_normal_loc_0_0_scale_1_0_size_N__pyx_k_np__pyx_k_nsample__pyx_k_numpy__pyx_k_numpy_core_multiarray_failed_to__pyx_k_numpy_core_umath_failed_to_impor__pyx_k_numpy_linalg__pyx_k_numpy_random_mtrand__pyx_k_numpy_random_mtrand_pyx__pyx_k_object__pyx_k_object_which_is_not_a_subclass__pyx_k_operator__pyx_k_p__pyx_k_p_must_be_1_dimensional__pyx_k_pareto__pyx_k_pareto_a_size_None_Draw_samples__pyx_k_permutation__pyx_k_permutation_x_Randomly_permute__pyx_k_pickle__pyx_k_poisson__pyx_k_poisson_lam_1_0_size_None_Draw__pyx_k_poisson_lam_max__pyx_k_pos__pyx_k_power__pyx_k_power_a_size_None_Draws_samples__pyx_k_probabilities_are_not_non_negati__pyx_k_probabilities_contain_NaN__pyx_k_probabilities_do_not_sum_to_1__pyx_k_prod__pyx_k_pvals__pyx_k_pvals_must_be_a_1_d_sequence__pyx_k_pyx_vtable__pyx_k_raise__pyx_k_rand__pyx_k_rand_2__pyx_k_rand_d0_d1_dn_Random_values_in__pyx_k_randint__pyx_k_randint_low_high_None_size_None__pyx_k_randn__pyx_k_randn_d0_d1_dn_Return_a_sample__pyx_k_random__pyx_k_random_integers__pyx_k_random_integers_low_high_None_s__pyx_k_random_sample__pyx_k_random_sample_size_None_Return__pyx_k_randomstate_ctor__pyx_k_ranf__pyx_k_range__pyx_k_ravel__pyx_k_rayleigh__pyx_k_rayleigh_scale_1_0_size_None_Dr__pyx_k_reduce__pyx_k_reduce_2__pyx_k_replace__pyx_k_reshape__pyx_k_return_index__pyx_k_reversed__pyx_k_right__pyx_k_rtol__pyx_k_sample__pyx_k_scale__pyx_k_searchsorted__pyx_k_seed__pyx_k_seed_seed_None_Reseed_a_legacy__pyx_k_set_bit_generator__pyx_k_set_state__pyx_k_set_state_can_only_be_used_with__pyx_k_shape__pyx_k_shuffle__pyx_k_shuffle_x_Modify_a_sequence_in__pyx_k_side__pyx_k_sigma__pyx_k_singleton__pyx_k_size__pyx_k_sort__pyx_k_spec__pyx_k_sqrt__pyx_k_stacklevel__pyx_k_standard_cauchy__pyx_k_standard_cauchy_size_None_Draw__pyx_k_standard_exponential__pyx_k_standard_exponential_size_None__pyx_k_standard_gamma__pyx_k_standard_gamma_shape_size_None__pyx_k_standard_normal__pyx_k_standard_normal_size_None_Draw__pyx_k_standard_t__pyx_k_standard_t_df_size_None_Draw_sa__pyx_k_state__pyx_k_state_dictionary_is_not_valid__pyx_k_state_must_be_a_dict_or_a_tuple__pyx_k_str__pyx_k_strides__pyx_k_subtract__pyx_k_sum__pyx_k_sum_pvals_1_1_0__pyx_k_sum_pvals_1_astype_np_float64_1__pyx_k_svd__pyx_k_take__pyx_k_test__pyx_k_tobytes__pyx_k_tol__pyx_k_tomaxint_size_None_Return_a_sam__pyx_k_triangular__pyx_k_triangular_left_mode_right_size__pyx_k_type__pyx_k_u4__pyx_k_uint16__pyx_k_uint32__pyx_k_uint64__pyx_k_uint8__pyx_k_uniform__pyx_k_uniform_low_0_0_high_1_0_size_N__pyx_k_unique__pyx_k_unsafe__pyx_k_vonmises__pyx_k_vonmises_mu_kappa_size_None_Dra__pyx_k_wald__pyx_k_wald_mean_scale_size_None_Draw__pyx_k_warn__pyx_k_warnings__pyx_k_weibull__pyx_k_weibull_a_size_None_Draw_sample__pyx_k_writeable__pyx_k_x__pyx_k_x_must_be_an_integer_or_at_least__pyx_k_you_are_shuffling_a__pyx_k_zeros__pyx_k_zipf__pyx_k_zipf_a_size_None_Draw_samples_f__Pyx__ExceptionSave.isra.0__Pyx_GetVtable.isra.0__pyx_getprop_5numpy_6random_6mtrand_11RandomState__bit_generator__Pyx_PyUnicode_Equals__Pyx_PyErr_GivenExceptionMatchesTuple__Pyx_TypeTest__Pyx_PyErr_GivenExceptionMatches.part.0__Pyx__ExceptionReset.isra.0__pyx_tp_clear_5numpy_6random_6mtrand_RandomState__Pyx_ErrRestoreInState__Pyx_Import__Pyx_Raise.constprop.0__Pyx_GetKwValue_FASTCALL__Pyx_PyObject_GetSlice.constprop.0__Pyx_ParseOptionalKeywords.constprop.0__Pyx_IterFinish__Pyx__GetException__Pyx_PyInt_As_Py_intptr_t.part.0__Pyx_PyInt_As_Py_intptr_t__Pyx_PyInt_As_int64_t__Pyx_PyInt_As_long__Pyx_PyObject_FastCallDict.constprop.0__Pyx_ImportFrom__Pyx_AddTraceback__pyx_code_cache__pyx_pw_5numpy_6random_6mtrand_11RandomState_81rayleigh__pyx_f_5numpy_6random_7_common_cont__pyx_pw_5numpy_6random_6mtrand_11RandomState_79lognormal__pyx_pw_5numpy_6random_6mtrand_11RandomState_73laplace__pyx_pw_5numpy_6random_6mtrand_11RandomState_61standard_cauchy__pyx_pw_5numpy_6random_6mtrand_11RandomState_55noncentral_f__pyx_pw_5numpy_6random_6mtrand_11RandomState_51gamma__pyx_pw_5numpy_6random_6mtrand_11RandomState_45standard_normal__pyx_pw_5numpy_6random_6mtrand_11RandomState_27standard_exponential__pyx_pw_5numpy_6random_6mtrand_11RandomState_25exponential__pyx_pw_5numpy_6random_6mtrand_11RandomState_21random__pyx_pw_5numpy_6random_6mtrand_11RandomState_19random_sample__pyx_f_5numpy_6random_7_common_double_fill__pyx_pw_5numpy_6random_6mtrand_11RandomState_9__setstate____pyx_pw_5numpy_6random_6mtrand_11RandomState_7__getstate____pyx_pw_5numpy_6random_6mtrand_11RandomState_5__str____pyx_f_5numpy_6random_6mtrand_11RandomState__initialize_bit_generator__pyx_builtin_ValueError__pyx_pw_5numpy_6random_6mtrand_11RandomState_59noncentral_chisquare__pyx_pw_5numpy_6random_6mtrand_11RandomState_53f__pyx_pw_5numpy_6random_6mtrand_11RandomState_83wald__pyx_pw_5numpy_6random_6mtrand_11RandomState_65vonmises__pyx_pw_5numpy_6random_6mtrand_11RandomState_23beta__Pyx_PyObject_GetItem__pyx_pw_5numpy_6random_6mtrand_11RandomState_11__reduce____pyx_pw_5numpy_6random_6mtrand_11RandomState_41randn__pyx_pw_5numpy_6random_6mtrand_11RandomState_39rand__pyx_pf_5numpy_6random_6mtrand_11RandomState_2__repr____pyx_builtin_id__pyx_specialmethod___pyx_pw_5numpy_6random_6mtrand_11RandomState_3__repr____Pyx_PyObject_GetAttrStrNoError__Pyx_ImportDottedModule.constprop.0__pyx_pw_5numpy_6random_6mtrand_11RandomState_17set_state__pyx_builtin_TypeError__pyx_pw_5numpy_6random_6mtrand_11RandomState_67pareto__pyx_pw_5numpy_6random_6mtrand_11RandomState_49standard_gamma__pyx_pw_5numpy_6random_6mtrand_11RandomState_63standard_t__pyx_pw_5numpy_6random_6mtrand_11RandomState_71power__pyx_pw_5numpy_6random_6mtrand_11RandomState_69weibull__pyx_pw_5numpy_6random_6mtrand_11RandomState_57chisquare__Pyx_GetBuiltinName__Pyx__GetModuleGlobalName__pyx_pw_5numpy_6random_6mtrand_11RandomState_107shuffle__pyx_builtin_UserWarning__pyx_pymod_exec_mtrand__pyx_builtin_RuntimeWarning__pyx_builtin_DeprecationWarning__pyx_builtin_OverflowError__pyx_builtin_IndexError__pyx_builtin_ImportError__pyx_vtable_5numpy_6random_6mtrand_RandomState__pyx_type_5numpy_6random_6mtrand_RandomState__pyx_vp_5numpy_6random_7_common_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_LEGACY_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_MAXSIZE__pyx_f_5numpy_6random_17_bounded_integers__rand_uint64__pyx_f_5numpy_6random_17_bounded_integers__rand_uint32__pyx_f_5numpy_6random_17_bounded_integers__rand_uint16__pyx_f_5numpy_6random_17_bounded_integers__rand_uint8__pyx_f_5numpy_6random_17_bounded_integers__rand_bool__pyx_f_5numpy_6random_17_bounded_integers__rand_int64__pyx_f_5numpy_6random_17_bounded_integers__rand_int32__pyx_f_5numpy_6random_17_bounded_integers__rand_int16__pyx_f_5numpy_6random_17_bounded_integers__rand_int8__pyx_f_5numpy_6random_7_common_check_constraint__pyx_f_5numpy_6random_7_common_check_array_constraint__pyx_f_5numpy_6random_7_common_kahan_sum__pyx_f_5numpy_6random_7_common_validate_output_shape__pyx_f_5numpy_6random_7_common_disc__pyx_f_5numpy_6random_7_common_cont_broadcast_3__pyx_f_5numpy_6random_7_common_discrete_broadcast_iiiPyArray_API__pyx_mdef_5numpy_6random_6mtrand_1seed__pyx_mdef_5numpy_6random_6mtrand_3get_bit_generator__pyx_mdef_5numpy_6random_6mtrand_5set_bit_generator__pyx_mdef_5numpy_6random_6mtrand_7sample__pyx_mdef_5numpy_6random_6mtrand_9ranf__pyx_pw_5numpy_6random_6mtrand_3get_bit_generator__pyx_pw_5numpy_6random_6mtrand_9ranf__pyx_pw_5numpy_6random_6mtrand_7sample__pyx_pw_5numpy_6random_6mtrand_5set_bit_generator__pyx_f_5numpy_6random_6mtrand_int64_to_long__pyx_pw_5numpy_6random_6mtrand_11RandomState_99logseries__pyx_pw_5numpy_6random_6mtrand_11RandomState_95geometric__pyx_pw_5numpy_6random_6mtrand_11RandomState_93zipf__pyx_pw_5numpy_6random_6mtrand_11RandomState_91poisson__pyx_pw_5numpy_6random_6mtrand_11RandomState_89negative_binomial__pyx_pw_5numpy_6random_6mtrand_11RandomState_13seed__pyx_pw_5numpy_6random_6mtrand_11RandomState_29tomaxint__pyx_pw_5numpy_6random_6mtrand_11RandomState_1__init____pyx_pw_5numpy_6random_6mtrand_1seed__pyx_pw_5numpy_6random_6mtrand_11RandomState_43random_integers__pyx_pw_5numpy_6random_6mtrand_11RandomState_15get_state__pyx_pw_5numpy_6random_6mtrand_11RandomState_101multivariate_normal__pyx_pw_5numpy_6random_6mtrand_11RandomState_37uniform__pyx_pw_5numpy_6random_6mtrand_11RandomState_105dirichlet__pyx_pw_5numpy_6random_6mtrand_11RandomState_33bytes__pyx_pw_5numpy_6random_6mtrand_11RandomState_35choice__pyx_pw_5numpy_6random_6mtrand_11RandomState_97hypergeometric__pyx_pw_5numpy_6random_6mtrand_11RandomState_85triangular__pyx_pw_5numpy_6random_6mtrand_11RandomState_109permutation__pyx_pw_5numpy_6random_6mtrand_11RandomState_47normal__pyx_pw_5numpy_6random_6mtrand_11RandomState_103multinomial__pyx_pw_5numpy_6random_6mtrand_11RandomState_77logistic__pyx_pw_5numpy_6random_6mtrand_11RandomState_75gumbel__pyx_pw_5numpy_6random_6mtrand_11RandomState_31randint__pyx_pw_5numpy_6random_6mtrand_11RandomState_87binomial__pyx_moduledef__pyx_methods__pyx_moduledef_slots__pyx_methods_5numpy_6random_6mtrand_RandomState__pyx_getsets_5numpy_6random_6mtrand_RandomState__pyx_doc_5numpy_6random_6mtrand_11RandomState_12seed__pyx_doc_5numpy_6random_6mtrand_11RandomState_14get_state__pyx_doc_5numpy_6random_6mtrand_11RandomState_16set_state__pyx_doc_5numpy_6random_6mtrand_11RandomState_18random_sample__pyx_doc_5numpy_6random_6mtrand_11RandomState_20random__pyx_doc_5numpy_6random_6mtrand_11RandomState_22beta__pyx_doc_5numpy_6random_6mtrand_11RandomState_24exponential__pyx_doc_5numpy_6random_6mtrand_11RandomState_26standard_exponential__pyx_doc_5numpy_6random_6mtrand_11RandomState_28tomaxint__pyx_doc_5numpy_6random_6mtrand_11RandomState_30randint__pyx_doc_5numpy_6random_6mtrand_11RandomState_32bytes__pyx_doc_5numpy_6random_6mtrand_11RandomState_34choice__pyx_doc_5numpy_6random_6mtrand_11RandomState_36uniform__pyx_doc_5numpy_6random_6mtrand_11RandomState_38rand__pyx_doc_5numpy_6random_6mtrand_11RandomState_40randn__pyx_doc_5numpy_6random_6mtrand_11RandomState_42random_integers__pyx_doc_5numpy_6random_6mtrand_11RandomState_44standard_normal__pyx_doc_5numpy_6random_6mtrand_11RandomState_46normal__pyx_doc_5numpy_6random_6mtrand_11RandomState_48standard_gamma__pyx_doc_5numpy_6random_6mtrand_11RandomState_50gamma__pyx_doc_5numpy_6random_6mtrand_11RandomState_52f__pyx_doc_5numpy_6random_6mtrand_11RandomState_54noncentral_f__pyx_doc_5numpy_6random_6mtrand_11RandomState_56chisquare__pyx_doc_5numpy_6random_6mtrand_11RandomState_58noncentral_chisquare__pyx_doc_5numpy_6random_6mtrand_11RandomState_60standard_cauchy__pyx_doc_5numpy_6random_6mtrand_11RandomState_62standard_t__pyx_doc_5numpy_6random_6mtrand_11RandomState_64vonmises__pyx_doc_5numpy_6random_6mtrand_11RandomState_66pareto__pyx_doc_5numpy_6random_6mtrand_11RandomState_68weibull__pyx_doc_5numpy_6random_6mtrand_11RandomState_70power__pyx_doc_5numpy_6random_6mtrand_11RandomState_72laplace__pyx_doc_5numpy_6random_6mtrand_11RandomState_74gumbel__pyx_doc_5numpy_6random_6mtrand_11RandomState_76logistic__pyx_doc_5numpy_6random_6mtrand_11RandomState_78lognormal__pyx_doc_5numpy_6random_6mtrand_11RandomState_80rayleigh__pyx_doc_5numpy_6random_6mtrand_11RandomState_82wald__pyx_doc_5numpy_6random_6mtrand_11RandomState_84triangular__pyx_doc_5numpy_6random_6mtrand_11RandomState_86binomial__pyx_doc_5numpy_6random_6mtrand_11RandomState_88negative_binomial__pyx_doc_5numpy_6random_6mtrand_11RandomState_90poisson__pyx_doc_5numpy_6random_6mtrand_11RandomState_92zipf__pyx_doc_5numpy_6random_6mtrand_11RandomState_94geometric__pyx_doc_5numpy_6random_6mtrand_11RandomState_96hypergeometric__pyx_doc_5numpy_6random_6mtrand_11RandomState_98logseries__pyx_doc_5numpy_6random_6mtrand_11RandomState_100multivariate_normal__pyx_doc_5numpy_6random_6mtrand_11RandomState_102multinomial__pyx_doc_5numpy_6random_6mtrand_11RandomState_104dirichlet__pyx_doc_5numpy_6random_6mtrand_11RandomState_106shuffle__pyx_doc_5numpy_6random_6mtrand_11RandomState_108permutation__pyx_doc_5numpy_6random_6mtrand_8ranf__pyx_doc_5numpy_6random_6mtrand_6sample__pyx_doc_5numpy_6random_6mtrand_4set_bit_generator__pyx_doc_5numpy_6random_6mtrand_2get_bit_generator__pyx_doc_5numpy_6random_6mtrand_seedcrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entryrandom_loggam.part.0fe_doublewe_doubleke_doublefe_floatwe_floatke_floatwi_doubleki_doublefi_doublerandom_standard_gamma.part.0wi_floatki_floatfi_floatlegacy-distributions.clegacy_gauss.part.0legacy_standard_gamma.part.0__FRAME_END__random_laplacerandom_buffered_bounded_boollegacy_random_zipfrandom_geometric_inversionlegacy_frandom_weibullrandom_flegacy_paretorandom_negative_binomialrandom_standard_cauchy__pyx_module_is_main_numpy__random__mtrandlegacy_chisquarerandom_standard_exponential_fill_flegacy_gaussrandom_standard_gammarandom_binomial_btperandom_logserieslegacy_normalrandom_rayleighrandom_standard_exponentialrandom_uniformlegacy_random_binomialrandom_bounded_uint64_filllegacy_random_multinomialrandom_bounded_uint16_filllegacy_standard_exponentialrandom_logisticlegacy_negative_binomialrandom_standard_uniform_fill_frandom_bounded_uint64random_positive_intrandom_standard_gamma_frandom_triangularrandom_buffered_bounded_uint32legacy_rayleighrandom_powerrandom_bounded_uint8_fillrandom_noncentral_frandom_standard_exponential_inv_fill_flegacy_waldrandom_buffered_bounded_uint8random_betarandom_exponential__dso_handlerandom_gammalegacy_random_poissonrandom_standard_uniform_frandom_loggamrandom_gamma_flegacy_weibullrandom_standard_exponential_frandom_paretorandom_positive_int64legacy_standard_gammarandom_geometric_searchrandom_standard_trandom_vonmisesrandom_bounded_uint32_fillrandom_standard_normal_frandom_positive_int32random_standard_uniformlegacy_powerrandom_normallegacy_exponentialrandom_chisquarelegacy_standard_cauchylegacy_gammarandom_standard_exponential_fillrandom_intervalrandom_waldrandom_noncentral_chisquare_DYNAMICrandom_standard_normallegacy_betalegacy_noncentral_frandom_standard_exponential_inv_fillrandom_lognormalrandom_buffered_bounded_uint16legacy_random_hypergeometricrandom_uintrandom_gumbelrandom_standard_uniform_filllegacy_standard_trandom_standard_normal_fill_flegacy_logserieslegacy_random_geometricrandom_bounded_bool_fill__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_legacy_vonmisesrandom_binomial_inversionlegacy_noncentral_chisquarerandom_standard_normal_filllegacy_lognormalPyUnicode_FromFormatlog1pf@@GLIBC_2.2.5PyObject_SetItemPyList_NewPyExc_SystemErrorPyDict_SetItemStringfree@@GLIBC_2.2.5PyDict_SizePyException_SetTracebackPyMethod_Type_ITM_deregisterTMCloneTablePyFloat_TypePyTuple_TypePyObject_FormatPyList_AsTuple_PyThreadState_UncheckedGetPyModuleDef_InitPyEval_RestoreThreadPy_EnterRecursiveCallPyFrame_New__isnan@@GLIBC_2.2.5PyCapsule_GetNamePyNumber_InPlaceAddexp@@GLIBC_2.2.5PyNumber_AddPyObject_GetAttrStringPyImport_AddModulePyBytes_FromStringAndSize_PyObject_GenericGetAttrWithDictPyObject_SetAttrStringPyErr_WarnEx_Py_DeallocPyModule_NewObjectPyErr_SetObjectPyErr_NormalizeExceptionPyNumber_MultiplyPyObject_RichComparePyGC_Disable_finiPyImport_GetModuleDictPyExc_RuntimeErrorPyCMethod_NewPyNumber_LongPyErr_GivenExceptionMatchesPyErr_SetStringPyObject_IsInstancePyException_GetTracebackPyExc_ExceptionPyExc_ValueErrorPyExc_DeprecationWarningPyExc_TypeErrorPyInterpreterState_GetIDPySequence_Containsmemset@@GLIBC_2.2.5PyVectorcall_FunctionPyMem_ReallocPyErr_ExceptionMatchespow@@GLIBC_2.2.5log@@GLIBC_2.2.5PyOS_snprintfPyTraceBack_Herelog1p@@GLIBC_2.2.5fmod@@GLIBC_2.2.5PyObject_CallFinalizerFromDeallocPyObject_NotPyNumber_InPlaceTrueDividePyLong_FromSsize_tPyFloat_FromDoublePyType_Readyacos@@GLIBC_2.2.5PyLong_FromLongmemcmp@@GLIBC_2.2.5PyLong_AsSsize_tPyModule_GetNamePyErr_ClearPyList_AppendPyCapsule_IsValidPyExc_KeyErrorPyImport_GetModule_PyUnicode_FastCopyCharacters_Py_FalseStruct__gmon_start__expf@@GLIBC_2.2.5PyTuple_NewPyObject_GenericGetAttrPyThreadState_GetPyExc_OverflowErrormemcpy@@GLIBC_2.14expm1@@GLIBC_2.2.5PyNumber_RemainderPyType_ModifiedPyObject_SetAttrPyErr_Occurred_Py_EllipsisObjectPyLong_AsLongPyImport_ImportModulesqrtf@@GLIBC_2.2.5_PyDict_GetItem_KnownHashPy_LeaveRecursiveCallPyObject_VectorcallDictPyDict_GetItemStringPy_Versionpowf@@GLIBC_2.2.5PyObject_Sizemalloc@@GLIBC_2.2.5_Py_NoneStructPyFloat_AsDoublePyObject_IsTrue_PyType_LookupPyImport_ImportModuleLevelObjectPyObject_HashPyUnicode_ComparePyInit_mtrand_Py_TrueStructlogf@@GLIBC_2.2.5PyDict_NewPyExc_IndexErrorPyObject_GC_IsFinalizedPyBool_TypePyDict_TypePyDict_NextPyBaseObject_Typememmove@@GLIBC_2.2.5PyUnicode_AsUTF8PyLong_TypePyCapsule_TypePyGC_Enable_PyObject_GetDictPtrPyUnicode_FromStringPyObject_GetIterPyEval_SaveThreadPyUnicode_InternFromStringPyUnstable_Code_NewWithPosOnlyArgsPyExc_ImportErrorPyDict_SetItemPySequence_TuplePyExc_AttributeErrorPyDict_CopyPyExc_StopIterationPySequence_Listfloor@@GLIBC_2.2.5PyUnicode_TypePyCapsule_NewPyType_IsSubtypePyUnicode_DecodePyErr_FormatPyCapsule_GetPointerPySlice_NewPyExc_NameErrorPyUnicode_FromStringAndSizePyModule_GetDict_ITM_registerTMCloneTablePyUnicode_ConcatPyNumber_IndexPyObject_GetAttrsqrt@@GLIBC_2.2.5PyCFunction_Type_PyDict_NewPresizedceil@@GLIBC_2.2.5PyUnicode_FormatPyLong_FromStringPyMem_MallocPyErr_WarnFormat__cxa_finalize@@GLIBC_2.2.5_initPyNumber_SubtractPyUnicode_NewPyTuple_PackPyCode_NewEmptyPyObject_GC_UnTrackPyDict_GetItemWithErrorPyList_Type.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.comment88$.o``48@VHonn`UoPd    `nB55 
xPPs P P~XX$5	й I
I
P
P
C





 
 




x

@
 

h 0
/
@V	0`e