aboutsummaryrefslogtreecommitdiff
ELF>|@k@8	@HjHjppp00077k
{
{
 5k
{
{
888$$Ptd


QtdRtdk
{
{
PPGNU3\5BΖ҇z	p"	#@012a@AT%
$@	

}vRPeߗ`c75kΑ7q3`%ۃ1</#ڟqғSNDSmcOjhoss{KL ,,9{f讋]=ؔΊ6}	m#(؃`GơtkAt;
	CYdmH)9p+*Wt)y	aSg#TLH3kݪ<Xe䞓9jQ{`Kݼa/SD\~e$Mx	
	q

,
 D			,K	
,&Z	:
MhZ{	B
O.~t
%		2	A
J00W>O$	dg rw/(ph	
<	&Fd7a	->Cp\)>	
OK&^v=j5{m8 kQS
W	oR"Eu<~hWQ/LI
( w@{
|p
3t
 a
@3+
y!PIcI`pZ=@%_@&a@o0P2-`i$
pW.@
wNYpI
0B0RI
C
`c	` 
Si0Wp	h
PV
/BI q
G	GIR
0	pPF
S`i
 a
@&W
0
C:__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Py_NoneStructPyBaseObject_TypePyObject_SetAttrPyObject_GetAttrPy_EnterRecursiveCallPy_LeaveRecursiveCallPyErr_OccurredPyObject_CallPyExc_SystemErrorPyErr_SetStringrandom_bounded_uint64PyExc_TypeErrorPyErr_FormatPyGC_DisablePyType_ReadyPyGC_Enable_Py_DeallocPyExc_DeprecationWarningPyErr_WarnFormatPyLong_FromSsize_tPyObject_GC_UnTrackPyObject_GC_IsFinalizedPyObject_CallFinalizerFromDeallocPyErr_FetchPyThread_free_lockPyErr_RestorePyBuffer_ReleasePyCapsule_NewPyDict_SetItemPyObject_GetAttrStringPyDict_SetItemStringPyExc_AttributeErrorPyErr_ExceptionMatchesPyErr_ClearPyDict_GetItemStringPyModule_GetNamePyExc_ImportErrorPyCapsule_IsValidPyCapsule_GetNamePyCapsule_GetPointerPyThreadState_GetPyInterpreterState_GetIDPyModule_NewObjectPyModule_GetDictPyExc_ValueErrorPyOS_snprintfPyErr_WarnExPyLong_TypePyFloat_TypePyObject_RichCompare_Py_TrueStruct_Py_FalseStructPyObject_IsTrue_PyType_LookupPyErr_SetObjectvsnprintf_Py_FatalErrorFuncPyDict_NextPyUnicode_InternFromStringPyUnicode_DecodePyUnicode_FromStringAndSizePyBytes_FromStringAndSizePyObject_HashPyException_GetTracebackmemcpyPyObject_GetItemPyExc_RuntimeErrormallocfreePyList_TypePyTuple_TypePyExc_OverflowErrorPyUnicode_NewmemsetPyUnicode_FromOrdinal_PyUnicode_FastCopyCharactersPyUnicode_TypememcmpPyObject_GC_TrackPyException_SetTracebackPyDict_NewPyImport_ImportModuleLevelObjectPyErr_GivenExceptionMatchesPyCFunction_TypePyType_IsSubtypePyVectorcall_FunctionPyObject_VectorcallDictPyObject_IsSubclassPyTuple_NewPyTuple_PackPyObject_RichCompareBoolPyLong_AsUnsignedLongPySlice_NewPyObject_FreePyLong_AsLongPyUnicode_ComparePyErr_NormalizeExceptionPyNumber_IndexPyLong_AsSsize_tPyExc_IndexErrorPyUnicode_FromStringPyUnicode_ConcatPyImport_GetModulePyObject_GenericGetAttr_PyObject_GenericGetAttrWithDict_PyThreadState_UncheckedGetPyDict_DelItemPyType_ModifiedPyExc_NameError_PyDict_GetItem_KnownHashPyExc_StopIteration_PyObject_GetDictPtrPyObject_NotPyFrame_NewPyTraceBack_HerePyCode_NewEmptyPyUnicode_FromFormatPyUnicode_AsUTF8memmovePyMem_ReallocPyMem_MallocPyMethod_TypePyNumber_InPlaceMultiplyPyNumber_MultiplyPyLong_FromLongPyList_NewPyList_AsTuplePyList_AppendPyGILState_EnsurePyGILState_ReleasePyUnicode_FormatPyNumber_RemainderPyErr_NoMemoryPyExc_BufferErrorPySlice_TypePyIndex_CheckPyObject_SetItemPyObject_FormatPyMem_FreePyExc_ZeroDivisionErrorPyObject_GetIterPyDict_SizePyNumber_InPlaceAddPyExc_NotImplementedErrorrandom_logseriesrandom_geometricrandom_zipfrandom_waldrandom_powerrandom_weibullrandom_paretorandom_vonmisesrandom_standard_trandom_standard_cauchyrandom_noncentral_chisquarerandom_chisquarerandom_frandom_standard_gammarandom_standard_gamma_frandom_standard_normal_fillrandom_standard_normal_fill_frandom_uniformPyFloat_AsDoublePyFloat_FromDoublerandom_betarandom_standard_uniform_fillrandom_standard_uniform_fill_fPyNumber_AddPyImport_ImportModulePyCapsule_TypePyExc_ExceptionPyObject_GetBufferPyExc_UnboundLocalErrorrandom_normalrandom_logisticrandom_gumbelrandom_lognormalrandom_laplacerandom_gammarandom_standard_exponential_fillrandom_standard_exponential_fill_frandom_standard_exponential_inv_fillrandom_standard_exponential_inv_fill_frandom_poissonrandom_rayleighrandom_exponentialPyBytes_FromStringstrlenPySequence_Containsrandom_noncentral_fPyBytes_TypePyObject_Mallocrandom_intervalPyEval_SaveThreadPyEval_RestoreThreadPyBool_TypePySequence_TuplePyObject_SizePyNumber_SubtractPyNumber_TrueDividePyLong_FromLongLongrandom_negative_binomialsqrtrandom_hypergeometricPyNumber_OrPyLong_FromSize_tPyNumber_FloorDividerandom_multivariate_hypergeometric_countrandom_multivariate_hypergeometric_marginals_Py_EllipsisObjectPyObject_IsInstancerandom_triangularPyNumber_MatrixMultiplyPySequence_ListPyNumber_NegativePyNumber_Absolute_PyLong_Copyrandom_binomialPyNumber_InPlaceTrueDividePyException_SetCausePyLong_FromUnsignedLongPyObject_CallObjectPyImport_AddModulePyObject_SetAttrStringPy_VersionPyLong_FromStringPyEval_GetBuiltinsPyImport_GetModuleDictPyUnstable_Code_NewWithPosOnlyArgsPyThread_allocate_lockPyCMethod_New_PyDict_NewPresizedrandom_multinomialPyInit__generatorPyModuleDef_Initrandom_standard_uniform_frandom_standard_uniformrandom_standard_exponentialexplog1prandom_standard_exponential_fexpflog1pfrandom_standard_normalrandom_standard_normal_fpowlogpowflogfsqrtfrandom_positive_int64random_positive_int32random_positive_intrandom_uintrandom_loggamrandom_gamma_fexpm1floorrandom_binomial_btperandom_binomial_inversion__isnanacosfmodrandom_geometric_searchrandom_geometric_inversionrandom_buffered_bounded_uint32random_buffered_bounded_uint16random_buffered_bounded_uint8random_buffered_bounded_boolrandom_bounded_uint64_fillrandom_bounded_uint32_fillrandom_bounded_uint16_fillrandom_bounded_uint8_fillrandom_bounded_bool_filllogfactoriallibm.so.6libc.so.6GLIBC_2.14GLIBC_2.2.50ui	ui	{
J{
I{
{

l

Ȇ


H
1X
[p
d
\
f
w(

x
7
f

f
X
P\p
@Q
 +
 


ȉ



@T
 r(
 
8

x
@&
 
 J
d
 
 J8
c
l
0
l
0Ћ
Pl؋
`
l
  
l(
`H
lP
p
lx

l
@
lȌ
  
l(
0+@
`fH
`
Tfh
`
%i
ph
i
a
fȍ

f
8
mP
Ox
 [؎
J
f

H
 BX
@L
lȏ
[
f
H
f
CX
mp

 


А
 P

(

8

x
6
PQ
J
0
W 
J8
pO
;m
O
Cm
0M
f
< 
f(
8x
x\
pP



\
@J 
gH

X


Z
L
j
[
(c(
Om0
p]8
pN
l


g
@
gȕ
0
]h
?
h


 
g(
 8
y
@
gH
X
t
`
hh
x
 k

h

e

7i
З
X

lȖ
`gؖ
@W

(j
y
@H

g
0
`>
 
g(
 8
@5
@
gH
X
`&
`
gh
x


g

`

i

@

iȗ
`,ؗ
	
}g

	
rg

 	 
bg(
Е8
 	@
WgH
X
	`
Ngh
x
	
Gg

	
?g
@}
	
9gȘ
pwؘ
	
h
М
 	
h
p
u	 
h(
@8
`j	@
hH
X
`Y	`
hh
x
@P	
4g
Pp
E	
i
P
<	
niș
Kؙ
`.	
ei
`
 	
h

 	 
/g(
j8
@
	@
iH
dX
	`
ih
x
@
%g
^
@
i


lȚ
ؚ

wi
`1
 
[i

 
*i(
h8
 @
iH
sX
`
hh
x
@
Gh

x
hț
`
]k{

}
}
}
}
}
}
}

}
}
}
}

}
"~
~
&~
~
 ~
(~
0~
8~
6@~
=H~
>P~
?X~
A`~
Bh~
p~
x~
~
~
~
~
~
~
h~
i~

~
l~
n~
~
~
w~
	~
~



 
(
0
8
@
H
P
X
`
h
p
x

















 
(
0
8
@
H
P
	X
`

h
p
x









Ȁ
Ѐ
؀



 
!
#
$
%
' 
((
0
8
)@
*H
+P
,X
-`
.h
/p
0x

1
2

3
4
5
7
8
9ȁ
:Ё
;؁
<

@
C
D
E
F
G
H 
I(
J0
K8
@
LH
MP
X
N`
Oh
Pp
Qx
R
S
T
U
V
W
X
Y
Z
[Ȃ
\Ђ
]؂
^
_

`
a
b
c
d
e 
f(
g0
8
i@
jH
kP
lX
m`
oh
p
px
q
r
s

t
u
v

x
yȃ
zЃ
{؃
|
}
~





 
(
0
8
@
H
P
X
`
h
p
x









Ȅ
Є
؄








 
(
0
8
@
H
P
X
`
h
p
x









ȅ
Ѕ
؅








 
(
0
8
@
H
HH
Ht[H5
%
@%
h%
h%
h%
h%
h%
h%
h%
hp%
h`%
h	P%
h
@%
h0%
h %z
h
%r
h%j
h%b
h%Z
h%R
h%J
h%B
h%:
h%2
h%*
hp%"
h`%
hP%
h@%

h0%
h %
h%
h%
h%
h %
h!%
h"%
h#%
h$%
h%%
h&%
h'p%
h(`%
h)P%
h*@%
h+0%
h, %z
h-%r
h.%j
h/%b
h0%Z
h1%R
h2%J
h3%B
h4%:
h5%2
h6%*
h7p%"
h8`%
h9P%
h:@%

h;0%
h< %

h=%

h>%

h?%

h@%

hA%

hB%

hC%

hD%

hE%

hF%

hGp%

hH`%

hIP%

hJ@%

hK0%

hL %z

hM%r

hN%j

hO%b

hP%Z

hQ%R

hR%J

hS%B

hT%:

hU%2

hV%*

hWp%"

hX`%

hYP%

hZ@%


h[0%

h\ %
h]%
h^%
h_%
h`%
ha%
hb%
hc%
hd%
he%
hf%
hgp%
hh`%
hiP%
hj@%
hk0%
hl %z
hm%r
hn%j
ho%b
hp%Z
hq%R
hr%J
hs%B
ht%:
hu%2
hv%*
hwp%"
hx`%
hyP%
hz@%

h{0%
h| %
h}%
h~%
h%
h%
h%
h%
h%
h%
h%
h%
hp%
h`%
hP%
h@%
h0%
h %z
h%r
h%j
h%b
h%Z
h%R
h%J
h%B
h%:
h%2
h%*
hp%"
h`%
hP%
h@%

h0%
h %

h%

h%

h%

h%

h%

h%

h%

h%

h%

h%

hp%

h`%

hP%

h@%

h0%

h %z

h%r

h%j

h%b

h%Z

h%R

h%J

h%B

h%:

h%2

h%*

hp%"

h`%

hP%

h@%


h0%

h %	
h%	
h%	
h%	
h%	
h%	
h%	
h%	
h%	
h%	
hATUSHPHHtH HqH9~jHDu"HPHw
H5hAH81kHu0H t&HHHF
H5_AHSH816HHH$HAąt=D[]A\U1SHH1Q#HHt7HH55,
HxHExHHEuH1H|Z[]AVIAUIHATUSDHt@H;
HuE1tHLLuAHEx2HHEu)HIH`
AH8$tE1[D]A\A]A^AWIAVIH5AUIATUSHAPxHHLHQIHu(LALH5WHH
H81xLHVu9LLHIMLHHdH5=H810LLHHtHExHHEuH=1HZ[]A\A]A^A_AWIAVIH5AUIATUSHAP~HHLHWIHu(LGLH5HHH81xLH\u9LLHIMLHHjH5˲H810LLHHtHExHHEuHC1HZ[]A\A]A^A_AVAUIATUQXHxH
HuH
E1H5#H9tHH5zE1H8L%s0
MtA$A$H52LIHu1HHIxHIuLiHtHIHAH
HLHxfAH
LLHixCAH
LLHFx E1H
LLH&y
HIZL]A\A]A^AVIHAUIATUDSHHIHH@u#HSLLH5H81ML$(ID$ Mt
ILLIL9v#HILLH5lH81jAuHH9sCHl$RLIPMHH1H11Y^yLE1HL[]A\A]A^UH
H
J
SHFHD$H;3HD$H
HD$0H3HD$8H
HD$XH2HD$`H
H$H2H$H|
H$H2H$Hf
HD$HD$ fD$(D$*HD$@HD$HfD$PD$RHD$hHD$pfD$xD$zHDŽ$
HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$H$H]0H$H
H$H
H$H
H$ H)H$(Hv
H$HHH$PH`
H$pH	
H$xHJ
H$H
H$H4
HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$EHDŽ$fDŽ$Ƅ$HDŽ$0HDŽ$8fDŽ$@Ƅ$BHDŽ$X3HDŽ$`fDŽ$hƄ$jHDŽ$$HDŽ$fDŽ$Ƅ$HDŽ$7H$Ho
H$H@
H$H
H$H*
H$H$H$H
H$8Hu
H$@H
H$`H
H$hH
HDŽ$fDŽ$Ƅ$HDŽ$&HDŽ$fDŽ$Ƅ$HDŽ$=HDŽ$fDŽ$Ƅ$
HDŽ$ HDŽ$(fDŽ$0Ƅ$2HDŽ$HBHDŽ$PfDŽ$XƄ$ZHDŽ$p5HDŽ$xfDŽ$Ƅ$H$H
H$H
H$HK"H$H
H$H*H$H
H$H
H$H
H$(H
H$0H
H$PH(H$XHt
HDŽ$Q
HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$	HDŽ$fDŽ$Ƅ$HDŽ$#HDŽ$fDŽ$ Ƅ$"HDŽ$8&HDŽ$@fDŽ$HƄ$JHDŽ$`
H$xHH$H
H$H9!H$Hj
H$HH$HT
H$H] H$H>
H$H_H$ H(
HDŽ$hfDŽ$pƄ$rHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$( HDŽ$0fDŽ$8Ƅ$:H$@HqH$HH"
H$hH!H$pH
H$HH$H
H$HH$H
H$HH$H
H$H;	
H$H
HDŽ$P!HDŽ$XfDŽ$`Ƅ$bHDŽ$xHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$%H$0HH$8H
H$XHH$`H
H$H#H$H
H$H%H$H~
H$HH$Hh
HDŽ$ fDŽ$(Ƅ$*HDŽ$@HDŽ$HfDŽ$PƄ$RHDŽ$hHDŽ$pfDŽ$xƄ$zHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$H$HYH$Hb
H$ H[
H$(HL
H$HH
H$PH6
H$pH
H$xH 
H$HA
H$H

H$H
H$H
HDŽ$"HDŽ$fDŽ$Ƅ$HDŽ$02HDŽ$8fDŽ$@Ƅ$BHDŽ$X*HDŽ$`fDŽ$hƄ$jHDŽ$(HDŽ$fDŽ$Ƅ$HDŽ$+HDŽ$fDŽ$Ƅ$HDŽ$#H$HH$H
H$HIH$H
H$8HKH$@H
H$`HH$hH
H$HH$H
HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$
HDŽ$ HDŽ$(fDŽ$0Ƅ$2HDŽ$H"HDŽ$PfDŽ$XƄ$ZHDŽ$pHDŽ$xfDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$H$HH$H
H$HH$H
H$HEH$Hv
H$(HgH$0H`
H$PH	H$XHJ
H$xH
H$H4
HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$ Ƅ$"HDŽ$8HDŽ$@fDŽ$HƄ$JHDŽ$`HDŽ$hfDŽ$pƄ$rHDŽ$&H$HO
H$H@
H$H	H$H*
H$H	H$H
H$	HH$ 	H

H$@	HH$H	H

HDŽ$fDŽ$Ƅ$HDŽ$*HDŽ$fDŽ$Ƅ$HDŽ$%HDŽ$fDŽ$Ƅ$HDŽ$	&HDŽ$	fDŽ$	Ƅ$	HDŽ$(	!HDŽ$0	fDŽ$8	Ƅ$:	HDŽ$P	!HDŽ$X	fDŽ$`	Ƅ$b	H$h	HH$p	H
H$	H+H$	H
H$	H
H$	H
H$	H/H$	H
H$
HH$
H
H$0
H+H$8
Ht
HDŽ$x	HDŽ$	fDŽ$	Ƅ$	HDŽ$	HDŽ$	fDŽ$	Ƅ$	HDŽ$	HDŽ$	fDŽ$	Ƅ$	HDŽ$	HDŽ$	fDŽ$
Ƅ$
HDŽ$
HDŽ$ 
fDŽ$(
Ƅ$*
HDŽ$@
H$X
HW	H$`
H
H$
HH$
Hj
H$
HH$
HT
H$
H	H$
H>
H$
H?	H$H(
HDŽ$H
fDŽ$P
Ƅ$R
HDŽ$h
LHDŽ$p
fDŽ$x
Ƅ$z
HDŽ$
HDŽ$
fDŽ$
Ƅ$
HDŽ$
HDŽ$
fDŽ$
Ƅ$
HDŽ$
"HDŽ$
fDŽ$
Ƅ$
HDŽ$[HDŽ$fDŽ$Ƅ$H$ H	H$(H"

H$HH	H$PH

H$pHuH$xH	
H$HH$H	
H$H!H$H	
H$H[H$H	
HDŽ$0?HDŽ$8fDŽ$@Ƅ$BHDŽ$X.HDŽ$`fDŽ$hƄ$jHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$H$HH$H
H$8HH$@H
H$`HH$hH
H$H~H$H~
H$Hg	H$Hh
HDŽ$fDŽ$Ƅ$
HDŽ$ HDŽ$(fDŽ$0Ƅ$2HDŽ$HHDŽ$PfDŽ$XƄ$ZHDŽ$pHDŽ$xfDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$&HDŽ$fDŽ$Ƅ$H$HqH$Hb
H$
HH$
HL
H$(
HsH$0
H6
H$P
HH$X
H 
H$x
HA	H$
H

H$
H
H$
H
HDŽ$
HDŽ$fDŽ$Ƅ$HDŽ$
HDŽ$
fDŽ$ 
Ƅ$"
HDŽ$8
HDŽ$@
fDŽ$H
Ƅ$J
HDŽ$`
HDŽ$h
fDŽ$p
Ƅ$r
HDŽ$
HDŽ$
fDŽ$
Ƅ$
HDŽ$
H$
HH$
H
H$
HyH$
H
H$HkH$ H
H$@HdH$HH
H$hHH$pH
HDŽ$
fDŽ$
Ƅ$
HDŽ$
HDŽ$
fDŽ$
Ƅ$
HDŽ$	HDŽ$fDŽ$Ƅ$HDŽ$(HDŽ$0fDŽ$8Ƅ$:HDŽ$PHDŽ$XfDŽ$`Ƅ$bHDŽ$x
HDŽ$fDŽ$Ƅ$H$Ha	H$H
H$H	H$H
H$HH$Hv
H$H	H$H`
H$0H	H$8HJ
H$XH+	H$`H4
HDŽ$!HDŽ$fDŽ$Ƅ$HDŽ$"HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$HDŽ$.HDŽ$ fDŽ$(Ƅ$*HDŽ$@)HDŽ$HfDŽ$PƄ$RHDŽ$h(H$HH$H@
H$HiH$H*
H$HH$H
H$HuH$H
H$ Hw	H$(H
HDŽ$pfDŽ$xƄ$zHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$7HDŽ$fDŽ$Ƅ$HDŽ$0FHDŽ$8fDŽ$@Ƅ$BH$HHH$PH
H$pHH$xH
H$HH$H
H$HH$H
H$HH$H
H$HvH$Ht
HDŽ$XHDŽ$`fDŽ$hƄ$jHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$
HDŽ$ H$8HHH$@H
H$`HnH$hH$HAH$HH$HAH$H;	H$HAH$HDŽ$(fDŽ$0Ƅ$2HDŽ$HHDŽ$PfDŽ$XƄ$ZHDŽ$pHDŽ$xfDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$.HDŽ$fDŽ$Ƅ$H$H	H$HA H$(H	H$0HA(H$PHH$XHA0H$xHH$HA8H$HaH$HA@H$HaH$HAHHDŽ$9HDŽ$fDŽ$ Ƅ$"HDŽ$8)HDŽ$@fDŽ$HƄ$JHDŽ$`HDŽ$hfDŽ$pƄ$rHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$	H$H8	H$HAPH$HH$ HAXH$@H
H$HHA`H$hHH$pHAhH$HH$HApHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$(HDŽ$0fDŽ$8Ƅ$:HDŽ$P
HDŽ$XfDŽ$`Ƅ$bHDŽ$xHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$H$H
H$HAxH$H`H$HH$HxH$HH$0HjH$8HH$XH|H$`HH$H
H$HHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$ fDŽ$(Ƅ$*HDŽ$@HDŽ$HfDŽ$PƄ$RHDŽ$hHDŽ$pfDŽ$xƄ$zHDŽ$H$HH$HH$HH$HH$H
H$HH$ H
H$(HHH$HHHQ@H$PHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$0HDŽ$8fDŽ$@Ƅ$BHDŽ$XHDŽ$`fDŽ$hƄ$jH$xHAH$H@H$HAH$HH$HAH$HH$HA H$HH$HA(H$8H	H$@HA0H$pHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$
HDŽ$ HDŽ$(fDŽ$0Ƅ$2HDŽ$H)H$`H?H$hHA8H$HuH$H$HAHHPH$HH$H$HBH$H$HHDŽ$PfDŽ$XƄ$ZHDŽ$pHDŽ$xfDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$ Ƅ$"H$(HH$0HB H$PHH$XHB(H$xH	H$HB0H$HbH$HB8H$HGH$HB@HHH$HXH$HDŽ$8HDŽ$@fDŽ$HƄ$JHDŽ$`HDŽ$hfDŽ$pƄ$rHDŽ$4HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$	H$ HBH$@HH$HHBH$hHH$pHBH$HH$HB H$H.H$HB(H$HDŽ$fDŽ$Ƅ$HDŽ$(	HDŽ$0fDŽ$8Ƅ$:HDŽ$P
HDŽ$XfDŽ$`Ƅ$bHDŽ$xHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$H$HH$HB0H$HH$HB8H$0H	H$8HB@H$XHH$`HBHH$H7H$HBPH$HH$HBXHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$ fDŽ$(Ƅ$*HDŽ$@THDŽ$HfDŽ$PƄ$RHDŽ$hHDŽ$pfDŽ$xƄ$zHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$H$HH$HB`H$HH$H$(HBpH$HHH$PHBxH$pHH$xHH$ HXHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$0HDŽ$8fDŽ$@Ƅ$BHDŽ$XHDŽ$`fDŽ$hƄ$jHDŽ$HDŽ$fDŽ$Ƅ$H$H	H$HH$HR	H$HH$HbH$HH$HH$HH$8HH$@HH°H$`HZ HH$hHDŽ$%HDŽ$fDŽ$Ƅ$HDŽ$3HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$
HDŽ$ HDŽ$(fDŽ$0Ƅ$2HDŽ$HHDŽ$PfDŽ$XƄ$ZHDŽ$pH$HBH$HH$H$HBH$HH$H$0HB(H$H$HH$(H8HDŽ$xfDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$ Ƅ$"HDŽ$8HDŽ$@fDŽ$HƄ$JH$PHrH$XHB0H$xHH$HB8H$HH$HB@H$HH$HBHH$H-H$HBPH$HH$ HBXHDŽ$`	HDŽ$hfDŽ$pƄ$rHDŽ$$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$(H$@HBH$HHB`HhH$hHHH$pH$HBH$HH$HBH$H6H$HBH$HDŽ$0fDŽ$8Ƅ$:HDŽ$PHDŽ$XfDŽ$`Ƅ$bHDŽ$xHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$H$HH$HB H$0HyH$8HB(H$XHH$`HB0H$H"H$HB8H$HgH$HB@H$HcH$HBHHDŽ$HDŽ$ fDŽ$(Ƅ$*HDŽ$@HDŽ$HfDŽ$PƄ$RHDŽ$h	HDŽ$pfDŽ$xƄ$zHDŽ$
HDŽ$fDŽ$Ƅ$HDŽ$
HDŽ$fDŽ$Ƅ$HDŽ$H$HH$HBPH$ HH$(HBXH$HHH$PHB`H$pHqH$xHBhH$HodH$HBpHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$0HDŽ$8fDŽ$@Ƅ$BHDŽ$X	HDŽ$`fDŽ$hƄ$jHDŽ$R	HDŽ$fDŽ$Ƅ$HDŽ$
HDŽ$fDŽ$Ƅ$H$HfH$HBxH$HEH$HH$ HH$ HH$8 HeH$@ HH$` H!H$h HH$ H!H$ HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$ fDŽ$ Ƅ$
 HDŽ$  HDŽ$( fDŽ$0 Ƅ$2 HDŽ$H HDŽ$P fDŽ$X Ƅ$Z HDŽ$p HDŽ$x fDŽ$ Ƅ$ HDŽ$ H$ HH$ HH$ HH$!HVH$!HH$(!HnH$0!HH$P!H#H$X!HH$ HHDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$!	HDŽ$!fDŽ$ !Ƅ$"!HDŽ$8!HDŽ$@!fDŽ$H!Ƅ$J!HDŽ$`!HDŽ$h!fDŽ$p!Ƅ$r!H$x!HNH$!HH$!HH$!HH$!HH$!HH$!H	H$!HH$"H&H$ "HH$@"H<H$H"HHDŽ$!KHDŽ$!fDŽ$!Ƅ$!HDŽ$!
HDŽ$!fDŽ$!Ƅ$!HDŽ$!HDŽ$!fDŽ$!Ƅ$!HDŽ$"$HDŽ$"fDŽ$"Ƅ$"HDŽ$("HDŽ$0"fDŽ$8"Ƅ$:"HDŽ$P")H$h"H,H$p"HH$"HH$"HH$"HH$"HH$"H
	H$"HH$#H'H$#H HDŽ$X"fDŽ$`"Ƅ$b"HDŽ$x"
HDŽ$"fDŽ$"Ƅ$"HDŽ$"HDŽ$"fDŽ$"Ƅ$"HDŽ$"HDŽ$"fDŽ$"Ƅ$"HDŽ$"&HDŽ$"fDŽ$#Ƅ$#HDŽ$#HDŽ$ #fDŽ$(#Ƅ$*#H$0#HH$8#H(H$X#HKH$`#H0H$#H:H$#H8H$#HH$#H@H$#HH$#HHH$#H`H$$HPHDŽ$@#HDŽ$H#fDŽ$P#Ƅ$R#HDŽ$h#HDŽ$p#fDŽ$x#Ƅ$z#HDŽ$#HDŽ$#fDŽ$#Ƅ$#HDŽ$#HDŽ$#fDŽ$#Ƅ$#HDŽ$#HDŽ$#fDŽ$#Ƅ$#HDŽ$$H$ $HH$($HXH$H$HxH$P$H`H$p$HTH$x$HhH$$HLH$$HpH$$HH$$HxHDŽ$$fDŽ$$Ƅ$$HDŽ$0$HDŽ$8$fDŽ$@$Ƅ$B$HDŽ$X$HDŽ$`$fDŽ$h$Ƅ$j$HDŽ$$HDŽ$$fDŽ$$Ƅ$$HDŽ$$HDŽ$$fDŽ$$Ƅ$$HDŽ$$	HDŽ$$fDŽ$$Ƅ$$H$$HH$$HH$%HH$%HH$8%HjH$@%HH$`%H$H$h%HH$%HH$%HH$%HnH$%HHDŽ$$HDŽ$%fDŽ$%Ƅ$
%HDŽ$ %HDŽ$(%fDŽ$0%Ƅ$2%HDŽ$H%8HDŽ$P%fDŽ$X%Ƅ$Z%HDŽ$p%
HDŽ$x%fDŽ$%Ƅ$%HDŽ$%	HDŽ$%fDŽ$%Ƅ$%HDŽ$%H$%HH$%HH$&HH$&HH$(&HH$0&HH$P&H*H$X&HH$x&HLH$&HHDŽ$%fDŽ$%Ƅ$%HDŽ$%	HDŽ$%fDŽ$%Ƅ$%HDŽ$&	HDŽ$&fDŽ$ &Ƅ$"&HDŽ$8&HDŽ$@&fDŽ$H&Ƅ$J&HDŽ$`&HDŽ$h&fDŽ$p&Ƅ$r&HDŽ$&	HDŽ$&fDŽ$&Ƅ$&H$&HH$&HH$&HH$&H$&HH$'HNH$ 'H$H'HH$h'HH$p'HH$&HH$@'H`HDŽ$&HDŽ$&fDŽ$&Ƅ$&HDŽ$&HDŽ$&fDŽ$&Ƅ$&HDŽ$'HDŽ$'fDŽ$'Ƅ$'HDŽ$('HDŽ$0'fDŽ$8'Ƅ$:'HDŽ$P'HDŽ$X'fDŽ$`'Ƅ$b'HDŽ$x'H$'HuH$'HH$'HH$'HH$'HH$'HH$(HCH$(H H$0(HH$8(H(H0Ƅ$'HHDŽ$'fDŽ$'HDŽ$'HDŽ$'fDŽ$'Ƅ$'HDŽ$'HDŽ$'fDŽ$'Ƅ$'HDŽ$'HDŽ$'fDŽ$(Ƅ$(HDŽ$(HDŽ$ (fDŽ$((Ƅ$*(HDŽ$@(HDŽ$H(fDŽ$P(Ƅ$R(H$X(HvH$`(H$(HBH$(HH$(HBH$(HPH$(HBH$(HH$)HB H$ )H
H$()HB(H$(HDŽ$h(HDŽ$p(fDŽ$x(Ƅ$z(HDŽ$(HDŽ$(fDŽ$(Ƅ$(HDŽ$(HDŽ$(fDŽ$(Ƅ$(HDŽ$(HDŽ$(fDŽ$(Ƅ$(HDŽ$)dHDŽ$)fDŽ$)Ƅ$)HDŽ$0)H$H)H
H$P)HB0H$p)HH$x)HB8H$)H#H$)HB@H$)HhH$)HBHH$)HH$)HBPHDŽ$8)fDŽ$@)Ƅ$B)HDŽ$X)
HDŽ$`)fDŽ$h)Ƅ$j)HDŽ$)HDŽ$)fDŽ$)Ƅ$)HDŽ$)	HDŽ$)fDŽ$)Ƅ$)HDŽ$)
HDŽ$)fDŽ$)Ƅ$)HDŽ$)HDŽ$*fDŽ$*Ƅ$
*H$*HH$*HBXH$8*HH$@*HB`H$`*HH$h*H$*HBpH$*H	H$*HBxH$*H	H$*HH$*HHDŽ$ *HDŽ$(*fDŽ$0*Ƅ$2*HDŽ$H*HDŽ$P*fDŽ$X*Ƅ$Z*HDŽ$p*HDŽ$x*fDŽ$*Ƅ$*HDŽ$*HDŽ$*fDŽ$*Ƅ$*HDŽ$*#HDŽ$*fDŽ$*Ƅ$*HDŽ$*!H$+HKH$+HH$(+HM	H$0+HH$P+HH$X+HH$x+H2H$+HH$+H	H$+HHDŽ$*fDŽ$*Ƅ$*HDŽ$+HDŽ$+fDŽ$ +Ƅ$"+HDŽ$8+%HDŽ$@+fDŽ$H+Ƅ$J+HDŽ$`+HDŽ$h+fDŽ$p+Ƅ$r+HDŽ$+HDŽ$+fDŽ$+Ƅ$+HDŽ$+'HDŽ$+fDŽ$+Ƅ$+H$+He	H$+HH$+HH$+HH$,HQH$ ,HH$@,HH$H,H$p,HH$,He
H$,HH$h,HHDŽ$+2HDŽ$+fDŽ$+Ƅ$+HDŽ$,HDŽ$,fDŽ$,Ƅ$,HDŽ$(,
HDŽ$0,fDŽ$8,Ƅ$:,HDŽ$P,HDŽ$X,fDŽ$`,Ƅ$b,HDŽ$x,HDŽ$,fDŽ$,Ƅ$,HDŽ$,H$,H
H$,HH$,H<
H$,HH$-H-H$-H$8-HH$X-HH$`-HH$0-HXHDŽ$,fDŽ$,Ƅ$,HDŽ$,HDŽ$,fDŽ$,Ƅ$,HDŽ$,IHDŽ$,fDŽ$-Ƅ$-HDŽ$-HDŽ$ -fDŽ$(-Ƅ$*-HDŽ$@-HDŽ$H-fDŽ$P-Ƅ$R-HDŽ$h-HDŽ$p-fDŽ$x-Ƅ$z-H$-H	H$-HH$-HH$-HH$-HH$-HH$-HdH$.H$(.H(H$H.H9H$P.H0H$ .HðHDŽ$-BHDŽ$-fDŽ$-Ƅ$-HDŽ$-HDŽ$-fDŽ$-Ƅ$-HDŽ$-	HDŽ$-fDŽ$-Ƅ$-HDŽ$.HDŽ$.fDŽ$.Ƅ$.HDŽ$0.HDŽ$8.fDŽ$@.Ƅ$B.HDŽ$X.H$p.H
H$x.H8H$.H	H$.H@H$.HH$.HHHPH$.HH$.H$/HBH$/HDŽ$`.fDŽ$h.Ƅ$j.HDŽ$.'HDŽ$.fDŽ$.Ƅ$.HDŽ$.$HDŽ$.fDŽ$.Ƅ$.HDŽ$.HDŽ$.fDŽ$.Ƅ$.HDŽ$.HDŽ$/fDŽ$/Ƅ$
/HDŽ$ /HDŽ$(/fDŽ$0/Ƅ$2/H$8/H4H$@/HBH$`/HY	H$h/HBH$/HwH$/H$/HB(H$/H{
H$/HB0H$0H s
H$0HB8H$/HPHDŽ$H/HDŽ$P/fDŽ$X/Ƅ$Z/HDŽ$p/3HDŽ$x/fDŽ$/Ƅ$/HDŽ$/HDŽ$/fDŽ$/Ƅ$/HDŽ$/HDŽ$/fDŽ$/Ƅ$/HDŽ$/
HDŽ$/fDŽ$/Ƅ$/HDŽ$0=H$(0H8c
H$00HB@H$P0HH$X0HBHH$x0HH$0HBPH$0HOH$0H$0HB`H$0HHHDŽ$0fDŽ$ 0Ƅ$"0HDŽ$80HDŽ$@0fDŽ$H0Ƅ$J0HDŽ$`0HDŽ$h0fDŽ$p0Ƅ$r0HDŽ$0HDŽ$0fDŽ$0Ƅ$0HDŽ$0HDŽ$0fDŽ$0Ƅ$0HDŽ$0HDŽ$0fDŽ$0Ƅ$0H$0HH$0HBhH$1HjH$ 1HBpH$@1HH$H1HBxH$h1HH$p1HH$1HbH$1HH$1HXH$1HHDŽ$1HDŽ$1fDŽ$1Ƅ$1HDŽ$(1HDŽ$01fDŽ$81Ƅ$:1HDŽ$P1HDŽ$X1fDŽ$`1Ƅ$b1HDŽ$x1HDŽ$1fDŽ$1Ƅ$1HDŽ$1HDŽ$1fDŽ$1Ƅ$1HDŽ$1H$1H_
H$1HH$2H	H$2HH$02HH$82HH$X2HbH$`2HH$2HdH$2HHDŽ$1fDŽ$1Ƅ$1HDŽ$1'HDŽ$1fDŽ$2Ƅ$2HDŽ$2"HDŽ$ 2fDŽ$(2Ƅ$*2HDŽ$@2
HDŽ$H2fDŽ$P2Ƅ$R2HDŽ$h2HDŽ$p2fDŽ$x2Ƅ$z2HDŽ$2HDŽ$2fDŽ$2Ƅ$2H$2HbH$2HH$2HH$2HH$2HH$3HH$ 3HbH$(3HH$H3HH$P3HH$p3H H$x3HHDŽ$2HDŽ$2fDŽ$2Ƅ$2HDŽ$2HDŽ$2fDŽ$2Ƅ$2HDŽ$3	HDŽ$3fDŽ$3Ƅ$3HDŽ$03HDŽ$83fDŽ$@3Ƅ$B3HDŽ$X3HDŽ$`3fDŽ$h3Ƅ$j3HDŽ$3H$3H\
H$3HH$3H3H$3H$3HH$4H@H$4HH$84HH$@4HH$3HHDŽ$3fDŽ$3Ƅ$3HDŽ$3"HDŽ$3fDŽ$3Ƅ$3HDŽ$3HDŽ$3fDŽ$3Ƅ$3HDŽ$3HDŽ$4fDŽ$4Ƅ$
4HDŽ$ 4HDŽ$(4fDŽ$04Ƅ$24HDŽ$H4HDŽ$P4fDŽ$X4Ƅ$Z4H$`4H%L
H$h4HH$4HH$4H H$4HF
H$4H(H$4H<
H$4H0H$5HWH$5H8H$(5HgH$05H@HDŽ$p4HDŽ$x4fDŽ$4Ƅ$4HDŽ$4HDŽ$4fDŽ$4Ƅ$4HDŽ$4"HDŽ$4fDŽ$4Ƅ$4HDŽ$4	HDŽ$4fDŽ$4Ƅ$4HDŽ$5HDŽ$5fDŽ$ 5Ƅ$"5HDŽ$85H$P5HsH$X5HHH$x5HH$5HPH$5Hw.
H$5HXH$5H	H$5H`H$5H{H$5HhHDŽ$@5fDŽ$H5Ƅ$J5HDŽ$`5HDŽ$h5fDŽ$p5Ƅ$r5HDŽ$5HDŽ$5fDŽ$5Ƅ$5HDŽ$5HDŽ$5fDŽ$5Ƅ$5HDŽ$5#HDŽ$5fDŽ$5Ƅ$5HDŽ$6HDŽ$6fDŽ$6Ƅ$6H$6HH$ 6HpH$@6H^H$H6HxH$h6HJH$p6H$6HH$6H	H$6HH$6H}H$6HH$6H8HDŽ$(6HDŽ$06fDŽ$86Ƅ$:6HDŽ$P6HDŽ$X6fDŽ$`6Ƅ$b6HDŽ$x6HDŽ$6fDŽ$6Ƅ$6HDŽ$6HDŽ$6fDŽ$6Ƅ$6HDŽ$6]HDŽ$6fDŽ$6Ƅ$6HDŽ$6H$7HH$7HH$07HH$87HH$X7H.H$`7HH$7HH$7HH$7HjH$7HHDŽ$6fDŽ$7Ƅ$7HDŽ$7HDŽ$ 7fDŽ$(7Ƅ$*7HDŽ$@7
HDŽ$H7fDŽ$P7Ƅ$R7HDŽ$h7HDŽ$p7fDŽ$x7Ƅ$z7HDŽ$7HDŽ$7fDŽ$7Ƅ$7HDŽ$7HDŽ$7fDŽ$7Ƅ$7H$7HH$7HH$7HQH$8HH$ 8HcH$(8HH$H8H"
H$P8HH$p8HH$x8HH$8HH$8HHDŽ$7HDŽ$7fDŽ$7Ƅ$7HDŽ$8HDŽ$8fDŽ$8Ƅ$8HDŽ$08HDŽ$88fDŽ$@8Ƅ$B8HDŽ$X8HDŽ$`8fDŽ$h8Ƅ$j8HDŽ$8HDŽ$8fDŽ$8Ƅ$8HDŽ$8H$8H
H$8HH$8HH$8HH$9HH$9HH$89HH$@9HH$`9HH$h9HHDŽ$8fDŽ$8Ƅ$8HDŽ$8	HDŽ$8fDŽ$8Ƅ$8HDŽ$8HDŽ$9fDŽ$9Ƅ$
9HDŽ$ 9HDŽ$(9fDŽ$09Ƅ$29HDŽ$H9HDŽ$P9fDŽ$X9Ƅ$Z9HDŽ$p9HDŽ$x9fDŽ$9Ƅ$9H$9HH$9H H$9HH$9H(H$9HH$9H0H$:HH$:H8H$(:HH$0:H@HHH$P:HH$X:HDŽ$9	HDŽ$9fDŽ$9Ƅ$9HDŽ$9HDŽ$9fDŽ$9Ƅ$9HDŽ$9HDŽ$9fDŽ$9Ƅ$9HDŽ$:
HDŽ$:fDŽ$ :Ƅ$":HDŽ$8:	HDŽ$@:fDŽ$H:Ƅ$J:HDŽ$`:H$:HBH$:HH$:HBH$:HH$:HBH$:HuH$:HB H$;HPH$x:H$ ;HDŽ$h:fDŽ$p:Ƅ$r:HDŽ$:HDŽ$:fDŽ$:Ƅ$:HDŽ$:HDŽ$:fDŽ$:Ƅ$:HDŽ$:HDŽ$:fDŽ$:Ƅ$:HDŽ$;HDŽ$;fDŽ$;Ƅ$;HDŽ$(;HDŽ$0;fDŽ$8;Ƅ$:;H$H;HB0H$h;HH$p;HB8H$;HH$;HB@H$;H<H$;HBHH$;HYH$;HBPH$<HH$<H$@;HDŽ$P;HDŽ$X;fDŽ$`;Ƅ$b;HDŽ$x;
HDŽ$;fDŽ$;Ƅ$;HDŽ$;HDŽ$;fDŽ$;Ƅ$;HDŽ$;
HDŽ$;fDŽ$;Ƅ$;HDŽ$;HDŽ$;fDŽ$<Ƅ$<HDŽ$<H$8<HB`H$X<H%H$`<HBhH$<H

H$<HBpH$<HH$<HBxH$<HcH$<HDŽ$ <fDŽ$(<Ƅ$*<H$0<HDŽ$@<HDŽ$H<fDŽ$P<Ƅ$R<HDŽ$h<HDŽ$p<fDŽ$x<Ƅ$z<HDŽ$<HDŽ$<fDŽ$<Ƅ$<HDŽ$<HDŽ$<fDŽ$<Ƅ$<HDŽ$<HDŽ$<fDŽ$<Ƅ$<H$=HH$ =HLH$(=HH$H=H)H$P=HH$p=HH$x=HH$=H
H$=HH$=HH$=HH$<HDŽ$=HDŽ$=fDŽ$=Ƅ$=HDŽ$0=HDŽ$8=fDŽ$@=Ƅ$B=HDŽ$X=HDŽ$`=fDŽ$h=Ƅ$j=HDŽ$=HDŽ$=fDŽ$=Ƅ$=HDŽ$=HDŽ$=fDŽ$=Ƅ$=HDŽ$=	H$=HH$=HH$>HdH$>HH$8>HH$@>HH$`>HH$h>HH$>HwH$>HHDŽ$=fDŽ$=Ƅ$=HDŽ$=HDŽ$>fDŽ$>Ƅ$
>HDŽ$ >HDŽ$(>fDŽ$0>Ƅ$2>HDŽ$H>HDŽ$P>fDŽ$X>Ƅ$Z>HDŽ$p>tHDŽ$x>fDŽ$>Ƅ$>HDŽ$>HDŽ$>fDŽ$>Ƅ$>H$>HH$>HH$>H6	H$>HH$?H	H$?HH$(?HH$0?HH$P?HH$X?HH$x?HH$?HHDŽ$>HDŽ$>fDŽ$>Ƅ$>HDŽ$>	HDŽ$>fDŽ$>Ƅ$>HDŽ$?OHDŽ$?fDŽ$ ?Ƅ$"?HDŽ$8?HDŽ$@?fDŽ$H?Ƅ$J?HDŽ$`?HDŽ$h?fDŽ$p?Ƅ$r?HDŽ$?H$?HH$?HH$?HdH$?HH$?HH$?H H$@HHtH$ @H(H$@@H*H$H@H0HDŽ$?fDŽ$?Ƅ$?HDŽ$?HDŽ$?fDŽ$?Ƅ$?HDŽ$?HDŽ$?fDŽ$?Ƅ$?HDŽ$@HDŽ$@fDŽ$@Ƅ$@HDŽ$(@!HDŽ$0@fDŽ$8@Ƅ$:@HDŽ$P@HDŽ$X@fDŽ$`@Ƅ$b@H$h@HH$p@H8H$@HH$@H@H$@H,H$@HHH$@H
H$@HPH$AH|H$AHXH$0AHF	H$8AH`HDŽ$x@HDŽ$@fDŽ$@Ƅ$@HDŽ$@HDŽ$@fDŽ$@Ƅ$@HDŽ$@HDŽ$@fDŽ$@Ƅ$@HDŽ$@	HDŽ$@fDŽ$AƄ$AHDŽ$AHDŽ$ AfDŽ$(AƄ$*AHDŽ$@ANH$XAHH$`AHhH$AH@H$AH$AHxH$AH~H$AHH$AHH$BHH$AH\$HDŽ$HAfDŽ$PAƄ$RAHDŽ$hA
HDŽ$pAfDŽ$xAƄ$zAHDŽ$AHDŽ$AfDŽ$AƄ$AHDŽ$AHDŽ$AfDŽ$AƄ$AHDŽ$A	HDŽ$AfDŽ$AƄ$AHDŽ$BHDŽ$BfDŽ$BƄ$BH$ BHH$(BHH$HBH׼H$PBHH$pBHAH$xBHH$BHH$BHH$BH	H$BHH$BHǽH$BHHDŽ$0BHDŽ$8BfDŽ$@BƄ$BBHDŽ$XB	HDŽ$`BfDŽ$hBƄ$jBHDŽ$BHDŽ$BfDŽ$BƄ$BHDŽ$BHDŽ$BfDŽ$BƄ$BHDŽ$BY	HDŽ$BfDŽ$BƄ$BHDŽ$BH$CHH$CHH$8CHH$@CHH$`CHvH$hCHH$CHH$CHH$CHSH$CHHDŽ$CfDŽ$CƄ$
CHDŽ$ CHDŽ$(CfDŽ$0CƄ$2CHDŽ$HCHDŽ$PCfDŽ$XCƄ$ZCHDŽ$pCHDŽ$xCfDŽ$CƄ$CHDŽ$CHDŽ$CfDŽ$CƄ$CHDŽ$CHDŽ$CfDŽ$CƄ$CH$CHu	H$CHH$DHW	H$DHH$(DHH$0DHH$PDHķH$XDHH$xDHH$DHH$DH7H$DHHDŽ$C&HDŽ$CfDŽ$CƄ$CHDŽ$D	HDŽ$DfDŽ$ DƄ$"DHDŽ$8DHDŽ$@DfDŽ$HDƄ$JDHDŽ$`DHDŽ$hDfDŽ$pDƄ$rDHDŽ$DHDŽ$DfDŽ$DƄ$DHDŽ$D
H$DH	H$DHH$DH`H$DH H(H$EHH$ EH$HEHBH$hEH%H$pEHBHDŽ$DfDŽ$DƄ$DHDŽ$DHDŽ$DfDŽ$DƄ$DHDŽ$ED
HDŽ$EfDŽ$EƄ$EHDŽ$(EHDŽ$0EfDŽ$8EƄ$:EH$@EHDŽ$PEHDŽ$XEfDŽ$`EƄ$bEHDŽ$xE	HDŽ$EfDŽ$EƄ$EH$EHj	H$EHBH$EHGH$EHB H$EHH$EHB(H$FH٭H$FHB0H$0FHoH$8FHB8H$XFH+H$`FHB@HDŽ$EHDŽ$EfDŽ$EƄ$EHDŽ$E
HDŽ$EfDŽ$EƄ$EHDŽ$EHDŽ$EfDŽ$FƄ$FHDŽ$FHDŽ$ FfDŽ$(FƄ$*FHDŽ$@FHDŽ$HFfDŽ$PFƄ$RFHDŽ$hFH$FH
	HDŽ$pFfDŽ$xFƄ$zFH$FHDŽ$F
HDŽ$FfDŽ$FƄ$FHDŽ$FHDŽ$FHDŽ$FHDŽ$FfDŽ$FƄ$FH+HteC 
C!H{Hst5{"t%zHE0HSHHt
1zHEzHEHqHEH}HtaxH(HF1[]ATE1UQH5y\sHtN1HHzzIHu vHuH}H54H8rHExHHEuHqLZ]A\AWAVAUATIUS1H(LPH{HtHHcHcAHwHHHHD$D|$M9}KDHHHuIM$HH;\$tH;u!IHL$HCHL$HHH9tHHu?Lct$H53KDHHI$HPH|H81yHnMv tHn1H([]A\A]A^A_ATIUQH5ѥHHu
sE1LHsAąxHLDZ]A\AWAVAUIATUSHH5uL%|HuH5LuHHu7H5עLHuH9tHD$11E1E1E1H5eLUJHD$H_H9H5'LouHHPH5LJIH?H9uH5LĩIHu$_H5HAąu11E1eIH5HvIH5GsAąyL9sHE1H5L2HH1rH5ҦLHHt6IH5HTvxdIH5rAąyHHtC:sHu9LrHD$11E1E11E1E1
11E111rAHuKHyIUH546H81Rv-11E1E1E1H5H1InLIH|$ILyIHqIHiIHD[]A\A]A^A_ATUSH0H$HD$HD$HD$HD$ HD$(kHL$HT$HHxhH<TH=b0rHH5bHIlHI$xHI$uLlH|HyH9Et<HxH5@H8mHEMHHE@Hl31HtH>HExHHEuHmlHHuH"xH5aH8[m=	Ht&	H5X@HwH81utHw'
H5l@HwH819tsuHwH5gAH8lQtHrwH5{AH8l5H<$`GH|$H$NGH|$HD$;G1H-wH{`H0qH
`SH=`LHL$(HT$ HHt$xZH5H=1EHHtJH1mHExHHEuHjSA%SASASAHL$HT$H4$H{hh_H|$NFH|$ DFH|$(:F13FH
`DH=`kH0[]A\AWAVAUATUSHHרHD$HD$HD$HD$ HD$(HD$0Ht)1H9@HuH5LH8j@H=jtOrHؔHtH=OaiHttHHH=/ahHttHHHvH=H5ahHuH0HHu1mH?Hu{Hl$8RHHHHAL
bRH7LPH`P1jH 1Hdhy|L-]A1f1H=@[	hHHK1H="[pHHFxyL-\A1WkHZHtjHIHtjH8HtëjH'HtjHHk1jHHTjHH:jHH 
hjHѡHNjHH24jHHjHH75*jHH1iHwH11H=^pH_HdHiHNHKjHHtu	H=b^nIHt\HHgHI$xHI$uL0fHt0HkHExHHEuHftjH
=ufHH	
:H@H5H=bmjyϽAL-Z|
H5_HjHtH=轡HtI6HH5_H`cyӽAL-Y
H=tHuAL-YH=LGH0HtH=/HHtH=ܓHHtH=|HСHtH=HHhH=ˠHHLH=̐诠HhH0H=蓠HDHH=ԒwH HH=`[HHH=D?HH=*HàHH=HHH=ߑH{HsgHHuAL-WOH!tHHCH-oHPHHHkHHtH
ϝH1H5lHHqH51lHHNH51lHȝH+H51tlHHH5]1QlHHHH5˜1'lHpHH51lHUHH5͑1kH:HuH51kHHRH51kHH/H51xkHHH5q1UkHΜHH5^12kHHH5ۍ1kHHH51jH}HH5ō1jHbH]HHH1jHEH8H51jH*HH51^jHHH5O1;jHHH5d1jHٛHH5!1iHHH5&1iHHfH5#1iHHCH5X1iHmH H51iiHRHH521FiH7HH51#iHHH51iHHH51hHHqH5Ə1hH˚HNHH5D1hHH$H5!1mhHHH51JhHsHH5;1'hHXHH5(1hH=HH5
1gH"HuH5R1gHHRH5ד1gHH/H51xgHљHH51UgHHH5ޓ12gHHH51gHHH5H1fHeHHeiH5f1fHCHVH5;1fH(H3H51|fH
HH5
1HVfHHH513fHԘHH5\1fHHH51eHHH51eHH^H5۔1eHhH;H51eHMHH5Ռ1aeH2HL
L1H
H~H5"eHHH1H=ML-oL5hL=)L%RZHHu'L-yOHAPAE1AU11jAVAVAWATATSATATAUTbH`HHExHHEuHZHMHH51AdH"HH1H=ML-L5ϋL=xL%qYHHu'L-NHؖAPAE1AU11hAVAVAWATATSATATAUpaH`HHExHHEuHYHqHmL-NA1aoL-MA1HpL-MA1/qL-MA1L-MA1L-MA1L-qMA1AL-MMAL-1MH-eHTtH=tH&tHtHtHtH=,yH==`bAL-LH|$ 3H|$(3H|$03H=tOH=ttLDH=QH=pHtAH`Hx/HHu'W u\HuHdH5QH8X1H= &.HgH50H=\HMH=uHוHX=H1H=*EaH5H=aH=%H=H=srH=Ԃ`H=hsHdH
H&HfHnH
YfHnHH=0mflfHnHPH=i)fHnH
fHnflH>)fHnH
3fHnfl)fHnfl)`H5H=`H=H=Ёp{H,H55HHHfHnH
HZ>H+fHnHwH= jflH=mHkb_H5H=D`H=0BH=H=LYHHAHHTLH5rLdHHHExHHEuHTH==LYHHA HHMH5LcHH\HExHHEuH#TH=K'YHH)A HHKH5K<cHSHHExHHEuHSH=KXHHA`HH-KH5KbH~HAH
HHyKH5lKbH~HgA0HHQKH5;KxbH~H6APHH*KH5
KGbH~~HAHHKH5JbHU~HAHHJH5JaH,~HAHHJH5wJaH~HrAHHJH5FJaH}HAAHHLJH5JRaH}HAHH+JH5I!aH}HAHH	JH5I`H_}HAHHIH5I`H6}H}AHHIH5QI`H
}HLAHHIH5 I]`H|HAHHaIH5H,`H|HHExHHEuHPH=+IUHHA`HHDH5H_Ha|HA@HHHH5H_H8|Ht[HHtJAHHHH5H[_H|HtHEx9HHEu0HO&1HA+L-IDH=oHTHHt~H
pHHʍHH5mHo[x]H
OHHHH5EHN[x<H
LHHxHH5DH-[xHEx7HHEu.H,O$HA*L-CH=2
THH$H
2HXHH5G[H
2H+HH5G[H
2HHH5Ge[H
h2HьHH5G@[H
C2HHH5sG[mH
2HwHH5YGZHH
1HJHH5@GZ#H
1HHH5'GZH
1HHH5GZHExHHEuHMH=;FRHHH
1HzHH5F1ZH
1HMHH5FZ^H
FH HH5FY9H
1HHH5FYH
1HƊHH5FYH
1HHH5oFxYH
1HlHH5`FSYH
2H?HH5@F.YH
3HHH5 F	Yx_H
H4HHH5FXx>H
'4HHH5EXxHEx9HHEu0HK&1HA'L-1@?JLl$Lt$HxhL|$LLLH2H=lH51&&HD$ HHH56%HD$(H{H|$ Hx
HHu"KH5H|$(HD$ KHD$ HBH|$(Hx
HHuJHD$(H|$ H;=wW@H;=V@uH;=7WtpPŅH|$ Hx
HHu}JHD$ H=e1҅H5%HD$ HHH5z$HD$(HH|$ Hx
HHuJH5yH|$(HD$ $HD$ HlH|$(Hx
HHuIH=HD$ HD$(HvHx
HHuIHD$ H5H$HD$ HHH5hx$HD$(HH|$ Hx
HHuDIH=HD$(HD$ HHx
HHuIHD$(H|$$H|$HD$$H|$HD$$HD$AdfAdYAdLAd?Ae2Ae%AeAgAgH|$  $H|$(HD$ 
$H
;DHD$(H=@B<HL$0HT$ HHt$(sy4H{hHL$*L-n;HT$Ht$Ah<HVTtH=wHpHx
HHuGH|$(b#H|$ HD$(O#H|$0HD$ <#H{hHL$HD$0HT$Ht$+<ELLLHxhHA.H5xH=!HD$0HHHsH5_xHNH|$0Hx
HHuFHD$0H=r]KH5zH=oJ!HD$0HHHrH5yHONxiH|$0Hx
HHubFHD$0H=brJH|$"H|$HD$"H|$HD$!HD$bH|$ !H|$(HD$ !H|$0HD$(!H{`HC`HD$0!H{hHL$HT$Ht$:H5AH=q1[ HD$0HH=>H7Hx
HHukEH5H=uq1HD$0
 HD$0HH=HHx
HHuEH5H='q1HD$0HD$0HH=HHx
HHuDH5xH=p1HD$0qHD$0HOH=<H5Hx
HHuDH52H=p1HD$0#HD$0HH=H߁Hx
HHu3DHD$0HSnJH=nJH9nIH5nIH1nIH-nIH)nIH%nIH޹H=HnCBLLLHxhH*H5tH=@HD$0HHHoH5tH KH|$0Hx
HHu/CHD$0H=GoGH5kvH=̀HD$0HHHoH5@vHJxiH|$0Hx
HHuBHD$0H=nJGH|$pH|$HD$]H|$HD$JHD$bH|$ 5H|$(HD$ "H|$0HD$(H{`HC`HD$0H{hHL$HT$Ht$6@LLLHxhH)H=H;=NH;=NuH;=WNt
Gj'H=iH5Ry=HD$0HH>HmHl$@HD$8HHD$@
CHD$ HH|$0Hx
HHuCAHD$0H|$ Hx
HHu!AH=~H5xHD$ HD$ HHHlHHD$8HD$@wBHD$0HtH|$ Hx
HHu@HD$ H|$0Hx
HHu@HD$0H|$OH|$HD$<H|$HD$)HD$bH|$ H|$(HD$ H|$0HD$(H{`HC`HD$0H{hHL$HT$Ht$4H=o11H=*i@HD$0HH
H5
wH=jG
H|$0Hx
HHu?HD$0H=ukHD$0HH
H5uH=j'G
H|$0Hx
HHu6?HD$0H=6yHD$0HHd
H5yH=2jFe
H|$0Hx
HHu>HD$0<HD$0HG
HmtHD$0HmH@HHt$01H=o=HD$ H 
H|$0Hx
HHu_>H5PmH|$ HD$0ewHD$0HHH5%mH=ViEH|$0Hx
HHu>HD$0H|$ Hx
HHu=HD$ H=sHD$ HHH5sH=huEH|$ Hx
HHu=HD$ q;HD$ HH4stHD$ H sH@HHt$ 1H=Ss><HD$0HpH|$ Hx
HHu=H5rH|$0HD$ 
vHD$ HHHH5rH=gDIH|$ Hx
HHu<HD$ H|$0Hx
HHu<HD$0s:HD$0H	H.ktHD$0HkH@HHt$0H=r=;HD$ HH|$0Hx
HHu<H5jH|$ HD$0uHD$0HHH5jH=fCH|$0Hx
HHu;HD$0H|$ Hx
HHu;HD$ HyO>HD$ HH~HOgH5 rHCxH|$ Hx
HHu;HD$ H=g?H=pbyHD$ HHIH5zmuHD$0HKH|$ Hx
HHu:HD$0H=pHD$ HD$0HYuxHD$0HHH5mHD$ HH|$0Hx
HHu@:HD$ H=pHD$0HD$ HtxHD$ HH
H5vmHD$0H
H|$ Hx
HHu9HD$0H=oHD$ HD$0HtxHD$0HH
H50l+HD$ H
H|$0Hx
HHud9HD$ H=8oHD$0HD$ H'twHD$ HHq
H5kHD$0Hs
H|$ Hx
HHu8HD$0H*o11HD$ H=bHsHD$09HD$0HH0
H5AjH=cm@1
H|$0Hx
HHu|8HD$0,AHD$0HH
HpH5"f@
HoH5eH|$0?
HjH5eH|$0?	
HpH5eH|$0?
HfkH5eH|$0?
H^hH5dH|$0u?	HhH5dH|$0U?	H>qH5eH|$05?	HpH5GeH|$0?	HmH5dH|$0>	HoH5dH|$0>	HiH5dH|$0>	HViH5cH|$0>	H~lH57dH|$0u>	H~gH5cH|$0U>	H6lH5cH|$05>	HnH5/dH|$0>	HnH5/dH|$0=	HpH5'dH|$0=	HlH5cH|$0=	HoH5cH|$0=	HlH5gcH|$0u=	HiH5bH|$0U=	H~hH5bH|$05=	HiH5bH|$0=	HiH5bH|$0<	HlH5bH|$0<	HnH5cH|$0<	H^nH5bH|$0<	H>eH5aH|$0u<	HjH5bH|$0U<	HNkH5bH|$05<	HnH5bH|$0<	HgH5OaH|$0;	HFgH5?aH|$0;	HfhH5GaH|$0;	HhH5?aH|$0;	HhH5aH|$0u;}	HhH5`H|$0U;y	HVeH5o`H|$05;u	HjH5`H|$0;q	H~kH5`H|$0:m	HiH5`H|$0:i	H_H5dH|$0:e	HT$0H5AlH=]:a	H|$0H.A5L-&{A6L-%_A7L-%CA:L-%'A;L-%AL-%AL-k%AL-U&AL-9&AL-&AL-&cAL-%GAL-%+AL-%AL-%AL-u%AL-Y%AL-=%AL-!%AL-%gAL-$KAL-$/AL-$AL-$AL-y$(A+L-]$1AL-A$3AL-%$>A+L-	$k@A+L-#ONAL-#3PAL-#^AL-#`AL-}#nAL-a#pAL-E#~AL-)#AL-
#oAL-"SAL-"7AL-"AL-"AL-"AL-e"AL-I"AL--"AL-"sAL-!WAL-!;AL-!AL-!AL-!AL-i!AL-M!AL-1!AL-!wAL- [AL- ?AL- #AL- AL- AL-m AL-Q AL-5 AL- {AL-_AL-CAL-'AL-AL-AL-qAL-UAL-9AL-AL-cAL-GAL-+AL-AL-AL-uAL-YAL-=AL-!AL-gAL-KAL-/H[]A\A]A^A_H=7='fH=RHRH9tHf4Ht	H=RH5RH)HH?HHHtH6HtfD=Ru/UH=6HtH=12hqR]{f.HG8HWd1~HGpHff.@ATIUHSHHHt	HՅu!H1Ht[LH]A\[]A\ff.HHHHt	1DHt;Ht6H9HOHVH9t(\Ht
1~\HtÐ1H91DF\f9G\u΋GX;FXuATUSH_H9^t|H_ H9^ tiH^(H9_(tVH_0H9^0tCH_8H9^8t0H^@H9_@tH^HH9_Ht
HFPH9GPu{\St[]A\Ë^`19_`uLgHnMtOHtI<$1Ht,HtHt1HDI9Du%tHI<Hu1H|f11Hff.@Hu+10HtH
2HHtHDH2H52Q18Hu;10Ht#H
O2HHHփtD։HfDHi2H5P18HGHHtfD#*HGHHtfDc.AUIATIUHSHHGHHt]H=#u:LLHIJ*MtHL[]A\A])IHt"HE1[L]A\A]fH[]A\A],H/H5SH8%fAUATUSH^HH9=IIH@H1E11L^&HLHDHHHTHI9~H[]A\A]DHtHx	HHtf.$ff.UHSHHtJHtH}Hx	HHtH]H1[]D#H]H1[]fDH10uUHGHL@t3HT/LHH81,AHEu&]fDH)/HHH5H81+HEx
HHEt1]@H#1@ATIHUH%HtQHID$LHH@pPIHEx
HHEtHL]A\@H"HL]A\DE1UHGHHuNH,H}HtHEHx	HHtHEH]H@@;"f(uHUHH9B0uH$t]UHGHHu~H+H}HtHEHx	HHtEHHtHDžHx	HHtHEH]H@D!{!f'uHUHXH9B0`H#P]ff.UHH HGHfH+HT$Ht$H|$Z(HExHHEH=s-H9}H9}HH}0HL^H]H9ZH]H9t~H]H9tiH]H9tTH]H9t?H]H9t*H]H9tH]H9)HExHHEH|$HT$Ht$_H}HtHEHx
HHH} HtHE Hx
HHH}(HtHE(Hx
HHHEHH@H ]H}@{1\9,H5x\HcH<H<H@HHEH.HH!fDfD1fDFfD;%HUHhH9B0xH!hH ]ù.$ff.ATIUHSHHHt	HՅuAH{ Ht	LՅu/H{(Ht	LՅuH{H1Ht[LH]A\fD[]A\ff.H9t+HXHt/HJH~F1fHH9t7H9tuf.HH9tHu1H;5>*f1ff.fHHHx	HHt)H
)H5+H81%HHt$HT$ff.@H9tKHGH;)uFHGHt%HHHuf.HЃf1DH;'twUHHHH;)H;-(u<H;-(t3H"HUx
HHUtAH]1fDf1H*f.GE@HD$D$뭸ff.@G<4w9HHcHfDf.f.HH]'@H5H81#1Hff.f.f.AVAUIATIUHLwL HHtKH@HHtHLLH]A\A]A^DEtEHH]A\A]A^fDH'LH8ff.UHH$H$H$L$L$t@)$ )$0)$@)$P)$`)$p)$)$Hl$ H$D$HD$HH$HL$HfD$0HD$4HH=*%DAUATIUSHHHGH$IHl$HD$tBHHOH$Hh%LH56H81!1H[]A\A]1LHH t4H$H@uH%LH5H81x!1@H$HuH[]A\A]SH@LMt	L;i%u'HHuHHH[LAtAIPHtLH[DAWAVAUATIUHSH8HM0L|$pL.HD$AM~pHA1AIHD$HFHLt$IELl$ ILL|$(IHHLEt$0HL$ ILImL|$0Hl$XZL9l$uH8[]A\A]A^A_M~
H|$~M9t61M~HLLH
LLd$I9uH8[]A\A]A^A_ÐL;l$uLH8HLI[]A\A]A^A_fLGAtALGLfLGAtALGLfLpAt
ALpLLGAtALGLfLGAtALGLfATUHSHHGH;"$H;!t[HXpHH{tHOIH#HHSI$xKHI$uALHD$;HD$-@Ht	HyHGtH;Es}HDtH[]A\fDHXhHtWHCHtNHyutHH[]A\Ht	HyHGtH9EvHUH‹u@HpIHtHHHI$e@HHtHt$HHt$HxHHCd12H!Ht$H8tHCHt$2ff.LGAtALGLfAWLGHףp=
ףAVAUATUSHH(HL$HHHHHH?HHH)HLHHIL)AAD1D)ȍHcAfUHu	HHH)HyE-HHHHIH|LcIAM)IH,@  6IN8M~HL HfMIcLBI-HJ<91HfoDHH9uHHHH9I)H)IvHtHJ48HHHH9THB8HSI9~ktJ9HS@tL9}THTB9HSI9~?LHSLI9~-LHSLI9~LHSLI9~	LLH(L[]A\A]A^A_@IV(IN8@HED}H([]A\A]A^A_i1fAWAVAUIHATUSHH(0HIǁAG D$I ,IG8HD$IDE1HD$.@Hr89t^I1LLIIL;l$IUHZHtLH)L9|FJ  tHr(Hz8@HD9uD$LHډHHH|$@HH5H8Ix	HItzE1H(L[]A\A]A^A_DH?ILFD$AG  IW(IO8@HDHT$LyATASHH9uHH9GH9FHWH9VHGHNH9AHAt
HDO DF DD8u}A +H8A 5Hv8ȃ=DA9uBHH41Au&1@HqH9ut1AH[A\H9uuD?IHH;LL;%uI9uFI$xHI$uLD$eD$1AH[A\LfDD@HO(H8A@HEHN(H8A@HEDf.ATIHUHHtQHID$LHH@pPIHEx
HHEtHL]A\@HxHL]A\DE1LVIIM1fHI9tM9Duf.1fDITHBtv@tmL9tIXHt,HqH~S1HH9t?H;TufDLDHH9xHuH;tffDHI9k1UHH HGHHnHT$Ht$H|$HExHHEHH;t#HtP8HDžHDžHExHHEH|$HT$Ht$XHpHtHDžpHx	HHtH
H H]l@HUHH9B0HH ]u=HHBHDžH,HHrH=w @1[ff.HyLGHWtMtIx	HIt1HL1Hff.fATIUHSHHHt	HӅuQH} Ht	LӅu?H}(Ht	LӅu-H}HHt	LӅuHp1Ht
LH[]A\[]A\ff.ATIUHHLHMtIx	HItHMtI$x
HI$tAHtHEx
HHEt
H]A\fHH]A\
L
fDL
fDUSHHH-HEHktPEHtHxHHthEHHtEHtHx	HHt*H1[]ÐHtHyHH@	H1[]f	fHHtGHH9t.HXHtRHJH~q1DHH9t_H;tuHfDHH5pH8
1HHDHH9tHuH;5(tfDH)HNH5HWH811@AWMAVMAUATUSH8HH$H$HHt$HT$$H$HDŽ$q$HDMMHD$$H@H$ HD$H@H$(H$HDŽ$H$HHD$$H@H$(HD$H@H$H$HDŽ$H$H6HD$$H@H$HD$H@H$H$HD$pH$HLMIHD$$H@ HD$HHD$H@ HD$P_H$HD$0HT$@H1MMHD$$H@(HD$XHD$H@(HD$`H|$@MHD$xH|$HHD$$Lh0HD$L`0WLT$E1MhLLMMHD$$H@8HD$ HD$Lh8Hl$(HD$8MMILHD$$	H@@HD$hHD$L`@MHD$L$E1L$HPHHD$H$L$MIHpHHD$(H$LL$HIċ$LIMLHILd$hL9$uMIL$L$H$L$H$HD$8HD$8HT$ HT$(H9LMHLI9HD$xHt$XHD$xHt$H9D$`GMHD$0HT$HHD$0HT$@H9D$PMMHD$pH$HD$pH$H9$]LMIH$H$(H$H$H9$H$H$ H$H$H9$FH$H$H$H$H9$H8[]A\A]A^A_@MHL$(E1LHLIL$L$L$HL$hL$L$L$HM9uB@MYHE1fHLLLT$8L\$(I$HL$ L\$(LT$8HM9uMHL$1HLLHHLI9uIHHL$@Hl$X1fDHLLHHHI9uIHH$Hl$H1HLLHaHHI9uH$H$H$1HLLHHHH9$uH$H$1HLLHH$(HH9$uH$H$1HLLHH$ HH9$urH$H1HLLHYH$HH9$uaff.@AUIATIUHHHt
H9J(I}`IU`HtHx	HHtZMtI$x
HI$tKHtHEx
HHEtH]A\A]f.HH]A\A]/#럐LfDHHHT$PHT$WfDAUIATIUSHYHtdH5+LALHHIHEx
HHEtHL[]A\A]fDHHL[]A\A]f.HE1[L]A\A]ff.@USHHH-HEHkEHtHxHHEH{ Hk EHtHxHHEH{(Hk(tEHtHx	HHtxH{HHtHCHHx	HHtgH1[]fDHVH{ Hk HtHuH{(Hk(K6fD;f+H1[]f6fDHG@t~HFHtt@tkH9t.HXHt*HJH~A1DHH9t/H;tufHH9tHu1H;5^f1Dst@AUATIUHSHHH;=tH5wt[HUBtMM,$HZE1 uLeH=ubLLHD$@HD$HtNH[]A\A]H1ɺLHHtH[]A\A]fH[]A\A]1@sHuHH50HD$H:HD$ff.AUIATUHHH@H;5	HHt'H5H?H	]A\A]H8A@HLfI$@t'M9LLHEHEtE1HLIHExHHEMt|IL$@LL~I$xWHI$uM]LA\A]/H5I@Hu3tA@t1HHY]A\A]f]LA\A]H1H@]LA\A]H+tHL]A\A]HaLH5OH81USHHH-HEHkEHtHxHH8EH{ Hk EHtHxHHHEH{(Hk(tEHtHx
HHH{HHtHCHHx
HHEHpHptEHtHx
HHHH9t#HtP8HǃHǃH1[]f.HH{ Hk HtHH{(Hk(DfD
fDfDAfDfDu=HHSHǃH=HH0^&rH=41HWD_@GDHtWH
H1LH9t)HRLIHL<swoHHcHH<sw'H
zHcHDHL<svL
HILH5H81H
HjLH5(H81fDL
H
L
EL
rHLDEL
H&LDmEL
H>LDSL
YGL
;L
/L
#L
L
L
L
L
'L
2L
L
L
L
BL
=H
H
H
OH
H
 H
K}EH
+HHDcEH
HHDIEH
HHD/H
#H
"H
,H
H
H
H
{H
H
4H
/GDE1qAWAVAUATUHSHHWH
H	Hy<sK<pCwGE1DIX@AE~QLqAtGLq At<Lq(At1Lq0At&Lq8AtLq@AtLqHAtLqPpEGM@HE0@4HMH51H81HUM@EDI~L-QH<$L:UFDЃ?M'@^
<4H5rHcHfpM@A@4kH=@Hc4HfDD@yXLM0@@uGH
H	LAM9Af.HaDH5H81UF1@IT$AD$\H9K<CS<Ht	HH9HEHU MOLHL9HMtH$HH}0HU HWHU0L9xIwH0IWHGz\Su2HJHEH9Iw(HPHxH}HHHMH2HAH}0.HUM@EDD@@}DHL$HHSH} 1HL$HHHt
HH)H} H}8}DHL$OHL$HE8IT$AD$\H9f8<CI|$HUIGHJHBHMIL$HJHUHBf.GfD7fD'HWH5H8UF1HHHHHHIUۃC@<4xIcDLfDvfDfHHH SHHH@HHH-DHUHBHELzL9HU0HEHu.EDE1E@HD[]A\A]A^A_fDIHALH5HH81eA륻HLLH5ƵHDDH5H81&Acff.AWAVAUATL%UHSHH<}w^IcLfE18ED<HHE(HHE0EEEFCDm@EDHE(<}vfDPЀ	dCHKҍp@	w0HPp@	vHcHHU(PHH}(H~tMHE1HLEAXft@)t;
QH5H^H81E1HL[]A\A]A^A_D95PEGHE(HEEHHH5E1H8,례}DtH}9HtH}!IpHLm8LcTEDMJHM 1HIH5LH)HM &HGHE(HE HEEHE(HE0EDEFCHSHv<dHA8EDD9m@EE8EF}GHE(HHE0HE(ifDEE=HV{:HCt
H8:uHX9HE8Lm(HE({{HD$JHW"fEDLsE0ME1LHHHIM9uHD$HHE8 tqJЀ	CHSɍp@	w0HHp@	vA9~
MTHcL9uj<,t<)u/<,HH"HE1G$H5E1-ZH5ծL&HYLH5E1H81H6H5_E1H8\HH5qE1H8>HDH5 E1H81kHH5(E1H8oH?ATUHSHHH9t{HFHHW@@HXHt;HJH~{1fDHH9thH;luH[]A\f.HH9tHu1H;-ΐE1JtH9tH|$uIH|$L9uH1[]A\@HH[]A\H^H~1HH9tH;|uS1DAWAVAUATUSHLgMJHIH1HI9tH9\uIH[]A\A]A^A_DHC(E1H$DJtH9{H[H9CH9FHSH;VHFH{H9AHAt
HDK DF DD@@8uhA "H{8A /Hv8DA2A5DDE9u)HE1HxA@IM9H1[]A\A]A^A_f.L-L9uuL9uuHߺzHHtH;H;=	uL9u=DHx	HHtQEpEtKH[]A\A]A^A_@H|$NH|$AH{8A@HE<$f[LN(H8A@IEDDDDf.ATUHHHWttsHEu{HvUHHH51HtIHaIHEx
HHEtLHL]A\ÐDef.HXIHH5®IH8c룐HHHL]A\DDeEII	wDHB`HtgHHt[HHtQHPH;H5aHQHHuKIHL]A\I@HuHH5H8HPDAVAUATUHSHHWDl$@HZpHHCHIMtI0H[]A\A]A^DHLu1HH1HLIHtHExHHEuHMtSLLSIIxHIuLHL[]A\A]A^HHRH5H81HE1[L]A\A]A^fEu+L5>EuCHH6@1HL$H4$H4$HL$HIHfDHIHtIHLHnIHtHEy4IEHIELHHHEuHfDAWAVAUATUSH8HH$H$ HHIIAHDŽ$H$(A$A.IAH$HHDŽ$ICH$H$H$AIAH$H
HDŽ$ICH$H$H$AIAH$HHDŽ$ICH$H$H$A'IA H$HHD$@IC H$H$HD$XLMIAzIC(HD$HHHD$IA(EMHD$PHD$XHD$ AMK0MIIG0LL$M1Hl$ EEHD$LAMU8MHH8LT$8IIHD$(HHDHL$0M}@ML[@	<LHSHIuHE1ɋ$EL$L$L$HD$xHT$pHt$hH|$`kH|$`Ht$hL$L$HT$pHD$xILL$M9uHD$(Ld$0Ht$(H9t$8AAHHLHl$HH9\$EIMEHD$Ht$PHD$Ht$ H9D$HMEHD$@H$HD$@HL$XH9$LMIH$H$H$H$H9$H$H$H$H$H9$H$H$H$H$H9$H$H$(H$H$H9$ 2H8[]A\A]A^A_fI<$EHuHHhLT$hHD$`HD$`LT$hJDL1Eu.H>Hx
HHHLL9ufDH>t@HLI9uH}EHHHD\$0HD$(tHD$(D\$0DfDHD$ H8EHHHDD$(DT$L\$L\$DT$DD$({IBfDL$Ht$xHL$pLT$hHD$`Ht$xHL$pL$LT$hHD$`HD$XH8EH$HHDD$LL$L\$YL\$LL$DD$H$H8EHHHDD$L\$LL$LL$L\$DD$~wH$H8EHHHDD$L\$LL$LL$L\$DD$G@H$H8EHHHrDD$L\$LL$'LL$L\$DD$J	H$H8EuRHLHH?DD$L\$LL$LL$L\$DD$ff.fUHH HGH&HT$Ht$H|$HExHHEHE`HH}H}8HExHHEH|$HT$Ht$H}PHtHEPHx	HHtqH}XHtHEXHx	HHtHHEHH@H ]UhnH}HaElu)Ps뱐kfM0HU@E1Hu8H}@u'HH9P0HH ]HEff.fHGt{HGHv)HHH)HHt=HtfH)‹GHDGWHH	f.GWHH	HUHH@`Ht~HHtrHHthH5H9Eu'H8HUx
HHUt&H]HH5~qHHuHHHD$HD$HuHH5H8f.ATUHHGHGHvnHHH)HH~H_HcAH9tQHu)Hu@HH5ڠH8:AfH)‹GHHcAH9uHD]A\GWHH	HHcAH9uHD]A\f.GWHH	HcAH9dHD]A\fH@`HtuHHtiHHt_HbH9Eu6@HAHEFHHE8H3+HH5菴HHuHHH5'AH8DAWIAVIAUN,ATIUSHHHG1HL$HHD$0LL$HD$0HD$8HD$@HD$(HtHx
HHHD$0HtzHD$8I9FIILHHD$8HT$0IUHL$(HttLHPHHt[H9
uHT$0Ht$L)HD$(HD$0HHuHL$HT$(Ht$8LIUHL$(HutHT$0tHt$(HFIEHtJLDHEHHt3H8HFH9Gu1HEHHt$(HuΐM9u&BfDHFH9G
IM9!IH8H9uHHT$HH5H81:H|$(HtHx
HH7H|$0HtHx
HH#HH[]A\A]A^A_f.{Ht$H|$0HL)H<H}Ht$("HHHHt
H|$0H fDH+0x_Ht$(IM9HHT$HH5H81$HHT$H5DH81xHHt$(svH|$(Ht*Hx	HHt4H|$0HtHx	HHt1HH[]A\A]A^A_'1H|$(HuAUIATIUHSHH(H`HC`HD$HD$H|$Ht!HWHT$tH|$HD$HT$Ht$H|$H{`Ht$Ht%H|$HT$Ht	tHT$Ht	tHD$HttHD$HT$IUHT$I$HUHShH*HH|$HtHx	HHt>H|$HtHx	HHt4HtHEx
HHEt-H(1[]A\A]ffHfDH|$IEI$HEHtHx	HHtNH|$HtHx	HHtTH|$HtHx	HHt*H([]A\A]f.fffATUHHHGHGueHv7HHt=H51xYt>HH]A\7GH]A\DGWH]A\HH	HH5H8RHH]A\H@`H%HHHHH@H;@HEHHHH51HtfHIHUHHUHHD$rHD$HH5ɬHHH@T@EHH5H85HfEUHH	eHHH5H8HTH@`H,HHHIHHI9D$ID$ID$HHHt~H51LtsLI$HI$LHD$HD$nLH5uhIH[AD$AD$AT$HH	HH5H8HvLiH`sHeHkH5H8Hff.AUATIUSHHHAH9FHFHH)ŋFHHuID$H;H;lHXpHtMH{tFHHHHLSHUxHHUH[]A\A]HXhHHCHHUHHL[]A\A]HxsID$HH9v~ID$HЋtH[]A\A]fHID$HH9s:IDWfDHfID$H(DHDHHHtHLHU{HID$H;tH;HzID$HHAHhIHtHHIEHIEL#fDHHH)HHHuRVFHH	HGH;bHH;:HHD$HD$HHqHHH2~t*HCL`H.H5gLH81f1fnFHH	HHHLHxHHCHGHNH8teHC_ff.UHHHWtHEHv/HHH)HHtkHtUHmH¸H)ЋUHHUx
HHUt	H]HHD$+HD$H]ËEUHH	뾐EUHH	HfDHB`Ht_HHtSHHtIHPH;H59H)HHuCHdDH@kHuHgH5H8HPDHGt{HGHv)HHH)HHt=Ht"fH)‹GHDGWHH	f.GWHH	HAVH?AUIATIUHHHuzHH5H9t
HUBLjE1 uLeH=K1.LAIM
HL]A\A]A^HuRHH5H9t	]t9HUBt.MuE1Lj uLeH=LfHHtHLLH1]A\A]A^HLLH1]A\A]A^DH`HuHEL-LMtnH=Hu11LHAIMIHtHE1]LA\A]A^HRH5ÄH8HLH1]A\A]A^ff.AWAVAUIATUHSHHGHHtIMt"HL[]A\A]A^A_IMuHH8quHLH5H81HHHtHHtH5HIHLHIHtrHHIx	HIt?Ix	HIt9HEx
HHEtHMIfHLL11f.HGHH;u1 AVAUATUSHHtIMt%HL[]A\A]A^D[IfDHHALC`H(MtIxH9HEHHW@@HXHtYHJHN1HH96H;luHC`IHIL\HH9tHuH;-tH(LC`HC`MLmM1	HI9tH;|u_E1JtH9tH|$H|$uIM9u`DAVAUIATUSHH=HGHH;u.1L'IHHL[]A\A]A^LH,IMuHHSLC`L MIxI9tzID$HHW@A$@HXHtTHJH~61fHH9t'L;duHC`IxHIuL[IHt+E1HI9tHuL;%+tHLH5H81;ILtLC`HC`MrUIl$H_1	HH9tI;|u&E1KtH9tH|$H|$uIL9uATHUHHHWH=IHttA$HL]A\D+HuHH]A\SʿLX`Mt	I{Hu1[@HAHH2H9u.HC`IxHIuL1f.HW@HVH@HXLHt*HJ1H~@H;tgHH9u[HH9GHuH;5I2fD#tL[`HC`M1t薱tff.fAWAVAUATAUSH(H|$H$_H=IHLh`H@`MMuAtAIm(HtEtEH=H5yHHVH8|IH9HqI9tL;tLtE1Mt
I9m(I`Mo`HtHx
HHMtIx
HIHtHExHHEzAEtEAH5+H
DDǃwHcHD9t]1f}0H9})HcHTD9~߉9|A9A9HHHD9pL A$tA$H+1LL޼HHX(H7I$xHI$uL载HExHHHEH([]A\A]A^A_DIo`IG`HLmAEtAELM(MtAtALL$E8Ht$H<$(LL$IMrHt
L9M((I`Io`HtHx
HHMtIExHIEMtIx
HIH=DEHZD-#D/HcHD9t1fU9)HcHDD9~׉I$HI$LH([]A\A]A^A_Ht$1DHgH=o賹LL$H0HHD$LD$LL$HHH<$LD$LL$IIoHIbLL$膻L$MD1E1fDG1A9A9HcHHD9qD9-DAH$)PIcHHHHHD9IMHAHD9IMLDHIHLH$ADqL!D-=A$DD9-%A@IcHkHH}D-HcD-HHHA9,DHHHԸHx`IHFH0>tI|$`ID$`ו肽H3H5E1H=*襾E1E1IxHIuLL$蹹L$Mt"IExHIEuLL$蒹L$Ht"HExHHEuHL$kL$MIHLIH6y,;LGf.V1L$L$L$LL$۸L$H=HGHH;	c1WHHH|$1H|$Hx
HHHH9@8H;H
HDpHL A$
HLTHcHH!LHL$1L$HHHIHD$LT$誷LT$HD$bH9L!HHH{xqLH~HfDAWAVAUATUSH(HH9H~IHLnAEtAEI|$Hx
HH7Ml$HEHHH5HFRID$LHHrHHHx
HHID$H5TLHHYIM3IEH50LHH=IIEM+xHIEH}Hm EtEHHI9D$-Mt$MAM|$tAAtAI$xHI$.fHnfInHt$Lfl)D$IIx
HI*HExHHE|MIx
HIoIExHIEu
L%DH؃tH([]A\A]A^A_Dx
HIEtRPOH
cH=}H(1[]A\A]A^A_@軴fD諴fDL蘴fDL舴jHaH52}H8z)Os11IHt+HH~IIx
HIM+O'
=OfkfDHسwLȳHt$LMHD$Hl$I#DL舳\LxHQH5J|H8j
DOcL@SHNO1f+IIƵIHt)HHHIEx
HIEtXHWOI$HI$Lt$T$聲T$t$@MlOL^ff.AWAVAUATIUSHL L;=ľL5AAHopHcGdL5HDHD$H91H}IȴHH$MtIExHIEHL覺IHIx	HItjHH;l$3MfDHopHcGdE1LMHDHD$H9f@Hx
HHM|$ M0f.L(fDLRE1E1AtAM|$ MtIx	HItuMtIEx
HIEtNHL[]A\A]A^A_@n2[H
)H=yE1fDIݾz2\ӐLxfDLh~M1fDAtAI|$ I;fDAUATIUHHGH5HHHHI|$XѲIHHH:IHEMx
HHEt<I$x
HI$tHL]A\A]DL萯HL]A\A]HxfD	2H
TH=xE1pHL]A\A][H/x
HHEtdI$
2xHI$uLt$t$fHEx HHEuH֮2a@2SH趮@HHX胱HtHfPH
1HD$H=xHD$H@HHcdsHtHfLH
1HD$H=w>HD$H@AUATUSHHH1IHLHcCdI\I9s]I}褰HHID$I;D$ UtUIT$H,HID$HEx
HHEtAIL9wLHI$xfHI$u\LH$AH$JH0fDH-!HcwdHEH@hHH@HHHAH[]A\A]fDI$HI$L辬H<1H
/H=vH1[]A\A]@HL%I$HEx1HH>1HEuHt$$F$t$DH>1ufH<1]H61MHخIHt@HHEI$HI$LH$迫H$fDF1I$x
HI$tHB1LxHI$L`ff.AUATUSHHxH11IHH]xHcEdL$L9sXH;HHIEI;E UtUIUH,HIEHEx
HHEtEHI9wLDHJIUxxHIUunLH$荪H$\HxfDIEHIELN0A@H
H=ZtM1H[]A\A]HL赭6IEHEx1H0AHEuHt$$֩$t$D0AyfH5!H==0?NfD0A9f0A!IEx
HIEt0AL8HIE'L ff.AUATUSH1HHsLkpIHcCdI\I9s]I}赫HHID$I;D$ UtUIT$H,HID$HEx
HHEtJIL9wL	HI$~HI$utLHD$MHD$`fDH8fDI$R0x#HI$uLt$
t$fH
{9H=Er1H[]A\A]HLm)I$x
HI$tcHET0xHHEuHt$萧t$f.L0vI$x
HI$t
X0ZLRLHfDHHGP8HtH2H
/HD$H=q&HD$Hff.HHcHdIHI?H?JHʃHL)H?H!H)HHH4!fDHy;HHH9HHHHWPHOPHHHPHHWHOHPHxAUH2ATUH-L(ȧAċEtEHLϨH
YIH=2HEx
HHEtHDXsH
i?H=p-]A\A]f1DH谥ff.AVAUATIHcUSH訨HIƅL-AEtAEvHH2A$tA$fInfInLm(flEL%@ID$LMSH=bߣ1LHAI4MtoHExHHEA$I$tA$I$xHI$[L]A\A]A^fL-9AEKHHExHHEuHH~6E1H
H=oH[L]A\A]A^@IxHIuLIEx
HIEtns6Lأ[L]A\A]A^@HL1H˫IH8f.o6CfDLxHH5aH8pff.AWAVIAUATIU躤AA$tA$HcBHH.L;%	H@t
H;=HL4IHEMtxxHHELL[Ix	HItc%IH
!H=9I$x
HI$tlDԠ]A\A]A^A_Dx
HHEt* IL@fDH0eH  IpfDLfDHL腦IDI8ff.AWAVAUATUSHH$ T$LxXHcH0WHcH0WHcH0rWtzHcH0XWt`HcH0>WtFHcH0$Wt,HcH0
WtHcH01ACH$091H$85H$@5H$H5H$P@8H$X28H$`$81҃tH$h8H9AGddC919L	8L$0L$M91I3$ƣHH2Ht	H{L=HUHcAf$@*H!HHHE H2t	H"HA)HU(LH$*HD$IHףp=
ףHIHHH?H4HH)HHHH)ÉHH1)HAfA$Hu1	IIM)MyAD$-IIMIIIHMcMcHL$0L)¾LD$(HT$  HT$ LD$(HHL$0I@  yIy8H~5 HL$8LD$0LL$(HT$ ҟHT$ LL$(LD$0HL$8HMM]ILH1HAoHH9uLHHL9I)I)IvMH4LLHHL9A4H@4HCI9~rAtHHC@tI9~[AtHC@tI9~GAtHC@tI9~3AtHC@tI9~AtHC@tI9~At@tH\$IYLM0Ht	HHCHU8MHHףp=
ףHD$LHHLH?N"LII)KMHHH)‰1)HAfMuE1	AJH)MyC-HHHɿHIHLcHL)LcHT$ ץHT$ HI@  RI8H~ HT$ 袝HT$ HMMUILL1HfDoAHH9uLHHI9I)I)IvLLMLHHL9D3H7DHFI9~kH|3HF@|2I9~U|3HF@|2I9~B|3HF@|2I9~/|3HF@|2I9~|3HF@|2I9~	t3@4H\$I_L}@Hbt	HRHUHH{hIH~@  IF8HD$L}H]P)DHr8<tbM1LL@MII9t\ILjMtHL)L9J  tHz(Hr8@HE<uHD$LJ< mHExHHEH=LsIx
HIHxJH
+AH=[<$
H
DAH=dDǗ$$H[]A\A]A^A_HH5\H8BIx
HIHHESHHEEHt$t$0f.IV(IN8@HDHT$AIq(Iy8@HExDIw(I8@HEDA<$HL$ QHL$ HIyHMfD;(IHn@H%fDL0lH 9LHDŽ$p$H$FL$8L$M9t"IHDŽ$x$H$?L$@L$M9t"IHDŽ$$H$(~L$HL$M9t"IcHDŽ$$H$	/L$PL$ M9t"IHDŽ$$H$J
L$XL$(M9t"IHDŽ$$H$5
L$`L$0M9t"IvHDŽ$$H$tFL$hL$8M9t"I+HDŽ$$H$H$0L$(H$pH-HLHLH}iH$8H$xH#HHHUHЃ3H$@H$H#HHHq HЃH$HH$Hi#HHH"HЃH$PH$H3#HHH5#HЃH$XH$H"HHH#HЃt_H$`H$H"HHH"HЃt-H$hH$H"HHH$HH$J8H$H$@H;HHHH	HHHiH$L$HHHIM_H3H$L$PHHIMHH$L$XHHIMp HH$ L$`H^HIM!HH$(L$hH(HIMg!Ht_H$0L$pHHIME!Ht-H$8L$xHHIM"HLH9v	H9HD$ $Do$ DUDo$0Do$@Do$PDo$`o$pD)$o$o$D)$ o$o$D)$0H$ )$`o$o$o$D)$@HPX)$pD)$P)$)$)$)$)$)$IcH̠H;`H HƒYuHcHH;`H $uHcHH;`wH uHcHPH;`BH uHcHH;`
H uHcHH;`H tTuHcHH;`H t#uHcHH9`vo$o$o$o$ )$H$o$0o$@)$ o$P)$0H@Xo$`)$@o$po$)$Po$)$`o$)$po$)$)$)$)$)$)$H̠mH;`_H lMHcH̠8H;`*H 7MHcH̠H;`H MHcH̠H;`H MHcH̠H;`H MHcH̠yhH;`u^H kMHcH̠y;H;`u1H >MHcH̠yH9`AFDd$L$EnH$@H$pHAAWH$8LL$tAYAZH|$ $DH
H H H?H1H)f.1fHqH5J1H88JAHfDH)H5H8f$/@HH5ʸH8xHH5H8H)ك,^HcHcAHGALHNLAoN(HD7	HNhA]Ao#Ht7H Ao(.AtiAoqAuAo[XAo`fAtDAoiAmAospAoX^AtAoiAmAospAoX^ЉމЃ)9t8HHHcHH@HĀH@HԀHDŽ$X"HDŽ$taHDŽ$tPHDŽ$t?HDŽ$ t.HDŽ$(tHDŽ$0tHDŽ$8HcH$@qH@H9H$@fHn$@$Pt$`t$pȃt
HH@VH$H*tDH1H5
H8H
HH5еH8~)HcH$ ALGL$ AJL$ LYBo LH4$HcINL$ B MLL$ LI8HxBo MLD$(LD7	Ht7NH4MH$ B o Ll$0L$ HI4 ABoBBoBo4At]H$Ht$ L\$(LT$0oafAocAbAoE)$$GAt"oafAoCABAou)$wЉ)9t8HH0HcH0HpHİHpH̰HDŽ$0HDŽ$8taHDŽ$@tPHDŽ$Ht?HDŽ$Pt.HDŽ$XtHDŽ$`tHDŽ$hHcH$prHpH9H$pfHn$p$t$t$Ѓt
HHpVH$HчHLxH1HHÑH5H8J116HH5jH8Uo$ o$0o$@L$ o$P)$o$`o$p)$ I]Xo$)$0o$)$@o$)$Po$)$`o$)$po$)$o$)$)$)$)$)$AFUDU IcHĠxH;`jH HHȃUHcHԠ=H;`/H UHcHԠH;`H ~UHcHԠH;`H IUHcHԠH;`H UHcHԠymH;`ucH UHcHԠy@H;`u6H UHcHԠyH;`u	McJELcJDPMcJDPMcJDPMcJDPMcJDPmMcJgR1H$?H$'H$H$H$ NH$(,H$0
1҃tH$81H9AGddCH$0HcIH<H9vHfDL0HH9wLHT$8Ht$0L\$(ԆL\$(Ht$0HHD$ HT$8fInD$ )D$@LD$PHL\$8LLD$(HT$0PHT$0H$艂AFLD$(L\$8DUUIcHHLPHHHȃHcHHHDPUHcHHHDPUtxHcHHHDPUt[HcHHHDPUt>HcҍuHHHDPt!HcHHHDPtH$H|$PH|$XuHDŽ$H|$`uHDŽ$tnH|$huHDŽ$tUH|$puHDŽ$t<H|$xuHDŽ$t#H$}tH$zo$ IEXDUo$0o$@o$Po$`)$)$ o$po$o$)$0o$)$@o$)$Po$)$`o$)$po$)$)$)$)$)$)$AFvIcHԠyH9`kH ARHcHԠCH;`5H hARHcHԠ
H;`H 2ARHcHԠH;`H ARHcHԠH;`H ARHcHԠyoH;`ueH ARHcHԠyAH;`u7H jARHcHԠyH;`u	EH$H$pHLSHT$XAc_AXfol$@fo|$Pfot$`fo\$pfo$$ fo$$0fo$$@fo$$Pfo$$`fo$$pfo$$fo$$fo$$$$$$VH|$Po$ IEXo$0o$@o$P)$o$`o$p)$ o$o$)$0o$)$@o$)$Po$)$`o$)$po$)$)$)$)$)$)$H$H9$`H$ +H$H;$hH$(H$H;$pH$0H$yH;$xkH$8H$JH;$<H$@tsH$H;$H$HtHH$H;$H$PtH$H9$H|$ LL}HfH~D)$D)$ D)$0D)$@D)$P)$`)$p)$)$)$)$)$)$HtH;$`fH$ Hƒ+H$BH9$h4H$(H$H;$pH$0H$H;$xH$8H$H;$H$@tsH$H;$|H$HtHH$_H;$QH$PtH$4H9$&o$o$o$o$ )$H$o$0)$ H$o$@o$P)$0H@Xo$`)$@o$po$)$Po$)$`o$)$po$)$)$)$)$)$)$H,H;$`H$ +H$H;$hH$(H$H9$pH$0H$H9$xH$8H$pH;$bH$@tsH$EH;$7H$HtHH$H;$H$PtH$H9$Dt$EH$0HcHH94HHH9rH$(H$DT$(QyDl$DT$(EH|$ r_HJHKHAAMcJ	DUMcJu	DUMcJV	DUbMcJ7	DUCMcJ	DU$McJDUMcJ1H$:H$tH$UH$KH$ H$(H$01tH$8H9H$ H$KA/CHH=tL$D$M
H$@H$DUH$1L|$(l$0L$HHIDLE1LHIčL4$M9u|$L|$(AHD$l$0pH$@H$pHAWH$AH$8L$yYL$lsL$D$(YM^L$@D$~-L4$1ELADLHMHH;,$u܋|$oHH$HtHHnHHHHH$H;$`H$ HÃH$H;$hH$(nH$H;$pH$0?H$H;$xH$8H$H;$uyH$@H$y\H;$uRH$HH$y5H;$u+H$PH$yH9$~DUEMcJI
JJH?H1H)H$1H
HHH?H1HH)HHa1fDH
H H H?H1HH)?HcHHHH@HԀH@HĀSHcҍEHHHH@HԀH@HĀC@HUHHcHH@HĀH@HԀSHcҍEHHHH@HԀH@HĀSHcҍEHHHH@HԀH@HĀStHcҍEHHHH@HԀH@HĀS0HcҍEHHHH@HԀH@HĀSHcҍEHHHH@HԀH@HĀ1H$@H$HH$PH$XoH$`^H$hMH$p<H$x/HDŽ$rHDŽ$uH1I>Hx
HHHII9u݋|$jH$@H$pHAWH$AH$8L$SL$mL$D$(XZL$@MZ1ItHML9u;1҅H$b1HD$PH$HÃH$HD$XtjH$HD$`tWH$HD$htDH$HD$pt1H$HD$xtH$H$tH$H|$PPHDŽ$6I
JJH?H1H)…1F<H$pH$xiH$XH$GH$6H$%H$H$HKH0HcH0HpHİHpH̰MHcɍCH0HH0HpH̰HpHİM}HcɍCH0HH0HpH̰HpHİM9HcɍCH0HH0HpH̰HpHİMHcɍCH0HH0HpH̰HpHİMHcɍCH0HH0HpH̰HpHİMmHcɍCH0HH0HpH̰HpHİM)HcɍCH0HH0HpH̰HpHİ1y1#1WH$(H$$J>IHNLfH$@H$pHAWH$AH$8L$NL$hL$D$(A[[ML$@@DUL$HH$To$ IEXo$0o$@o$Po$)$)$ o$`o$po$)$0o$)$@o$)$Po$)$`o$)$po$)$)$)$)$)$)$AFDUDKA.DT$(L$~gL$DT$(AM~jH$@HD$(L$HH$1l$0Dl$8DMIHLE1LLHL|$(I9uADl$8l$0DDT$(cH$ DT$(H$0HPXHcHH9AH$(H$DT$iDT$DT$L$fDT$AH$H~iL$@L$HH$I1D|$LIELHLADLHHD$(II9HD$(uD|$DbDUvdH$@H$@H?H1H)1H
HHH?H1HH)!Ӹ̸źkaW1EI?Hx	HHt0HL|$(I9uEXH$(H$2hcɸND:E11I6tHMH9udAMcH
VIH=.0iadH
zVGH=
.J9aE@HHLOL9t4IXHLAM~S1HI9t?H;TuH;=o;tHHx
HHWHfHWpHOxLH>HG@HFdM+LL9H9AD	M9AL9AE	D!DOAADHH)HH=o
NoVPAotjobf oin`AoptFoz ~0oy ~pAo@ t"or0v@oI0AoP0tH<HHzHHJPIHHHf.HD$`HD$H@LDHH9HHuH;mnH;=Gm6LHH9#HuH;jmHmlHJH5$IQH81hH
S xCH=+o1HtL9IXHmHqH~1H;THH9ukHH9H9AD	DGAADHH)HH=o"fvfo)nPtXoZ^ oy~`t:ob f0oi nptor0v@oY0H<HHzHHǂHBPHHHFHHdžHFPHBHFHAHdžHFXHBHF HAHdžHF`HBHF(HAHdžHFhbHB HF0HA HdžHFp>HB(HF8HA(HdžHFxHB0HF@HA0HdžHHB8HFHHA8HdžHHHFHHFPIHHBHFHAHFXI@HHBHF HAHF`I@HgHBHF(HAHFhI@HCHB HF0HA HFpI@ HHB(HF8HA(HFxI@(HHB0HF@HA0HI@0HHB8HFHHA8HI@8HHgH5NH8]<SHHHt$HBooHoP oX0o`@$SdohPop`$oxpo$oo$$ ooH$0$@H@X$P$`$p$$$BH$pRH;$0DH$H$x#H9$8H$H$H9$@H$H$H;$HH$H$H;$PH$t[H$yoH;$XueH$t8H$yLH;$`uBH$ tH$y)H9$huH gtHİ[fDHfuHİ[ÐyH
Mi4HD$H=%>HD$Hİ[UHHHuRH]YfHHeE1L
BNRH
MHMH8H5%1bXZ1]DHytH5MH?u@SHHHt$HrooHoP oX0o`@Sd$ohPop`$oxpo$Joo$$ ooH$0$@H@X$P$`$p$$$oHcHp|H;0nH=JHcHpGH909HJHcHpH90HJHcHpH90HJHcHpH;0HtmJHcHpy{H;0uqHtDJHcHpyRH;0uHHtHcHpy)H90uHctHİ[fDHIcuHİ[ÐsH
vJ4HD$H="HD$Hİ[UHHHuRH])fHHbE1L
KRH
oJH|JH8H5J"1^XZ1]DHytH5RJH<u@ATUSHH-bIHEHntEt
AD$`1tID$pHC01tID$xHC81tI$HC@1tID$hHC(ID$@HHAD$dC$ID$XHCID$PHCAD$`C A$tA$H{Hx	HHt9LcI9t1[]A\ÐI$xHI$uLVUHC@CULcI9uH`H5R!H8*V[]A\H5H=BWN.H=T!H
gHH{HtHxHHuTHC:AUATUHHGH5HHTIMID$H5zLHH_HI$H%xHI$HEH5HHH-IHEM+x
HHEteXHH7L`H=tH$]H+HUx
HHUt1H]A\A]LS`HSfDHHD${SHD$H]A\A]@A3DH
FmH=gH1]A\A]S\IA3I$xHI$uLSfD\H\IA3HElHHE^HRQA3A3AWIAVAUATLcUSH(HGtEIIQPIHUJ41M~2fDH
!IFH
	HHH9uL;=^WAtAIoD$11E1D$DH]H9EHSOIVMIDIIH9IvHUHH>t
UIFHH.Hx
HHoIGIH9~yHIlEtEHHtHx
HH"H9-ET$IG%H3LD$H)D$IIH9IM)x
HID$FLO]AtALLD$OLD$HITLD$HIfInfInfl@IpHIcL(PPIFHHH9fDD$TOfDOfDL$L$xSIHAtAM}M1LhRHt6HHLHD$`MLL$Ix
HIMA7Ix/E1HIuL$OMtI$xHI$H
BDH=BIHAIMtIx
HIHtHExHHEH(L[]A\A]A^A_A7I)I$HI$TLUNGfRIHsHzt	HzIT$H}HGH;W[tH}HfG @u tDHwI|$ HF}t	H6}IT$(LHV;IHI$xHI$aH=LOIExHIE!MA7LωT$*MT$LMYHMdE1*7E11H
\@H=@IfDMAs7fDHXH5R1H8M?7H
?uIx	HItb1L8OIH%8H;1YPXH,LﻵA7LMLLD$1LK7H
d?6H=?(MA7uA7"A*8ZIA,8N_kH;V4H5vIHWHIL9KI$AVAUATUSHH HGH5{HHHHHEH5{HHH*IHEMxHHEID$H5LHHHI$HxHI$L%H\$HD$I|$H;=WH5WpRLKHt$1LHxIMNIHdfHnfInHfl@H=XxSHIUxHIUtH []A\A]A^IT$BXLt$HZE1 uMl$H=?Hu;LLINMHNHuHiTH5H82JfA@3Aj3IEx
HIEtVAR3AiDDH
_<H=H 1[]A\A]A^fHH
LH@LHfDMIHExHHEAJ3AiI$hHI$ZL<HMLHD$#HHD$H []A\A]A^ÐA03AiQHA23AiHEHHEE1HGMPfPIA53Ai!PHAJ3Aiff.f+ff.ff.ATIUHHHGHtXHHEHLP0HHtpHx	HHt HyStH]A\Ff,H
1:H=ÆH1]A\f&,@AWAVIAUATIUSHLHHD$(Ht$@HD$0HD$8nHH{XHL$E1HHCHLLP0HHHx
HHHHHcSdHH9rfDHH9H8xH5sH=ς+AHH
88H=肅CHD$(HD$0HH@hHD$8L0HML;5QUMFAtAM~(M`ATALAL$dLuPLeLSXH}uyMMLL;LCH9QtH[]A\A]A^A_fDMIIH^D;+AM7xLT$H|$L$EL$E1LH|$L_}BLT$MLH}L$LM:L}vEL$LLLAL_5BCIxHIuLCfDE1E1E1HL$8HT$0HLD$Ht$(soLD$LLD$iBHChLD$H8L0HtHx
HHMtIx
HI%MtIx
HILt$0Ll$8L|$(Mt
M;n(]H{`Ls`HtHx
HHMtIx
HIMtIEx
HIEt`HD$(HD$0HD$8H
6DH=荂1fD+A+AL8BL.Br$BLD$B@LBLAHD$(HC`HD$8HC`HD$0HTHHHL$(tH@(HD$8H0%LL?@AWAVIAUIATUSHXHFHD$8HD$@HD$HjHYmH9t/HXHtXHqH~o1HH9t_H;TuALtAIx
HIvHX[]A\A]A^A_HH9tHuH;MtfDK?H4MHD$HhhLeI9t	MHmHuE1E1A@f@ϘHcCHD$8HAHLtHD$@DDHD$HIHAtAHD$8MuHD$8IE HD$@HD$@IE(L
kIAHHH=NHL$LL$>LL$HL$=1LLIDMLl$@H|$HHxHH\Ll$@HD$HIx
HI*HD$@HtHExHHEMtI$xHI$MtIx
HIAMMfDHjH9LA$tA$Il$EtEL?IHJIFfLHD$c>HD$HX[]A\A]A^A_H@>L0>AL >L>>L1LFHD$@IHcA*TDA)HD$8H|$@HtHx
HHkHD$@H|$HHtHx
HH0HD$L-zHD$HH@`HHxI9IEHHWo@bWA@IHXH;HJHP1HH98L;luH
?0DH=V
|H|$HL$8HT$HHt$@htH|$8Hx
HH3HD$8H|$@Hx
HHHD$@H|$HHx
HHHD$HHD$H@hH8L HtHx
HHcHtHExHHE;MtIx
HIHHI9HuL;-qHAHD$H@hH8L HtHx
HHHtHExHHEtMtIx
HIDH|$8HtHx
HHH|$@HtHx
HHH|$HHtHx
HHH
R.DDH=kz1LDL$;DL$A8*AA*H|$8HHHHDL$Q:DL$}B:8:.:DL$:DL$>DL$:DL$DL$9DL$LDL$9DL$HDL$9DL$uDL$9DL$FL9HH99_>HuHDH5H8t:@HD$@A*DL$B9DL$DL$.9DL$IUH1HH9tI;|u71ItH9'DL$HL$(HT$ H|$9DL$HL$(HT$ H|$HH9uAWAVIAUATIUSH(HFH;CLG@t
H;EjAA1E1E11H@IFH5EI9vI9PIFJ,EtEIHtHx
HHHDH9EHEHH)ËEHHAD$dIt$XH,ID$PHUHHHH1H?HH!HH)HH9aHIIHIIHHLD$LHL$HL$LD$HHLD$;LD$Ht"H-DH2H9VLD$_:LD$IH݅HILLD$6LD$IT$xID$pI$J4JHHJHI|$pJp:IHHdt	HdIT$L@!H|HHID$ Het	HeIT$(HQ&LL#IHI$xHI$H=rLK8IExHIEA>A\@M6'cHLD$HL$N5LD$HL$H5BH9EJHLD$HL$.>HL$LD$HHtdLD$HL$HD$88H|$HL$HLD$HHHLD$HL$4LD$HL$HLD$HL$y9H]HL$LD$Hf.I9KlE<:HƺHH)HHH~HLD$HL$T7HL$LD$H9f8IHHbt	HbIT$LHHHID$ HEct	H5cIT$(HQ&L IHI$xHI$ H=ApL5IExHIEA?ADDH
&H=4/s'Ix
HIH
l&H=#rE1HtHExHHE0H(L[]A\A]A^A_fD]EHH	fD]EHH	HH	?H5:AC>AH8f3)1E1fDHHHH|>H5AG>AH83HLD$w9IHH@HHpLD$IlA?I$AHI$xL1kHLD$1LD$fLt$T$`1T$t$bLH1L81'A>AA>HA>I$ABH
f$'H=pE1L0L0A>AsA>HLD$v1LD$Hݾ'b'1QfDAUHeATUSHH(LfHD$HD$HD$HHMIuVHFHHD$%.H$Hl$EtEH{Hx
HHHkH(1[]A\A]HH;H#H5_ATL
`"AH
]#H817X"ZH
"0H=v#xoH([]A\A]IuHnHl$E@HP-H5idHIHV:4HHD$IEH3H7"mD.
fD1HL$HT$ML
"HV"(AWHeAVAUIATUSHHHHD$(HD$0HD$8HHL4H
HuH6LAHt$(ML%:HFL9t
H;9LvHH!Hx
HHA$LtrA$HH[]A\A]A^A_fDHH9H!H5oSL
q AH
n!H815X$ZH
 H=m1HH[]A\A]A^A_HuH6Ht$(DLy1H
kdMHL9t7H;LuI4Ht$(HMGD,fDHA(E1HD$@JtH9H:H9AH9FHQH;VHFHyH9AHAt
HDY DV DD@@8uxA 4Hy8A Hv8DA'A*DDE9u9H$HLL$E1H/LL$H$AfIM9fDL%A8L9uuL9uuHϺLL$H$,H$LL$HHtkH;!8H;=7L9LL$HL$H<$1LL$HL$H<$AHx
HHEBEy%HD$(/H6$k@K4$H
NH=0j1M@DxHL$(HT$0ILL
HRHt$(ELL$H$Z*LL$H$1HHH)6H5H~H812$LL^(H8A@IEHy8A@HE|$DDDD$RAWAVAUATUSHHHH
-IH_HStHSIT$H5R[HFHCHH;51H(HHL=5L9<-IHEtEIiLLLL$!(LL$HIIx
HII$HI$L(DHHHHP!'Hx`HH5H0<tH}`HE`&fD+-H,L=4AtAHkL9MLL%f_H=?SIT$L2-IHtALD$+LD$HIHStHSIUH`bt	HPbAIU tAM}(LD$+LD$HIfInfInfl@AtAMw(IHI<HHL[]A\A]A^A_fL5Y^H=2RIVL&,IHtAE*IHYHStHSIQH]at	HMaIQ A$tA$Ma(LL$*LL$HIfInfInfl@I$xHI$tD@HE	HHEH&fL&7E1MDL%HH1E1E1RL
6H1H8H
H51.XZ~fHyH5HE1KfDH.HH&#Hx`IHi2H0a9iI}`IE`)HuL^aIHA#A
fDDDE1H
bH=ydIA
A#HIt(MtIExHIEuL$Lx$fDMA	$E1A
Ix	HItMtIyLLD$3$LD$@#H
H=E1M%dI$@ME1E1A#AxfD(HuL`HH
0*$H==cI$xHI$E1:f.IExpMAA,$ME1A7$ADH
#H=;c1# ,Hi,$E1MH
cH=zb#A#A
IHHGHt	H@H
#HD$H=3bHD$Hff.AUIATUHp&IHtL]A\A]HA/H8	$t%HEH5VHHHHHIEtJHELHHHt:HHEHt6IԅpHHEbH!ULH*Hx
HHEt6H
H=Graa*HLH1!ff.@AWAVAUATUSHHL--HHAAELntAEAHEHHE HCAHE AC$HDHC8HC0HC@HEHC HC1AnHC(EtEH{Hx
HHHkL9J1H[]A\A]A^A_fH5PLuPL9L=]-M9~L9~„g_IVH;V
IFHNH9@H@t
HEF ~ D8A XMN8@ 2Hv8ȃORA	>9HtLH"hATH5KH=d\!HE(HExHHEuHHCfE0C$HE8HC0HE@HC8DHkL9T@M9H58QL9wML9~LIHtOH;*AH;{*DM9L#AIx
HIE&woL9H5PL9M9~L9~„IVH;VIFHNH9@H@t
HEF ~ D8~A SMv8@ 1Hv8ȃJMA>9@HtLH9 #fDLsIHtIH;)L;5)M9L~"Ix
HI*ZH=H
\H{HHx
HHHCDH'H5ZH82H[]A\A]A^A_fDIx
HILuPEfM9uL9PCDOfDIExHIuL|hLD$dD$HN(H8@HE@IN(MN8A@LEA	>A	>HN(H8@HEIN(I8A@LEA>A>fAUATUHGHHIIH5OHHHtwLLHyHEx)x
HHEt1]A\A]H`fDx
HHEtJr H

H=rMZ]A\A]fp f+#HgHHPH+%H5LH81:"_AUATUSHHHIŋClL%%A$tA$HHtfHnfInLe(flEL%rEID$HHH=uk1LHIkMtFHExHHEHL[]A\A]fL%%A$JIHHExHHEuHpH
H=(E1XHL[]A\A]f.IExHIEuLVI$x
HI$tTeDH0HL[]A\A]fL1H3 IH@faSfDLH#H5H8	ff.AUHGHATUSHH(LfHD$HD$HD$HHMIBHFHHD$HXHl$EtEH{Hx
HHHkHEHH5GHHIMH5tLH5]LJIHnAoECAoMK(IE HC8HEH5JHHgHHHFHHx
HH#HE1I$HI$uyLCH(D[]A\A]DHH
"HL
H5ATL
AH
	H81WXWZH
q
H=AUH(D[]A\A]@IuHnHl$Y@HH5)FHIHVHHD$IEHPH7WmDSfDCfDH
	5XAH=5U>+IH-9RL-PHEHHH=g1HLHH1HEHExHHEuHXXH
	H=3AT;HjXfDtX@HHHHtaTXf.1HL$HT$ML
H<WH1LHHHH5WH8TXAWHJAVAUATIUSHHXL-HD$0HHD$ HD$8HD$@Ll$(HHL4HHHzHHH
AHOL
EHVIHLOHHHSH5H81 X[ZH
:
H=R1HX[]A\A]A^A_H>HbHVHT$(LLD$ (foHVHI)D$ HVLD$ I$MtML
AHH
lLIt$jH=AQQjAQE1QHj5HAPAOHPH5HU2HHU$HH$H$HX[]A\A]A^A_@LyLH1MdfHL9twL;DuMLD$ MBIM&HT$(
LLLyLD$ M~HILH&HHHD$(IOE1I@(JtHD$I9fDH!I9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA UIx8A 2Hv8DA]A`DDE9u7L$HtHLL$H<LL$L$DIM9JtI9O`@M9uuL9uuLǺLL$L$0HHtsH;AL$H;=LL$L9LL$LD$H<$'LL$LD$H<$Hx
HH=PHD$ H
AL
H?7HL$ HT$0ILL
H6xLD$ noKfDHUxHHUH
H$H=fNH$;HbFD$LL$L$.D$LL$L$L^(H8A@IEIx8A@HE|$HH$
H$MDDDDDAWH?DAVAUATIUSHHXL-.HD$0HHD$ HD$8HD$@Ll$(HHL4HHHzHHH
AHOL
EHIHLOHHHSH5H81PXэZH
jH=L1HX[]A\A]A^A_H>HbHVHT$(LLD$ (foHVHI)D$ HVLD$ I$MtML
;HH
FIt$jH=AQQjAQE1QHj5BAPAIHPH5HU2HHU$HH$H$HX[]A\A]A^A_@LyLMB1MdfHL9twL;DuMLD$ MBIM&HT$(
LLLyLD$ M~HCLH HHHD$(IOE1I@(JtHD$I9fDHQI9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA UIx8A 2Hv8DA]A`DDE9u7L$HtHLL$Hl
LL$L$DIM9JtI9O`@M9uuL9uuLǺLL$L$`
HHtsH;qL$H;=LL$L9LL$LD$H<$WLL$LD$H<$Hx
HH=PHD$ 'H
AL
H7HL$ HT$0ILL
"H!1xLD$ nofDHUxHHUH
C)
H$H=HH$k
HbD$LL$L$^D$LL$L$L^(H8A@IEIx8A@HE|$HH$H$MDDDDDAWH7AVAUATIUSHHXL-^HD$0HHD$ HD$8HD$@Ll$(HHL4HHHzHHH

AHOL
,EHIHLOHH!HSH5H81X"ZH
H=V!G1HX[]A\A]A^A_H>HbHVHT$(LLD$ (foHVHI)D$ HVLD$ I$MtML
5HH
@It$jH=AQQjAQE1QHj56APA*DHPH5HU2HHU$HH$H$HX[]A\A]A^A_@LyL51MdfHL9twL;DuMLD$ MBIM&HT$(
LLLyLD$ M~H=LHHHHD$(IOE1I@(JtHD$I9fDHI9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA UIx8A 2Hv8DA]A`DDE9u7L$HtHLL$HLL$L$DIM9JtI9O`@M9uuL9uuLǺLL$L$HHtsH;L$H;=LL$L9LL$LD$H<$	LL$LD$H<$Hx
HH=PHD$ WH
AL
5H7HL$ HT$0ILL
HQ+xLD$ nofDHUxHHUH
sYH$H=&BH$Hb
D$LL$L$D$LL$L$L^(H8A@IEIx8A@HE|$HH$HH$MDDDDDAWH:fAVfHnAUIHHhATIUSHhHD$PH=)D$ fHnflHD$0HD$X)D$@HsHL<HHHMHHIHD$ HL5{9H1fDHCH9HL;tuIHT$(HHYHLL$ LT$0L
NHFHFHIHD$0HFHD$(HHD$ HwLL$ HT$(LT$0La
IEtEHH=
IuHAPAj505:j58RLj535e>HPHHUxHHUjHh[]A\A]A^A_HHLVLLT$0oHVL)T$ >HIH4LHH$^H$HHD$ HUHMH
nAHHHmH5jATL
H81XZH
	
H=?Hh1[]A\A]A^A_HH
HAHMEIvLMH7LH~H}HD$0HKHH$H$Hh[]A\A]A^A_ÐHVHHYHT$(HD$ {fDE1IF(JtHD$I9fDHI9FH9FC;IVH;VHFI~H9AHAt
HE^ DF DD@@8zA I~8A Hv8DAADDE97HKLL$HH$H$LL$HD$(cH{HHW	H
H5)jL
AHH81Y^}DL	M9uL9uu{LLD$LL$H$HH[H;	H$H;=	LL$uLD$L9Hx
HHfDIAL9IJtI9K$HL$ HT$@MLL
Hq$bLL$HL$H<$LL$HL$H<$XI~8A@HE|${mDHUxHHUH
[
҂H$H=6;H$VLL$D$H$LL$D$H$@cH
L^(H8A@IEeDDv)Hu4H
AwHH$&H$CDD8s~fDAWH*AVAUATIUSHHXL-nHD$0HHD$ HD$8HD$@Ll$(HHL4HHHzHH-H
AHOL
<EHIHLOHH1HSH5H81X5~ZH
pH=1:1HX[]A\A]A^A_H>HbLVLT$(LLL$ (foLVHI)D$ HVLL$ I$EtEH)HHH3AUH=It$AjRPjRLPj5)D7HPH7HU4HHU&HH$)H$HX[]A\A]A^A_fDLyL(1MdfHL9twL;DuMLL$ MBIM&LT$(
MLLyLL$ M~H1LH
IHHD$(IOE1I@(JtHD$I9fDHI9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA UIx8A 2Hv8DA]A`DDE9u7L$HtHLL$HLL$L$DIM9JtI9O`@M9uuL9uuLǺLL$L$HHtsH;L$H;=+LL$L9LL$LD$H<$LL$LD$H<$Hx
HH=PHD$ gH
$AL
EH~7HL$ HT$0ILL
HaxLL$ no%~fDHUxHHUH
l~H$H=6H$Hb ~D$LL$L$D$LL$L$L^(H8A@IEIx8A@HE|$HH$XH$MDDDDDAWH$AVAUATIUSHHXL-HD$0HHD$ HD$8HD$@Ll$(HHL4HHHzHH]H
MAHOL
lEHIHLOHHaHASH52H81X}ZH

H=a41HX[]A\A]A^A_H>HbLVLT$(LLL$ (foLVHI)D$ HVLL$ I$EtEH?#HHH	.AUH=
It$AjRPjRLPj5B#t1HPH7HU4HHU&HH$YH$HX[]A\A]A^A_fDLyL"1MdfHL9twL;DuMLL$ MBIM&LT$(
MLLyLL$ M~H0+LH-IHHD$(IOE1I@(JtHD$I9fDH
I9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA UIx8A 2Hv8DA]A`DDE9u7L$HtHLL$HLL$L$DIM9JtI9O`@M9uuL9uuLǺLL$L$HHtsH;
L$H;=[
LL$L9LL$LD$H<$LL$LD$H<$Hx
HH=PHD$ H
TAL
uHj}7HL$ HT$0ILL
HHxLL$ nov}fDHUxHHUH
k}H$H=10H$Hbq}D$LL$L$D$LL$L$L^(H8A@IEIx8A@HE|$HH$H$MDDDDDAWHAVAUATIUSHHXL-
HD$0HHD$ HD$8HD$@Ll$(HHL4HHHzHHH
}AHOL
EH&IHLOHH
HySH5bH81X|ZH
H=n.1HX[]A\A]A^A_H>HbLVLT$(LLL$ (foLVHI)D$ HVLL$ I$EtEHoHHH9(AUH=h
It$AjRPjRLPj5r+HPH7HU4HHU&HH$H$HX[]A\A]A^A_fDLyL
1MdfHL9twL;DuMLL$ MBIM&LT$(
MLLyLL$ M~H`%LH]IHHD$(IOE1I@(JtHD$I9fDH
I9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA UIx8A 2Hv8DA]A`DDE9u7L$HtHLL$HLL$L$DIM9JtI9O`@M9uuL9uuLǺLL$L$HHtsH;
L$H;=
LL$L9LL$LD$H<$LL$LD$H<$Hx
HH=PHD$ H
AL
H|7HL$ HT$0ILL
HxLL$ no|fDHUxHHUH
}H$H=>a*H$Hb|D$LL$L$D$LL$L$L^(H8A@IEIx8A@HE|$HH$H$MDDDDDAWHwfAVfHnAUIHHxATIUSHhHD$PH
)D$ fHnflHD$0HD$X)D$@HqHL<HHHKHHIHD$ HL5H1@HCH9HL;tuIHT$(HHYHLL$ LT$0L!
NHFHFHIHD$0HFHD$(HHD$ HwLL$ HT$(LT$0L
IEtEHH=
IuHAPAj55W"j5RLj5%HPHHUxHHUjHh[]A\A]A^A_HHLVL)
LT$0oHVL)T$ >HIHuLHH$H$HHD$ HUHOH
AHH
HH5ڲATL
pH81_X(|ZH
yXH=
'Hh1[]A\A]A^A_HH
aHcAHMEIvL)
MHLHH}HD$0HKHH$TH$Hh[]A\A]A^A_ÐHVHHYHT$(HD$ {fDE1IF(JtHD$I9fDHA
I9FH9FC;IVH;VHFI~H9AHAt
HE^ DF DD@@8zA I~8A Hv8DAADDE97HKLL$HH$PH$LL$HD$(H{HH
H
|H5jL
/AHH81Y^
|DL)
M9uL9uu{LLD$LL$H$HH[H;
H$H;=
LL$uLD$L9Hx
HHfDIAL9IJtI9K$HL$ HT$@MLL
Hb|LL$HL$H<$eLL$HL$H<$XI~8A@HE|$|mDHUxHHUH
_|H$H=VI#H$VLL$D$H$LL$D$H$@H
|L^(H8A@IEeDDvHu4H
QAwHH$H$CDD8|~fDAWHAVAUATIUSHHXL-
HD$0HHD$ HD$8HD$@Ll$(HHL4HHHzHHH
AHOL
EH6IHLOHH
HSH5rH81Xj{ZH
H=޲!1HX[]A\A]A^A_H>HbLVLT$(LLL$ (foLVHI)D$ HVLL$ I$EtEHHHHqAUH=
It$AjRPjRLPj5HPH7HU4HHU&HH$H$HX[]A\A]A^A_fDLyL1MdfHL9twL;DuMLL$ MBIM&LT$(
MLLyLL$ M~HpLHmIHHD$(IOE1I@(JtHD$I9fDH
I9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA UIx8A 2Hv8DA]A`DDE9u7L$HtHLL$HLL$L$DIM9JtI9O`@M9uuL9uuLǺLL$L$HHtsH;!
L$H;=
LL$L9LL$LD$H<$LL$LD$H<$Hx
HH=PHD$ H
AL
HN{7HL$ HT$0ILL
HxLL$ noZ{fDHUxHHUH
R{H$H=qH$HbU{D$LL$L$D$LL$L$L^(H8A@IEIx8A@HE|$HH$H$MDDDDDAWHAVAUATUHSHH8L-
HD$ HD$(Ll$HIL<HZHHHAHT$HLA$tA$HHuE1LHL
SAUjH=x
PAQjPAQjPHPHzI$HI$LHD$HD$H8[]A\A]A^A_HHHH(H
HIHH8H?L
HLIL@HH-
SH/H5H81XzZH
H=-1H8[]A\A]A^A_@LqMLHHT$H1LL.HHHD$IFh@HT$ HL$ILL
{LHT$AzEf.I$x
HI$tNH
zHD$H=LHD$fHrzLHD$HD$ff.AWHfAVfHnAUIHHATIUSHhHD$PH
)D$ fHnflHD$0HD$X)D$@HqHL<HHHKHHIHD$ HL5H1@HCH9HL;tuIHT$(HHYHLL$ LT$0Lq
NHFHFHIHD$0HFHD$(HHD$ HwLL$ HT$(LT$0L!
IEtEHH=d
IuHAPAj55j5RLj5	%HPHHUxHHUjHh[]A\A]A^A_HHLVLy
LT$0oHVL)T$ >HIHe	LHH$H$HHD$ HUHOH
.AHHX
HkH5*ATL
H81XzZH
]H=PHh1[]A\A]A^A_HH
HAHMEIvLy
MHALH>H}HD$0HKHH$H$Hh[]A\A]A^A_ÐHVHHYHT$(HD$ {fDE1IF(JtHD$I9fDH
I9FH9FC;IVH;VHFI~H9AHAt
HE^ DF DD@@8zA I~8A Hv8DAADDE97HKLL$HH$H$LL$HD$(#H{HH
H
H5jL
AH
H81aY^yDLy
M9uL9uu{LLD$LL$H$HHH[H;U
H$H;=
LL$uLD$L9Hx
HHfDIAL9IJtI9K$HL$ HT$@MLL
H1bzLL$HL$H<$LL$HL$H<$XI~8A@HE|$ymDHUxHHUH
PzH$H=>H$VLL$D$H$^LL$D$H$@#H
zL^(H8A@IEeDDvHu4H
AwHH$H$CDD8y~fDAWH_AVAUATIUSHHXL-.
HD$0HHD$ HD$8HD$@Ll$(HHL4HHHzHHH
AHOL
EHIHLOHH
HSH5H81PX[yZH
jH=Σ1HX[]A\A]A^A_H>HbLVLT$(LLL$ (foLVHI)D$ HVLL$ I$EtEHHHHAUH=
It$AjRPjRLPj5HPH7HU4HHU&HH$H$HX[]A\A]A^A_fDLyLm1MdfHL9twL;DuMLL$ MBIM&LT$(
MLLyLL$ M~HLHIHHD$(IOE1I@(JtHD$I9fDHQ
I9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA UIx8A 2Hv8DA]A`DDE9u7L$HtHLL$HlLL$L$DIM9JtI9O`@M9uuL9uuLǺLL$L$`HHtsH;q
L$H;=
LL$L9LL$LD$H<$WLL$LD$H<$Hx
HH=PHD$ 'H
AL
H?y7HL$ HT$0ILL
H!xLL$ noKyfDHUxHHUH
CXyH$H=
H$kHbFyD$LL$L$^D$LL$L$L^(H8A@IEIx8A@HE|$HH$H$MDDDDDAWH
fAVfHnAUIHxHATIUSHhHD$PH
)D$ fHnflHD$0HD$X)D$@HtHL<HHHNHHIHD$ HL5
H1HCH9HL;tuIHT$(HHYHLL$ LT$0L
NHFHFHIHD$0HFHD$(HHD$ HwLL$ HT$(LT$0L1
IEtEHH=
IuHAPAj5
5j5
RLj5#
5	HPHHUxHHUjHh[]A\A]A^A_HHLVL
LT$0oHVL)T$ >HIH
LHH$.H$HHD$ HUHLH
>AHHh
HH5:ATL
оH81XwZH
پsH=m`
Hh1[]A\A]A^A_HH
HþAHMEIvL
MHQLHNH}HD$0HKHH$H$Hh[]A\A]A^A_ÐHVHHYHT$(HD$ {fDE1IF(JtHD$I9fDH
I9FH9FC;IVH;VHFI~H9AHAt
HE^ DF DD@@8zA I~8A Hv8DAADDE97HKLL$HH$H$LL$HD$(3H{HH'
H
ܼH5jL
AHH81qY^wDL
M9uL9uu{LLD$LL$H$XHH[H;e
H$H;=
LL$uLD$L9Hx
HHfDIAL9IJtI9K$HL$ HT$@MLL
ȽHAbwLL$HL$H<$LL$HL$H<$XI~8A@HE|$wmDHUxHHUH
+xH$H=H$VLL$D$H$nLL$D$H$@3H
wL^(H8A@IEeDDvHu4H
AwHH$H$CDD8w~fDAWH
AVAUATIUSHH>
HD$PH8HD$XH-hHD$`HpHD$hHsH|$HD$0HD$pH\$8HD$@H\$HHLH	HIJcHHFHD$HHFHD$@LvL.IOLt$8Ll$0IIMI$HIHL$HLt$8HD$@HL$H-6
HD$XHD$PH}H;=
H5
HSHt$X1HHIM%L=6
H=
IWLsHH	tEHEH5
HHHO	IHEMM	xHHE+LLkHHG	Ix
HI+H;-d
H;-
u	H9DHUxHHUE7HD$HEtEHt$HMHH
H
t$AH=
jHRPjRLPj5S
HPHh	HUx HHUuHHD$HD$@I$xHI$HĈ[]A\A]A^A_HUBHt$XLbE1 uL}H=Ht$\u@Ht$LAIM7HuH
H5H8L@H
"vH=p;1J@IuLH~PMwL-j
M1DHI9{M;luIHHD$HHHLl$0H4HH!H\$LvL.Lt$8Ll$0DHfHFHD$HD$HHFHD$@DH-
H=b
HUHVIHtAIGH5
LHHHIHx
HIHLPIH|HExHHEL;=G
L;=
I9LAŅQIx
HIsxHD$LAtAHt$Lt$ML
V
jLHH=

Y^HIHILHD$ؿHD$fDHADžA5vAHExHHEkH
DDH=ϑ1L.HILl$0`HIH}
LLHL$LT$HD$0IHHL$LT$H2@L.H\$ILl$06H
AL
KHH
HH5ATH81XuZH
9H=1fH
LLHL$LT$LT$HL$HI7HD$8HHlHE
LLHL$LT$LT$HL$HMHD$@HHL$0HT$PMLL
L	,u+I]H踽LHD$製HD$fL舽HhIE(HL$1HD$ Ld$MMDItI9Hs
I9EH9FIUH;VHFI}H9AHAt
HEU DN DD@@8A I}8A Hv8DAADDE9uuHH菿uUMHL$MLd$LT$LT$HucI9uuH9u*t&fDHI9MMLd$fDLcHHtH;t
H;=
u	H9ZHx
HHkt5f.MHL$MLd$IMH
H
AHOL
EHLOOD@JfDH HuLVHHAA.vVfHL$HLl$0HD$@HL$IA0vAH\$>fDAA3vIHIL\H|$(H|$(@SH>D$(D$(AAivL#HELعLT$HL$衾HL$LT$Hu@AKvAcHuHIHZAAbvfAAdvAgvA~LT$HL$HL$LT$HuCLV(H8A@IENI}8A@HE|$ -H=
H9ID$t
H;
LHHH=
Ht$XHl$XHD$PIHHExHHE1LIEx
HIEthA#AvAAvH
AL
ΪHu1DDbDDULǷH轷eL@HHA#AvAvA#H
#vH=1~ff.AWHG
AVfHnAUATIUSHhHpfHnflHxH
HD$`H
H|$HD$hH\$0HD$8H\$@)D$PHIL<HfHHL.LILl$0MH
LLLL$LL$H{
HD$8IMINL-
Hm1HH9M;luIHGHD$@I,@HHFL.LIHD$@HFLl$0HD$8MLl$0HD$8Hl$@L%Q
HD$XHD$PI|$H;='
	H5
LmHt$X1LH
IMGL=P
H=
IWL荺IHtAIFH5
LHHIIMx
HILL臵IHIx
HIL;5
L;5
u	I9DIx
HIEHD$LAtAHt$ILLH=
H_
H6IxHIuLHD$9HD$@I$xHI$Hx[]A\A]A^A_H,HkHHL.Ll$0fHvHnHl$@HFHD$8fIT$BHt$XLzE1 uMt$H=qHt$ZuFHt$LAI賸M5Hu H
H5pH8Jf.H
[9tH=31@L5
H=*
IVLIHtAIGH5e
LHHIIMx
HILLIHIx
HIL;=
L;=
LI9CLAƅpIx
HIEeHD$LAtAHt$ILLH='
H
HIHILHD$诱HD$uDLIIHMH
LLLL$LL$HIHD$0IH
AHH 
HWH5|ATL
H81wXtZH
H=Hx1[]A\A]A^A_L訶ADžLtA\Ix
HIH
/DH=#1_HIDӵIHFHLIHD$8HT$0fDL@4LHD$+HD$Hx[]A\A]A^A_L,DLEMH
}HMHII?IAxLl$0Hl$@fIE(LL$1HD$ Ld$MIDItI9H
I9EH9FIUH;VHFI}H9AHAt
HEU DN DD@@8uhA I}8A Hv8DAADDE9u)HHӱDHI9MLd$fDI9uuH9uuLHHtH;
H;=p
UH9LH|$(H|$(Hx
HHAiMLL$Ld$y%òHsMLL$Ld$If.L設{HuLIH;A\Etf苶I?GtA\HA\JtI|HIoLbHL$0HT$PMLL
LsIA^xt{LL$膱LL$Hs~fDL耬LpL`?3HuLIHbA^qt|f.ZtA]NA^stLL$ְLL$HsfDvtA^D$(跫D$(H=
H9ID$t
H;Ѹ
L˴IHH=
Ht$XLt$XHD$PHHIx	HIt~1HʭHEx
HHEtoAatZLV(H8A@IEI}8A@HE|$ A_tDDDDL讪uH衪L'IHAattAaH
atH=|n1AWHO
AVfHnAUATUHH`HPSfHnHflHxL5S
L-\
HD$`HH
HD$hLt$0Ll$8HD$@)D$PHIL<H
HrH6L6LALt$0MH
LLLD$LD$HIHD$8IMML$H
M
1HI9
I;LuIHHD$@I,@HHFLnL6LAHD$@Ll$8Lt$0M?Lt$0Ll$8L|$@Hq
H(hE111HALIHtA$I$xHI$u	H
H(hE111HALHH+
tEHExHHE+	EA;D$}L-
H=
IULIH_tAIBLT$LH5
HHjLT$IIMlxHIuLLL$zLL$H
I9ALHt$XLL$HD$PHl$XLd$`jLL$IMMfIxHIuLAtAH
L0IHtAEIExHIEuL¦L
H=
IQLLL$ӫLL$HItAI@LD$LH5]
HHLD$IMIx
HIL
H=`
LT$IPLLD$JLD$LT$HHtHALT$HHL$H5
HHLHL$LT$IHM!x
HHH
I9CdLHt$XLT$L\$HD$PLl$XL\$LT$IMMIx
HIG
H
I9BLHt$XLD$XLD$LT$HD$P4LT$LD$ILIx
HI
MOHx
HH
L;l
L;
u
L;4
^
Ix
HI

LAtAH
LMLH5
AHsH=
jP5
j5Q
AUjPL\$X	
HPL\$HIIHILLD$LD$rDH,HHOL=B
L6Lt$0DHvL~L|$@LnLl$8f{L0f.(	D$<
Lf.	V
L-
\D$H=b
IULfI~QIH
tAIBLT$LH5
HHLT$IIMxHIuLLL$踢LL$fInLL$蔥LL$HIHܭ
I9ALHt$XLD$XLD$LL$HD$PLL$LD$HMIx%HIuLHL$L\$&HL$L\$HSIx
HIH;
H;
&
CH;
l
6HHL$虧HL$AArE1E1E1E1Hx
HHE1MIE1HILLL$LD$L\$PL\$LD$LL$_@LAM[L|$@aH
ƕAHH
H7H5lUL
YH81HXqZH
bH=sE1HxL[]A\A]A^A_@L=9
@DHx
HH8EHtD$HL$OHL$HIfInHD$/L\$HL$HIH5
MLH
jHsAH=
P5H
j5
ARLT$XjPL\$`HL$X
HPHL$L\$HILT$W
Hx
HH;Ix
HIIHAAII$xHI$MHExHHEMtIExHIEMRIGHI:L-L~H؞LnHLALl$8HD$0\fDH訞gL蘞rE1LLD$耞LD$MH.HH
HIHII?IA/fLt$0fDE1HA(KtHD$ H9!fDHQ
H9AH9FHQH;VHFHyH9AHAt
HDi D^ DD@@8A C
Hy8A  
Hv8DAUAhDD.E9uCLL$HL$HtNLD$E1H_LD$HL$LL$A@IM9KtH9K@L-q
L9uuL9uuHϺLL$LD$HL$CHHH;P
HL$H;=ɨ
LD$LL$lL9cLL$(LD$HL$H|$*LL$(LD$HL$H|$AHx
HHEE(Hq$DE1E11E1E1ۻArE1MtIx
HIMtIx
HIMtIx	HItFH
DH=CnMI$xHI$E1LHfDLLL$LD$.LL$LD$[LLL$LL$VE1E1E1E1ۻA*r@L=i
G@HA
LLLD$)LD$HIHD$0If.HL$0HT$PILL
Lq~LHL$KHL$BLL\$L\$APsE13DL߉D$D$dHD$LL$蹞LD$H	LL$LLD$HI
AsLD$sLD$HqHLT$L\$fLT$L\$HHLLT$3LT$fHE1E1E1AGrE1D$违D$HE1E1E1AQrE1@HLT$L\$螘LT$L\$E1E1DSHLIHE1E1E1ۻAr]DHLrIHE1E1E1ۻAdrDLLD$LT$LD$LT$LL\$HL$辗HL$L\$LLD$蛗LD$&LLT$LD$~LT$LD$HLD$L\$VLT$LD$L\$f[LT$IfDE1E1ArE1#LT$IfDE1E1AfrDHL\$˖L\$E1E1Arf.MiM/AEMYtAEAtAIx
HIzfHnfInLߺflHt$PL\$Ld$`)D$PdL\$IIEHIELL\$L\$E1E1M˻AirE1E1ۻA
sfE1E1E1A~rMiMAEMYtAEAtAIx
HIfInfInLߺflHt$PLD$L\$)D$PdL\$LD$HIEHIELHL$ LD$L\$HL$ LD$L\$fLD$趙LD$HwqfDE1ۻAsD軝LD$I3fDH5
H=
13oIHH1IExHIEE1E1E1ArE1KLL$LD$HL$LL$LD$HL$LT$LD$јLT$HLD$L&LT$HI/AsDE1E1E1ArA s袜LT$HL$IE1E1ArLn(H8A@IEHy8A@HE|$ IKHMKtAtAIx
HIqfHnfInLϺflHt$PLT$HL$LL$)D$PHL$LL$ILT$HLHH?HLD$LL$LT$脒LD$LL$LT$A5sIE1E1ArMJMAIJtAtIx
HIfInfInHϺflHt$PLL$LD$HL$)D$P
LL$HL$ILD$IHILLD$L\$HL$蜑LD$L\$HL$E1IʻALsH5
H=
1lIHH1HD$L\$Ix
HIA`sE1E13DD.A}sDD.LL\$ܐL\$oLLD$L\$L\$LD$NL詐]E1E1E1E1ۻArLLL$LT$HL$qHL$LT$LL$dE1E1E1E1ۻAdraLLD$HL$LL$*LL$HL$LD$L߻A`sE1E1E1ۻAsE1E1E1ۻArE1ɻAsE1A\sIIHI{E1ff.AWH׿
fAVfHnAUIH8HATIUSHhHD$PH
)D$ fHnflHD$0HD$X)D$@HqHL<HHHKHHIHD$ HL59
H1@HCH9HL;tuIHT$(HHYHLL$ LT$0L
NHFHFHIHD$0HFHD$(HHD$ HwLL$ HT$(LT$0L
IEtEHH=4
IuHAPAj5e
57
j5W
RLj5

HPHHUxHHUjHh[]A\A]A^A_HHLVL	
LT$0oHVL)T$ >HIH
LHH$订H$HHD$ HUHOH
AHH
H7H5XATL
PH81?X2^ZH
YjH=_Hh1[]A\A]A^A_HH
AHCAHMEIvL	
MH
LHΡH}HD$0HKHH$4H$Hh[]A\A]A^A_ÐHVHHYHT$(HD$ {fDE1IF(JtHD$I9fDH!
I9FH9FC;IVH;VHFI~H9AHAt
HE^ DF DD@@8zA I~8A Hv8DAADDE97HKLL$HH$0H$LL$HD$(賏H{HH
H
\H5yVjL
AHH81Y^^DL	
M9uL9uu{LLD$LL$H$؊HH[H;
H$H;=_
LL$uLD$L9Hx
HHfDIAL9IJtI9K$HL$ HT$@MLL
~Hb ^LL$HL$H<$ELL$HL$H<$XI~8A@HE|$^mDHUxHHUH
}i^H$H=[)H$VLL$D$H$LL$D$H$@賍H
^L^(H8A@IEeDDvyHu4H
1}AwHH$vH$CDD8
^~fDAWHG
AVfHnAUATIUSHhHpfHnflHxH
HD$`H
H|$HD$hH\$0HD$8H\$@)D$PHIL<HfHHL.LILl$0MH
LLLL$LL$H{
HD$8IMINL-ν
Hm1HH9M;luIHGHD$@I,@HHFL.LIHD$@HFLl$0HD$8MLl$0HD$8Hl$@L%Q
HD$XHD$PI|$H;='
	H5
LmHt$X1LH
IMGL=P
H=
IWL荋IHtAIFH5ܸ
LHHIIMx
HILL臆IHIx
HIL;5
L;5
u	I9DIx
HIEHD$LAtAHt$ILLH=
H_
H6IxHIuLHD$9HD$@I$xHI$Hx[]A\A]A^A_H,HkHHL.Ll$0fHvHnHl$@HFHD$8fIT$BHt$XLzE1 uMt$H=BHt$ZuFHt$LAI賉M5Hu H
H5AH8Jf.H
xbB]H=0W31@L5
H=*
IVLIHtAIGH5e
LHHIIMx
HILLIHIx
HIL;=
L;=
LI9CLAƅpIx
HIEeHD$LAtAHt$ILLH=
H
HIHILHD$诂HD$uDLIIHMH
LLLL$LL$HIHD$0IH
vAHH 
HtwH5MATL
vH81wX]ZH
v+H=UHx1[]A\A]A^A_L訇ADžU]AcIx
HIH
/vDH=T1_HIDӆIHFHLIHD$8HT$0fDL@4LHD$+HD$Hx[]A\A]A^A_L,DLEMH
}uHuMHII?IAxLl$0Hl$@fIE(LL$1HD$ Ld$MIDItI9H
I9EH9FIUH;VHFI}H9AHAt
HEU DN DD@@8uhA I}8A Hv8DAADDE9u)HHӂDHI9MLd$fDI9uuH9uuLHHtH;
H;=p
UH9LH|$(H|$(Hx
HHAiMLL$Ld$y%ÃH\MLL$Ld$If.L~{HuL޺IH;AcN]f苇I?P]AcHAcS]I|HIoL~bHL$0HT$PMLL
<sL]IAe]{LL$膂LL$H\~fDL}Lp}L`}?3HuL薹IHbAez]|f.c]AdNAe|]LL$ցLL$H\fD]AeD$(|D$(H=ϫ
H9ID$t
H;щ
L˅IHH=
Ht$XLt$XHD$P}HHIx	HIt~1H~HEx
HHEtoAh]ZLV(H8A@IEI}8A@HE|$ Af]DDDDL{uH{L'IHAh]]AhH
oh]H=kNn1AWH
AVAUATIUSHHHHD$(HD$0HD$8H5HL,H=HL6LALt$(MID$H5Z
LHHHHHEH5v
LHHHЉHExHHE6H
tqHH[]A\A]A^A_HH
HxoH5ESL
lAH
mH81hX(ZZH
nH=6M	1HH[]A\A]A^A_HuL6Lt$(DLy1H
MtHL9H;LuMtLt$(MUMGxHHEUZH
mH=LaHH1[]A\A]A^A_H(ySZf+HQHA(E1HD$@JtH9H#
H9AH9FHQH;VHFHyH9AHAt
HDY DV DD@@8uxA Hy8A Hv8DAADDE9u9H$HLL$E1H7{LL$H$AfIM9fDL5a
L9uuL9uuHϺLL$H$9xH$LL$HHtkH;A
H;=
L9LL$HL$H<$0}LL$HL$H<$AHx
HHEBEy%HD$({HZ@OtwfD{h@DfHL$(HT$0ILL
lHx{Lt$(HvELL$H$vLL$H$IL^(H8A@IE#Hy8A@HE|$DD!DDZ7UHHHHHEH5
HH+HHH
HEH5
HHHHUHt1x
HHUtH]DHHD$uHD$H]ÅxHHUYH
iH=H聵1H]fHH-
E1L
iRH
iHjH8H5@1{}XZ1H]ÐHyH5UjH&[1f.Y]fDH}H}fDHt%AVAUATIUHHGH5
HHHHHEH5
HHHIHEMxHHEID$H5
LHHIMID$H5
LHHHI$HxHI$/HEH5
HHHIHEMxHHEH=ޢ
LrHHI$xHI$H5բ
HrIHHExHHE3LL8rHHlI$xHI$&IExHIEEItEHExHHEHL]A\A]A^DHrdLrHprL`rASYAHExHHEH
fDDH=E=MhLE1GfHqHL]A\A]A^fHqLqLqzHH6H
 f9YE1H=,E蟱HL]A\A]A^Hhq-A;YAczIHYLE1H
eH=D0I#zIJYI$xHI$uLpyHAMYAcyIPY랐VYfAWAVAUATUSHH(HGH5T
HHHHH{
H9E%L}MALetAA$tA$HExHHEL|$L5R}
HD$I|$L9tLxtkIT$Bt_Ht$HjE1 uMl$H=3-Ht$ynLHt$ItMFIy;f.L(qHHt$1ɺLIIx
HIM ffL5m|
)D$H}L9tL/w7HUB(LbE1 uLmH=R,m1LAIIsMII$xHI$H=Ԟ
H5
HGHH!IMH-
H\$HD$H}L9qLivaHoHt$1HHHHH<y
I9D$M|$MsAMt$tAAtAI$xHI$rfInfHnHl$Afl)D$LLo1LHLHHMtIx
HI*Hx
HHHIx
HIHL~lHIUxHIUHUxHHUaH([]A\A]A^A_f.HUBHt$HZE1 uL}H=&*Ht$lkHt$u;LHqHzHqHuHw
H5*H8]mDIE\HIENAXL lI$2HI$$LkfHk;qHpHt$1ɺLqIy@HxmHHt$11HII_fDLxkpHgHD$H\$I|$L9tLstlIT$Bt`L|$Lr1 uIl$H=(iHLAHGpHHx	HHt.MfDME1Hl$A6f.MDHjeLjdLjbHHD$kjHD$H([]A\A]A^A_LHD$CjHD$JfL(jLjIEx
HIEtHHEAXxHHEDH
`^H==H(1[]A\A]A^A_LAXiHEyfDrHHAAXIEAXxHIErLLie[rInHuHWt
H5&H8 jILxHIELfDHEAXfHhHEL-
LMH=.&ygu1LHADIEMxHIEuAX8AX5D+mHRHss
H5%H8<i7mHuHNs
H5%H8iHxRHMHi1:fAXL1HoIHILgIEAX pff.ff.AWH
AVAUATUSHH(HD$Hs
HD$HD$HeHL4HH^L&HALd$H>H5Ǘ
HFvID$LHHHHHx
HHID$H5h
LHH%HHH5ZH(jHExHHEuH\f8H-L
Ld$HD$H}H;=s
uH5s
YnaHgHt$1HHIMW@HHHH`ZH
PZHIHHpXH?L
YHLIL@HHeq
SHL[H561H81mXUZH
YH=z;E1bH(L[]A\A]A^A_LiMIhH
ID$H9t2HXHtFHqH~]1fHH9tGH;TuA$A$xf.HH9tHuH;pq
tfDL-Y
H=
IULiHHWtEHo
H9EHt$HIHD$Ld$\IMMIx
HI|H=
Ht$Ll$HD$eIIEMCHIELcxf.HUBLl$HZE1 uLeH=!abLLIhM;hHoHn
H5 H8LdTL&Ld$H1
LH~xIH%HD$IE@b2fD;hIIx
HI]߶H
6WH=8E1迢XxHIE]@HYn
H5R+H8rc~WH
VH=8e gHUs;kHBfHuLQHH]˶1LaQLa
@HL$HT$ILL
WHɉLd$G5fLawWjHL}MALutAAtAHEx
HHEtefInfInHt$Lfl)D$5IIHIL`eHBhH`ff.AWH
AVAUATUSHHHHD$(HD$0HD$8HHL,HHtrHH?l
HTH5,SL
SAH
TH81hXAZH
SH=6+HH1[]A\A]A^A_f.HHIHD$(HH5|
H=
hbH
>SAH=86˟fH4HHD$(@LyL%
1MHL9t'L;duIDHD$(HIO`@ID$(E1HD$JtI9Hcl
I9D$H9FIT$H;VHFI|$H9AHAt
HET$ DN DD@@8utA I|$8A Hv8DAADDE9u4HLD$E1HvaLD$ADIM9fDL5j
M9uuL9uuLLD$}^LD$HHt[H;j
H;=j
uxL9tsLD$H|$cLD$H|$AHx
HHEZEy%HD$(WbHAA@KDfDDf.HL$(HT$0ILL
`QHA>ALD$\LD$aLV(H8A@IEXI|$8A@HE|$6DDUDDHAUATUHH	L%™
H-3
I|$HH@H;-h
YHtLH{H<h
H5H8U]DH
O;AH=2C]1A\A]A$@HLmI@t'M9zLLcHEHaEtE1HLcIHExHHEPM7IM@fLL[IEHIEL9[@Hg
H5JH8*\DHu+tA$@t1_HH;L[HHf
E1L
"ORH
NHOH8H5j&1bX1Z]A\A]ÐHyH5NH@FfHLZH1!dHJfH(ZHL<ZHe
LH5H81EbAWH
AVAUATUSHHHHD$(HD$0HD$8HHL,HHtrHHoe
HMH5A%SL
CLAH
@MH81aX6ZH
LH=80[HH1[]A\A]A^A_f.HHIHD$(HH5
H=-
[H
nLB6H=/fH4HHD$(@LyL%
1MHL9t'L;duIDHD$(HIO`@ID$(E1HD$JtI9He
I9D$H9FIT$H;VHFI|$H9AHAt
HET$ DN DD@@8utA I|$8A Hv8DAADDE9u4HLD$E1HZLD$ADIM9fDL5c
M9uuL9uuLLD$WLD$HHt[H;c
H;=7c
uxL9tsLD$H|$\LD$H|$AHx
HHEZEy%HD$([H	6A@KDfDDf.HL$(HT$0ILL
JHq~>6LD$.VLD$aLV(H8A@IEXI|$8A@HE|$6DDUDDHAUATUHH	L%
H-c
I|$HH@H;-/b
YHtLH{Hla
H5%H8VDH
H5H=,s]1A\A]A$@HLmI@t'M9zLL\HEHaEtE1HL\IHExHHEPM7IM@fLLTIEHIELiT@HA`
H5zH8ZUDHu+tA$@t1BXHH;L8THH_
E1L
RHRH
GHEHH8H51+\X1Z]A\A]ÐHyH5HH9FfHLSH1Q]HJfHXSHLlSH_
LH5H81u[AUH
fATHfHnH-USHHHLf)$fHnflHD$0HD$HD$8)D$ HHIsuM$IWHFHH$PIH5
HHVWHD$HIMH,$H|$HG&HGHqH)‹GHHcAH9AH|$HH;=^
H;=^
H;=U^
WAă&EtEH{Hx
HHHkDH}
H9CH;-]
AD
ۏ
sHǃ1HH[]A\A]IHF(HHD$HF HD$HFH$,OIM1HHT$ ML
FHx.%fD	HHH)HHHUHcAH9rHuGUHufH\
H5H8ZQ%UHA;It;It,IH
DHDAHMEIDHF(HD$oVH~ Hn)$fHs@DHaVH{HKH6\
HSH5.HSh1:Ou	1z HMH5
HIHVI~TH$HTHH
CA@H
CAHHZ
HDH5ATL
XCH81GWXD%ZH
[B]H=%&HH[]A\A]GWHH	HcAH9/cSH=%kNfDH5a
HHV}SHHD$I=fDHF HHD$HFH$GLIGWHH	HHcAH9@E1*H=Њ
1YP&uH
*AH=$輍\fkRH)%KRHHH?Y
H5L
AjAH
AHCH81U^"%_=D%aZH@`HHHIHtvHY
I9D$u6@LsAI$HI$LLLH5F(IHu8f;% %GQHH?X
H5?H8XM%VfDAUIATUH10IMH
ID$HX
ID$уtCID$ t:ID$(DщID$HLHLxL]A\A]@ID$ ID$(@I$x
HI$t.E1]LA\A]fHAX
H5v
18IEfLHKfDAWAVAUATUSH(L-W
H\$`Ht$HT$L9cLcL9W
AMƃtA	OIHEAEtAEMl$H<
t	H,
fHnfIn1LflAD$ H=v
_HHH
LpHEAEtAEHDžI$xHI$o\$`od$po$o$o$o$o$o$o$o$o$o$o$  0@P`HtC8*HCHP8IHLHpHx
HHLpHHHHsXS`oKhoCxo[PHHD$hU`D}dHE@AELmH]PMhExtAEH0IHJ9H]pHDžHHExH9s"HHH9v
H8xHIHuPE1L9H;M$KIHMtIx
HIH}PJIHLHPIIM`x
HIHT
I9A	IAHH¸H)AQHII}Ix
HI)HLmPI9)~D$EHD$xtEHExHHEzMtI$xHI$oH(H[]A\A]A^A_DLS
AMƃDLLL$FLL$HS
I9ALLL$OLL$HIHLL$IILL$IŅHILrFLL$LXFLHF$
CH
9H=M1>fMCːH
{9?B1H=fHEHHEHEyLELEPACAHIt3H
8DD1H=xHf.L8EfD+EfDLL$ILL$HI_@HHH)HHHAAAQHH	IfDI1ABAf.I$MA BE1AHIL=Dup6BH=1n)fDLLL$;GLL$IGAAAQHH	HI-H
O7CH=<׃HE1ۅaoH
7B1H=
襃aH
6 B1H=聃=IxACAH
6CH=GkfHH=o
HGIH9t=HXHHyH1HH9H;TuMxIAAxdvxvpvhv`vXvPvHv@v8v0v(v vvv6LHHtDHHH9LHuH;N
:fD1E18fDMH
f5DHD$H={HD$H@ATUHHG@DWdHwpHOxH<$IHD$LE'MH$H9L9AD	I9M9AD	!AR„HD$H)HxH=oD)L$o)T$PAo)$tsof)d$ oi)l$`Aop)$tLo~ )|$0oy )|$pAo` )$t%oF0)D$@oI0)$AoP0)$DЃAt"HH4HtHHLPIHĐL;HHnH;L
	H?EItEHExHHErHL]A\@H$H9L9	AR„uHD$H)HxH=]o.Dfv)l$o1)$)t$Ptao^)\$ oy)$)|$`t@on )l$0oq )$)t$pto^0)\$@oa0)$)$DЃAHH4HtHLHDŽĐHTPHHH
\2<YDE1H=~,H
72/H=~HL]A\fDH>HL]A\f.HHD$HHD$PIH$AHFHD$HAHD$XI@H$AHFHD$ HAHD$`I@H$AHFHD$(HAHD$hI@H$ApHF HD$0HA HD$pI@ H$AHHF(HD$8HA(HD$xI@(H$A HF0HD$@HA0H$I@0H$AHF8HD$HHA8H$I@8H$HSi
HHxH9HXHHqH~ 1f.H;THH9uHH
HJH5RHWH81EHExHHEH
!0,/E1H=|HL]A\H
/-/E1H=Ux|;HHD$HHDŽ$HD$PAHFHD$HAHDŽ$HD$XAHFHD$ HAHDŽ$HD$`AzHFHD$(HAHDŽ$HD$hARHF HD$0HA HDŽ$HD$pA*HF(HD$8HA(HDŽ$HD$xAHF0HD$@HA0HDŽ$H$AHF8HD$HHA8HDŽ$H$H;aH8F
H5,H8<0HHH9HuH;G
fAUIATUHSH10IMH(y
HG
ID$I\$ƒtnI\$ teI\$(D‰ID$HLHL,xHHx
I$pID$tIDŽ$HL[]A\A]ÐI\$ I\$(@I$x
HI$t>HE1[L]A\A]DHF
H5e
18If.L9fDAWHp
AVAUATUSHHHHD$(HD$0HD$8HHL,HHtrHHE
Hg-H5SL
+AH
,H81jAX"!ZH
~,H=yHH1[]A\A]A^A_f.HHIHD$(HH5\n
H=u
H;H
,K!H=xfH4HHD$(@LyL%o
1MHL9t'L;duIDHD$(HIO`@ID$(E1HD$JtI9HCE
I9D$H9FIT$H;VHFI|$H9AHAt
HET$ DN DD@@8utA I|$8A Hv8DAADDE9u4HLD$E1HV:LD$ADIM9fDL5C
M9uuL9uuLLD$]7LD$HHt[H;iC
H;=B
uxL9tsLD$H|$d<LD$H|$AHx
HHEZEy%HD$(7;H!A@KDfDDf.HL$(HT$0ILL
@*H!^>!LD$5LD$aLV(H8A@IEXI|$8A@HE|$6DDUDDHAUATUHH	L%r
H-k
I|$HH@H;-A
YHtLH{HA
H5H856DH
( H=X
#u]1A\A]A$@HLmI@t'M9zLL<HEHaEtE1HL<IHExHHEPM7IM@fLLk4IEHIEL4@H?
H5*H8
5DHu+tA$@t17HH;L3HH?
E1L
(RH
o'H'H8H5J1;X1Z]A\A]ÐHyH5'HFfHLe3H1=HJfH3HL3H>
LH5H81%;AWAVAUATUSH8HHHH{H5"j
HGHHHHPH=
H9ELuMALmtAAEtAEHExHHEHD$(H5x?
I}Lt$ H9t	=:tYIUBtNLd$ HZ1 uImH=d0LHI7MIy3fLh3HHt$ 1ɺLIIx
HI7Mu}DfH5>
)D$ H}H9t
z9bHUBSHZE1 uLeH=/@1LII>6Mu	IExHIE_ID$H;3<
IT$HMl$Mt$ M|$(AEtAEAtAAtAI$xHI$\.HHH!c
t	Hc
HEHHf
6IHH5C[
HHHA5HI$xHI$FHEHxHHEH5b
HhIHtA$I$xHI$Hx
HHgIFH;<
H;:
HXpHH{12H9HD$HLSLD$HIHIL.fDHt$ 1ɺL<4IY@H0HWHt$(11HII?fDL.H@hHCH@H61LHHy2HHHhAEtAELj HT$I2HT$HHxA$tA$fInfHnflCAtAL{(IEHIE?IxHI|MtIx	HItwMtI$xHI$H8H[]A\A]A^A_f.Lh-HX-3IxHIuL8-wL(-|E1E1E1E1Zf.LE1HtHExHHEMtIx
HIvH
G!H=XlHt%HKHH>I1L,MILh,LX,IFH(EEDL(,H,LH,L+hHH7
E11RL
? H!H8H
H514XZ&fInEc8HyH5s!H14H1Lljt$T$@+t$T$mHLD$t$T$+LD$t$T$*f/HuH'6
H5H8+ILxHIu
L*DIIEVE1ZE11HIEt2M$Ix	HIt91E1E1E1r@LLD$t$W*t$LD$@LLD$1E1t$E1E1,*t$LD$fH;7
L{1IHI$xHI$I@LD$LHLD$HI}LLD$HILLD$HILLD$HLD$:hLD$IHIL=)E1D[HEx
HHEt1DHt$1T$(T$t$HHx.HH-H
HEH4
H5%H811LZE1E1E1E1gDE1[nfDHEL%S
HH}H=!'y1LH1f.Hݺ[fDIT$HID$L(LpLxE@H3
H5H81#0fD+[fHվ3[pfD)[yfK,HH2
H5H8\(1*HHt9HLf(HHHHH'fD1)[LLD$&LD$L1HI.IHHx
HHHe2
LD$H5|H81.LD$IELZLE1E1E1E1ZE1E1Ix
HIdu1IHoLH
H5oHEH1
H81B.MtaIExE1[1"fD[E11AvAkL%rH%LD$E11[1E1E1a1E1E1ZE1{ATIUHHGH5Z
HHHHID$t_HELHHHtOHUHtNx
HHUtH]A\HHD$$HD$H]A\fDLH-x
HHUtRH
H=ZdH1]A\s-HH:fH($fDAW1AVIAUATUHSHH$0HH
~b
H5P
IFH9t:HXHHJH!1DHH9H;tuL;5%0
AtALt$(MIA~fInHEH;0
fl)$0t
H;.
E	EE1HD$HCE1H|$D$ HD$D$$D$Lt$8HEH
j0
H9M	I9HEJtIMtIExHIE'	H$H;/
HCH5G[
HHHDIML5.
M9L;=z.
u
L;=.
M/Ex
IM/E1HCH5Z
HHHuIMOM9L;=
.
u
L;=T.
cIxHHD$0IHD$0HCH5fZ
HHHIMM9L;=-
eL;=-
XL'	KM7Ex
IM7E1HCH5Y
HHHIMIx
HI
HCH5Y
HHHIMyIx
HIP
HCLD$@HH5]Y
HHcLD$@HbHx
HHQ
HL$H;,
LLQ@L	iMLLIL;=,
_M
MiLIL;~,
x	MILHILM9<H3@HH9HuH;5|,
fDIM~@Lt$`IvpMnxHD$(HIcFdL|$h
L$HH\$`H|$pL)
#H$LL#Ht$(H$L#fInHD$(fH+
H9C	HCH)
AI)ŋCLIHD$LLp@HML9|$ tHcT$ MLMxD$H$8L8L$8D$$IHD$H|$XHD$HHHuLt$8#HtHQ+
H2H9!HExHHEHJ
IFH9t6HXH&
HqH;
1HH9)
H;TuH|$(HD$(AMHHx$$$$$$$$$$$$$$$$$$$$$$$$$$$HIHH;7)
H5H
HLA:AfDHcD$D$$IHD$HDŽ@HHDŽĀHDŽL$f.L!MA:IAHExHHEWMtIx
HIDDE1H
AH=[H|$(tH|$(Hx
HHMtIx
HIHL[]A\A]A^A_@H!(
T$$H5G
H8wIA=AufL UMA:IAfHHD$ILLp@HIH'
T$$H5H
H8UwIAJ;A2DDH

AH=AA9ZDAHA'
I9GIGHAI)AGLIVIHILfDH&
I9GdIGH	AI)AGLId	IHIxLkLpHD$E15HA&
I9GIGHH)AGHHT$0H|$02IqHIdLWI9J\fI9OL1AE1L;2%
,LL)HIHcT$HԀLHHH|$ H@MHcD$ HD$|$ MIID$$HD$|$ D$@ML$8H#
T$$LD$XH5F
LL$PH8LT$HL\$@tL\$@LT$HLL$PLD$X1L;=D$
11MM9LIL;$

M	MIIDMM9LLAMOIMA4:IA+HHHH@HHD$H'ITfDLZLIA:AHEHAHEHLD$LD$IH|$0yHD$0I9LOM)nLHsLLD$@3LD$@f;IML$8HLD$HHD$@LD$HHD$@AVdH=R
1VH
,	8H=UE1IA:A@IHpIHdHIIpHIcL)V@H$LLxH$LfInfIA2:A@IMHƺHH)HHHHIL
H

9H=N
qTIAH:ASI>IAU:Af2I]%LD$@IAb:A6DkCII	HD$LLp@HMZMiIHH9HuH;h 
A11M$$$$$$$$$$$$$$$$$$$$$$$$$$$zHIHH;0
H5>
HLA:ALpHHHD$@H|$@IHHH%vE1AAk9=Lt$81E1L;
{LL$0LHM)HD$(fInH\$`UHILHHtHD$0H|$0IHYHHLdBHƺHH)HHHEoAGII	L)HHt6HD$@GH|$@HD$0HHHHHD$0DkCII	IHƺHH)HHcHGAGAWHH	HD$0YMͿLLHII9@LLL)H(IM͸LHyHƺHH)HHHEwAGII	3HAH
<Iߺ8Aľ;H=sAo:ODA
LIXEoAGII	IALIMIIA9ALpHD$0
AGAWHH	HHD$0LAL4IBEwAGII	I+Am9AE1AA:MA:IAAA:H
HE1MH5eH81H
:H=CfNMA":IA,H
MAA9UMA8:IAM)I@H;5J
AVAUATUHSXHud-IHH:
H9HPHLhLp AEtAEAtAI$xHI$L;-
L;-
u	I9|HELHHHHEHP(IHIEx
HIEtsIx
HI[L]A\A]A^ÐLfLw(H
!H=E1LIExHIEuLvItL[]A\A]A^LH%IH6(DL [L]A\A]A^@j(E1H
H=#L[L]A\A]A^fH
H5(H8I$xHI$uLf>r(HxHHH
THEHO
H5H81@H1
r(H5HH81tf({(kAWH7?
AVAUIATIUSHHHD$(HD$0HD$8H-HL4HUHH>LAH|$(MHGHGHHHH)HHHXIIkLInHHIHHIEH5=
LHHVIMXIHW	HHH[	H5DB
HL1HExHHEL-?
H=4
IULHH%
tEHEH5C
HHHU
IMW
HExHHE!H5:;
LL_	IExHIEIGH-6D
HHH=:
LHLIMV
Ix
HII$xHI$IEH58
LHH	HH	IExHIEuLVH
H9]EL}M8ALetAA$tA$HExHHEHA
Ht$0LL|$0HD$8?IIx
HIMI$xHI$]IEH5A
LHHG	HIEHxHIE+H9]qL}MdALetAA$tA$HExHHEHt$0LL|$0HD$82>IIx
HI#
eMI$xHI$IEHXpHH{L	HHH= 
HHIHExHHELMLLSIIx
HIIEMxuHIEukL afDHH
HH5ATL
AH
H81?XedZH
YH=E1EHHL[]A\A]A^A_HuH>H|$(DAI)ƋGL#Ly1H
9
MfHL9H;LuI<H|$(HcMGrHLLWL1xHIEAdH
DDE1H=DHPH}
H5H81IEx
HIEtRAeDDwGII	DDwGII	IfH(pLfDL5HH5qdHHXHtIIAdHA(E1HD$@JtH9H
H9AH9FHQH;VHFHyH9AHAt
HDY DV DD@@8uxA Hy8A Hv8DAADDE9u9H$HLL$1HLL$H$@IM9fDH
H9uuH9uuHϺLL$H$H$LL$HHthH;
H;=_
H9LL$HL$H<$LL$HL$H<$Hx
HHDy(HD$(HUdK<gAdE1f.Ix	HItpMtI$xHI$HtHExHHEMnIEbHIETLGf.LfDdI$AHI$E11fDL^HiE11AdE1AdDLHLIHLHL8H(HHt$8HIHD$0Hp9
HD$87IfDAd16fDLHL$(HT$0MLL
H'2H|$(CHuL;HHE1AdL(WH+IAdpfHt$81H)D$0I6IDLLhAdE11H
dA?KHH"1AdDcHLL$H$*LL$H$@@1IEL^(H8A@IEHy8A@HE|$DDH@`HHHHHH

H9EH(4IHE$HHEHc	ad|DDyZdeHn
AdH5ԺH8,H)H
H5,H8ff.AWAVAUIATIUHSHXHO	
H96H$L֙HooHoP oX0o`@ohP$op`oxp$oo$$oo$o$$$ $0$@$P$`$pH9
Ht$HHo(opLox o@`$oh0oHp$op@ooo$$oxPo$oIEH50
$H$$$$$ $0$@HIMIEsIEH}H)AEHHcAH9AIExHIEHEH5/
HHHUIMWIEIEHxH)AEHHcЉH9IExHIE@$HA$D$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$HVHĠzH؃tHX[]A\A]A^A_@HHH)HHHLHcAH9dHuHuHA
H5H8HA(HHH)HHH~LHcЉH9iHu
UHuH
H5
H8j5H4fAEAUHH	HcAH9-DAEAUHH	HcЉH9fAEAUHH	HHcЉH9[L8LAEAUHH	HHcAH9fH"
HI}H9HXHHqH~1H;THH9uH

HJH5HWH81l**fDH
kH=b51xfDH!
HH}H9HXHHqH~1H;THH9uH]
HJH5HWH81*]D*If*1;I&+I**H
H5H8*H	H5H8*HHH9HuH;L
=fH@`HHH~LIHmH#
I9Gu5DLhAIgHIZLMLH5^QIHu@*IEHIELt$T$T$t$H@HH9HuH;D
*fH@`HHHLIHH
I9Gu4DLXIHILLH5OBIHukHH	H5H8wH4Ho	H5H8AWHg*
AVfHnAUATIUHH@HhSfHnHflHxL
,
H	HD$`H,
HD$hLL$0HD$8HT$@)D$PHL,HHHLL}LL$0MH)
LHHHD$8IMLML)
M1HI9L;DuIDHHD$@I+HVHFLL}HD$@HFLL$0HD$8MLL$0HD$8LT$@L5	I$UtUHW 
HIt$H=	AVAHjR5+
j5(
PjRL.
HPHaHUxHHU#Hx[]A\A]A^A_@H4HH3L5	MLLL$0Af.HuJLVL5	LT$@HFHD$8L}M[LT$@L5	f.H
AHH	HH5SL
H81X)uZH
"cH=F/Hx1[]A\A]A^A_L5	MhHHD$SHD$Hx[]A\A]A^A_HFHL}HD$8HT$0HH
HIHII?IA#fDLL$0fDE1I@(JtHD$ I9!fDH	I9@H9FIPH;VHFIxH9AHAt
HEp D^ DD@@8A Ix8A Hv8DAADD6E9uCLL$LD$HtNLT$E1HLT$LD$LL$A@IM9JtI9KDDL5!	M9uuL9uuLǺLT$LL$LD$HHH;	LD$H;=y	LL$LT$LL9CLT$(LL$LD$H|$LT$(LL$LD$H|$AHx
HH?EE(HtSufL59	MH 
LHIHHD$0I@HL$0HT$PILL
Hq:uHUxHHUuHHD$HD$H
`uHD$H=,HD$eDHuH	uLT$LL$LD$LT$LL$LD$Lv(H8A@IE=Ix8A@HE|$ DD6;DD6.fDAWH'#
AVfHnAUATIH@HhUfHnSHflHxL
E%
HF	HD$`HB%
HD$hLL$0HD$8HT$@)D$PHHL,HHHLLqLL$0MHv"
LHHHD$8IMLML"
M1HI9L;DuIDHyHD$@I+HVHFLLqHD$@HFLL$0HD$8MLL$0HD$8LT$@L=I	I$UtUHIt$HLAWH=	Aj5
5#
j5z!
Pj5
K'
HPHNHUxHHU Hx[]A\A]A^A_ÐH4HH3L=	MLLL$0Af.HuJLVL=o	LT$@HFHD$8LqMKLT$@L=?	f.H
FAHHp	HH5BSL
H81XoZH
	H=6i(Hx1[]A\A]A^A_L=	MhHHD$HD$Hx[]A\A]A^A_HFHLqHD$8HT$0HH
xHzIHII?IA#fDLL$0fDE1I@(JtHD$ I9fDH	I9@H9FIPH;VHFIHH9@H@t
HAx D^ D8}@ Ix8A Hv8ȃDA9uBLL$LD$HtMLT$E1HLT$LD$LL$AIM9JtI9KDLL=	M9uuL9uuLǺLT$LL$LD$HHH;	LD$H;=A	LL$LT$DL9;LT$(LL$LD$H|$LT$(LL$LD$H|$AHx
HH7EE(pHtKV L=		MH
LHIHHD$0I@HL$0HT$PILL
OHA
J[HUxHHUuHHD$HD$	H
`HD$H=$HD$xDHH.cH*OLT$LL$LD$\LT$LL$LD$HN(H8A@HEJ@IH8HEL$ H'DCD7fDAWH
AVfHnAUATIH@HhUfHnSHflHxL

H	HD$`H
HD$hLL$0HD$8HT$@)D$PHHL,HHHLLqLL$0MHF
LHHHD$8IMLML}
M1HI9L;DuIDHyHD$@I+HVHFLLqHD$@HFLL$0HD$8MLL$0HD$8LT$@L=	I$UtUHIt$HLAWH=	Aj5
5
j5J
Pj5
 
HPHNHUxHHU Hx[]A\A]A^A_ÐH4HH3L=j	MLLL$0Af.HuJLVL=?	LT$@HFHD$8LqMKLT$@L=	f.H
AHH@	HH5SL
H81XZH
*	H=69!Hx1[]A\A]A^A_L=	MhHHD$HD$Hx[]A\A]A^A_HFHLqHD$8HT$0HH
HHJIHII?IA#fDLL$0fDE1I@(JtHD$ I9fDH	I9@H9FIPH;VHFIHH9@H@t
HAx D^ D8}@ Ix8A Hv8ȃDA9uBLL$LD$HtMLT$E1HLT$LD$LL$AIM9JtI9KDLL=	M9uuL9uuLǺLT$LL$LD$HHH;	LD$H;=	LL$LT$DL9;LT$(LL$LD$H|$rLT$(LL$LD$H|$AHx
HH7EE(@HtK L=	MHy
LHIHHD$0I@HL$0HT$PILL
(HJHUxHHUuHHD$HD$	H
0HD$H=HD$xDRH.3H*LT$LL$LD$,LT$LL$LD$HN(H8A@HEJ@IH8HEL$ H'DCD7fDAWH
AVfHnAUATIHPHUfHnSHflHxL

H	HD$`H
HD$hLL$0HD$8HT$@)D$PHHL,HHHLLqLL$0MHn
LH{HHD$8IMLMLM
M1HI9L;DuIDHyHD$@I+HVHFLLqHD$@HFLL$0HD$8MLL$0HD$8LT$@L=	I$UtUHIt$HLAWH=>	Aj5

5j
j5r
Pj5

HPHNHUxHHU Hx[]A\A]A^A_ÐH4HH3L=:	MLLL$0Af.HuJLVL=	LT$@HFHD$8LqMKLT$@L=	f.H
AHH	HWH5SL
yH81hX-ZH
	H=6	Hx1[]A\A]A^A_L=Y	MhHHD$HD$Hx[]A\A]A^A_HFHLqHD$8HT$0HH
HIHII?IA#fDLL$0fDE1I@(JtHD$ I9fDHa	I9@H9FIPH;VHFIHH9@H@t
HAx D^ D8}@ Ix8A Hv8ȃDA9uBLL$LD$HtMLT$E1HvLT$LD$LL$AIM9JtI9KDLL=	M9uuL9uuLǺLT$LL$LD$[HHH;h	LD$H;=	LL$LT$DL9;LT$(LL$LD$H|$BLT$(LL$LD$H|$AHx
HH7EE(HtK L=	MH
LHnIHHD$0I@HL$0HT$PILL
HJHUxHHUuHHD$HD$\
H
dHD$H=HD$xD"H.H*
LT$LL$LD$LT$LL$LD$HN(H8A@HEJ@IH8HEL$ H'DCD7fDAWH
AVfHnAUATIH@HhUfHnSHflHxL

H	HD$`H
HD$hLL$0HD$8HT$@)D$PHHL,HHHLLqLL$0MH
LHKHHD$8IMLML
M1HI9L;DuIDHyHD$@I+HVHFLLqHD$@HFLL$0HD$8MLL$0HD$8LT$@L=	I$UtUHIt$HLAWH=.	Aj5h
5:
j5
Pj5!

HPHNHUxHHU Hx[]A\A]A^A_ÐH4HH3L=
	MLLL$0Af.HuJLVL=	LT$@HFHD$8LqMKLT$@L=	f.H
AHH	H1H5SL
IH818X~ZH
RH=6Hx1[]A\A]A^A_L=)	MhHHD$HD$Hx[]A\A]A^A_HFHLqHD$8HT$0HH
HIHII?IA#fDLL$0fDE1I@(JtHD$ I9fDH1	I9@H9FIPH;VHFIHH9@H@t
HAx D^ D8}@ Ix8A Hv8ȃDA9uBLL$LD$HtMLT$E1HFLT$LD$LL$AIM9JtI9KDLL=Y	M9uuL9uuLǺLT$LL$LD$+HHH;8	LD$H;=	LL$LT$DL9;LT$(LL$LD$H|$LT$(LL$LD$H|$AHx
HH7EE(HtK~ L=y	MH
LH>IHHD$0I@HL$0HT$PILL
HJ~HUxHHUuHHD$YHD$%	H
*HD$H=RHD$xDH~.H*~LT$LL$LD$LT$LL$LD$HN(H8A@HEJ@IH8HEL$ H'DCD7fDAWH
AVAUATUSHHXH|$HD$8HD$@HD$HHIL,HHH>LAH|$8MHG-
HGHH)‹GHHcЉH9ER1IHI	HD$H5
HxHGHHeIMHcIHsH	I9E:M}M-AI]tAtIExHIEfInfInHt$@Afl)D$@HHt$1Ht$LHHIMtIx
HI@Ix
HI,M
Hx
HH'ICH;	t
H;	%A1AM1HD$Ix
HIE1HD$HH|$HD$(qIEH
	I9MH9IEH,؋EtEHMtIx
HIHL$LqAtALqH	I9FHD$@H5	Hl$HI~H9Ht$(AE1LHt$ LT$-LT$Ht$ H2L1LLT$IMtIx
HIMIx
HIzID$I;D$ AtAIT$L<HID$Ix
HIyH|$IHD$LHHwHtH	H2H9
IExHIEuL`MtuIxnHIueLC[HH	HvH5SL
AH
H81hX[ZH
H=E1
HXL[]A\A]A^A_@HHH)HHHHcЉH9Hu
hHuH	H5H8zEH$	fHH>H|$85fLy1H
c	MfHL9I;LuI|H|$8H_MGGWHH	HcЉH9@IIVB$HzHt$HE1H|$ uM~H=Ht$ WuCLHt$ HD$IM=.HuHz	H5H8CA}\E1HExHHEI$xHI$MtIx
HIMtIExHIEMtIx
HI~H
/)DE1H==LID$I;D$ ~LLME1A\%@L@zL0VL L1LLT$fLT$IfE1E1LL\$L\$Mf.MVMAM~tAAtAIx
HIfInfHnMAflHt$@)D$@H9IlEIGfHD$M1DHD$@H5p	Lt$HI}H9t
5%IUBHl$HHZE1 uM}H=SHLHD$L\$MIx	HItLLLL\$kL\$HL\$SL\$fL8L(uHL\$L\$fLA\I$IE$HIEE1LGWHH	HHcЉH9
DLdLL\$kL\$A\DHA(Ll$1MHD$IMItI9Hc	I9FH9FIVH;VHFI~H9AHAt
HEN DF DD@@8uhA I~8A Hv8DAAFDDE9u)HE1HA@HL9fDL%	M9uuL9uuLHHtgH;	H;=!	.L9%H|$ H|$ AHx
HHEfEMMLl$Ey.HD$8eH<[qfMMLl$I|dI$A\HI$HE1MOy;IHuH:	H5H8Ix
HILIA/\fDLHt$HAE1fDLLT$LT$fHL$8HT$@ILL
L8H|$8KLL\$L\$HIH@HHD$H%HLLN(H8A@IEZI~8A@HE|$9DDXH@`H	HHIHH	I9D$u6DLI$HI$L\LH5Ź踜IHu[-DD[LE1A8\I$x
HI$tmE1A:\HUMtLE1E1Ab\Ab\H8H	H5ŲH8E1ff.@AWHg	AVfHnAUATIUHHH0HhSfHnHflHxL5	HD$`H	HD$0HD$hHD$8Lt$@)D$PHLHHJHLLELL$0MHD$8LT$@I$UtUHIt$HLAVH=	Aj5	5	j5z	Pj5	K	HPHHUxHHUHx[]A\A]A^A_ÐHHFLLEHD$@HFLL$0HD$8M?LL$02DHHHHHuH
eAHOL
EHLOODh@LELHLT$H	LD$LT$LD$HHD$0IIMnfDH
AL
HH	HBH5SH81pX!wZH
%H=ƗHx1[]A\A]A^A_H	LHLD$LT$4LT$LD$HHD$8IML}L-	M1HI9L;luIHTHD$@IIMLLL$0LVLT$@HFHD$8@HHD$HD$Hx[]A\A]A^A_HFHLEHD$8HT$0>fDLL$0LT$@IE(LD$1HD$ LT$H\$LMIDJtI9H	I9GH9FIWH;VHFIH9AHAt
HE_ DV DD@@8uhA MI8A *Hv8DAlAoDDE9u)HHDIL9LT$H\$@M9uuL9uuL	HHtH;	H;=	%L9H|$(H|$(Hx
HH9iLD$LT$LH\$y5LT$LT$Ht7	wDLD$LT$LH\$IeDMHL$0HT$PILL
ɮHwHUxHHUuHHD$iHD$nH
XwHD$H=bHD$LT$LD$LD$LT$H_w@D$(D$(L^(H8A@IEI8A@HE|$ 葽H
NAL
oH`vDDDDAWH	AVAUATIUSHH	L-	HD$PH-hHD$XHHD$`HHD$hH	H|$HD$pH\$0HD$8Ll$@H\$HHLHnIH
ûHcHfDHFHD$HHFHD$@HFL6MGHD$8Lt$0It^IYMIMHn	LLLD$LT$LT$LD$HO
HD$8ILt$0MH	LLLD$LT$LT$LD$HHIHD$@M~UMwL-W	M	1f.HI9M;luIH	HD$HIMLt$0HD$8HL$HLl$@HL$H-	HD$XHD$PH}H;=	H5	蒾rHHt$X1HHIML=	H=>	IWL2HH	tEHEH5	HHH	IHEM	xHHELL*HH
Ix
HIH;-#	H;-	u	H9DHUxHHUE6H5o	L9Hg	I9EH9FI}H;~IEHVH9Ht
HAM V AȉAAA8| =MM8 Hv8ADGA9?HtAHL舷!HD$HEtEHt$LD$HLH=	H	H?HUHHUHHD$HD$fDHUBHt$XLbE1 uL}H=>qHt$脲u@Ht$LAIݸMh_HuH	H5qH8t@H
_H=@c1@IM3HH
HcHfDL=	H="	IWLHHRtEHEH5]	HHHIHEMPxHHELLHHjIx
HIH;-	H;-	H9yHADž(HUxHHUHEdH5@	LH\$H]StUHt$LD$HLH=E	H	HAY`A#@HXADž(A_AHExHHE;H
ܥDDH=?b1I$xHI$BHĈ[]A\A]A^A_L6MGLt$0dMGIMUHI	LLLD$LT$<LT$LD$HIHD$0I*H\$L6Lt$0
fDH\$IH\$LnLl$@HFHD$8H\$HFHD$HD$HI9HD$LAtAHt$LD$LLH=		H	H
IHILHD$ɯHD$HL$0HT$PMLL
L_mf.۴INMHMH
HHIHH1	I?ATIH5{H8L
A1脷X_ZH
H=%1fDHALHD$ۮHD$LȮIDH訮dH9udLIH)H;#	L;-	&I9LIExHIEIE(LD$1HD$ Ld$MMDItI9H3	I9EH9FIUH;VHFI}H9AHAt
HEU DN DD@@8A I}8A Hv8DAADDE9uuHHOuUMLD$MLd$LT$ӱLT$H-_I9uuH9u*t&fDHI9MMLd$fDL#HHtH;4	H;=	u	H92Hx
HHCt5f.MLD$MLd$IoHHuLNHHA_AI
A_ANtUHt$LD$HLH=·	H	HxIA	At`fDAA_IHILDH|$(H|$(@;IfD$(D$(AA`A|DHMLЪmHLT$LD$良LD$LT$H_o@cHuLHHA:`AfA<`AIEHIELfDAA?`LT$LD$ȮLD$LT$H_LV(H8A@IE^I}8A@HE|$ =H=	H9ID$t
H;ƶ	jLHHH=	Ht$XHl$XHD$PIHPHExHHE1L蹫IExHIEA`AAL`AAA"`lA`ANDDxLT$LD$胭LD$LT$H}_iDD?HF(H8@HEIE(MM8@LEA_AAAH LL薬HHA`AA`AgH
Y`H=1t@AWH	AVAUATIUSHHhL-	HD$@HhHD$HH	HD$PHD$0Ll$8HHLH:HPHoHHڛIH
ǛHHIHH	I?SIH5rH8L
[A1IXsZH
cZH=1Hh[]A\A]A^A_fHHlH\LI$MtML	HE1H
	jH=	It$APQjAPAQHj	5I	P	HPH}HUYHHUKHHD$HD$Hh[]A\A]A^A_foHVLA)D$0MHD$0<@LAM(H	LHLD$LT$LT$LD$HVIHD$0M~L}L5	MG1fDHI9toL;tuIH HT$8IVDHVHT$8HHD$0f.HLAHD$0MHT$8eDLIF(LD$1HD$ LT$H\$LMIDJtI9H	I9GH9FIWH;VHFIH9AHAt
HE_ DV DD@@8uhA 9I8A Hv8DA,A/DDE9u)HHDIL9LT$H\$@M9uuL9uuL!HHtH;2	H;=	
L9H|$(*H|$(Hx
HHiLD$LT$LH\$y5LT$LT$Ht/]#DLD$LT$LH\$IDHL$0HT$@ILL
,HxeHD$0HUxHHUuHHD$葢HD$H
HD$H=}HD$blfDD$(?D$(LT$LD$LD$LT$HV(L^(H8A@IEI8A@HE|$ DDDDAWH	AVAUATIUSHHhL
	L-'	HD$@HhHD$HHD$PLL$0Ll$8HHLH,HJHiHHIH
ٕHHIHH	I?SIH5lH8L
mA1[X݁ZH
ua
H=A|1Hh[]A\A]A^A_HHlHbLI$EtEH
	HH	It$AUH=%	AjQPjQHPj5d	>	HPHyHUcHHUUHHD$"HD$Hh[]A\A]A^A_fDoHVLA)D$0MLL$0<@LAM(H	LHLD$LT$'LT$LD$HIKIHD$0M~tL}L5	M<1HI9tgL;tuIHHT$8IVDHVHT$8LLL$0fLLALL$0MHT$8mDLIF(LD$1HD$ LT$H\$LMIDJtI9H	I9GH9FIWH;VHFIH9AHAt
HE_ DV DD@@8uhA 9I8A Hv8DA,A/DDE9u)HH3DIL9LT$H\$@M9uuL9uuLAHHtH;R	H;=Щ	
L9H|$(JH|$(Hx
HHiLD$LT$LH\$y5LT$LT$Ht/ǁ1DLD$LT$LH\$IDHL$0HT$@ILL
THxeLL$0HUxHHUuHHD$豜HD$
H
(HD$H=wHD$́zfDD$(_D$(LT$LD$'LD$LT$H6L^(H8A@IEI8A@HE|$ DDDDAWH	AVAUATIUSHHhL
	L-G	HD$@HhHD$HHD$PLL$0Ll$8HHLH,HJHiHHIH
HHIHH'	I?SIH5fH8L
A1{X^ZH
H=v1Hh[]A\A]A^A_HHlHbLI$EtEH
&	HH	It$AUH=ݦ	AjQPjQHPj5	^	HPHyHUcHHUUHHD$BHD$Hh[]A\A]A^A_fDoHVLA)D$0MLL$0<@LAM(H	LHLD$LT$GLT$LD$HIKIHD$0M~tL}L5	M<1HI9tgL;tuIHHT$8IVDHVHT$8LLL$0fLLALL$0MHT$8mDLIF(LD$1HD$ LT$H\$LMIDJtI9H3	I9GH9FIWH;VHFIH9AHAt
HE_ DV DD@@8uhA 9I8A Hv8DA,A/DDE9u)HHSDIL9LT$H\$@M9uuL9uuLaHHtH;r	H;=	
L9H|$(jH|$(Hx
HHiLD$LT$LH\$y5LT$9LT$Ht/^1DLD$LT$LH\$IDHL$0HT$@ILL
`H!xeLL$0HUxHHUuHHD$іHD$H
H_HD$H=?rHD$^zfDD$(D$(LT$LD$GLD$LT$H^6L^(H8A@IEI8A@HE|$ DDDDAVAUATUSH HGLHIHH;	H5	r1fHH
Ld$H}HD$H;=	tH5	ÝtgHUBtULl$HZE1 uLeH=R-u&LLI艚MuAIHE1+fDHHt$1HHIHExsHHEuiHٔH L[]A\A]A^HtMD$`ID$`LwpHCHPHt	H5EpE1H81؜H L[]A\A]A^軙I`HHHԒIHJ	MD$`H(MyIxH9THEHHW@@HXHt-HJH1HH9H;luHH9HuH;-C	{HH	H5PH8MELmM1	HI9tH;|uZE1JtH9DH|$H|$-IM9u<ff.HWHBpHtH@Ht
HBhHtHxt;AWH	AVAUIATIUSHhH-	HD$@H-	HD$0HD$HHD$PHl$8HIL<H%	HHJMHH
AHOL
̄EHVIMLOHH	HFATH5]H81XZH
9H=mE1HhL[]A\A]A^A_HtH^HnHl$8HH\$0$DoHnHI)\$0HH\$0EtEHCHHL$uBH	H9t6HXHHqH1HH9H;TuL%	H=	IT$LIHUtAIGH5	LHHIIMx
HIH	HD$I9@=LHt$HLD$HD$@H\$H`LD$IMMIx
HI
IEH5=	LHH*IMHD$I9@MhMAEMptAEAtAIx
HIfInfInHt$@Lflĺ)D$@IIExHIEMIx
HI
Ix
HI
A$ItA$I$xHI$IPHICL؎6HiL	1HfHH9M;DuIH\$0HHMHHl$82HH9HuH;,	rfDL%!	H=j	IT$L]IHtAI@LD$LH5<	HH|LD$IMIIx
HIeH	HD$I9BGLHt$HLT$HD$@H\$HLT$IMMIx
HIJL5;	H=	IVL耒IHtAID$H5	LHHIMHD$I9GHt$HLLD$PLD$HD$@Hl$HLD$MIIx
HIMIIx
HI
HExHHE
ID$H5	LHHIMH5	L9ICH;2	SICH1H-IxHIuLkH=	\IHH@LD$LH5m	HHLD$HIHPxHIuL蒋HD$H9EHt$HHHD$@Ld$HH\$PIIMQIxHIuLL\$2L\$L;֗	L;T	A
L;	4
LL\$ǐL\$bIx
HIH=	0IHH5պ	HHD$@eLD$HIIx
HIYHD$I9BHD$1HD$fInfHnLflLT$Ht@)D$@bHHeHLT$Ix
HI:I$xHI$1IH5%	L}dIHDHD$I9@MhMAEMxtAEAtAIHHt$@IfInfInLfl)D$@LH!eHIx
HIHExHHEA$@HHIH\$0HvHT	LLHL$LHH`
HL$HD$8HnDE1I@(KtHD$I9fDHٕ	I9@H9FIPH;VHFIxH9AHAt
HEX DV DD@@8uvA  Ix8A 
Hv8DAAkDDE9u7LD$HtGLL$1HLL$LD$@II9KtI9K@H		I9uuH9uuLǺLL$LD$HHtxH;	LD$H;=j	LL$BH99LL$ LD$H|$ՌLL$ LD$H|$Hx
HH0CHD$0袋H
_{AL
yHjIH=f	IH
H@LD$LH5	HHBLD$IIM
xHIuL'ID$H5K	LHH6IMLLLD$LD$HHIx
HI|ۉHGHXHD$$L\$HIH=l	L\$HD$LD$L\$HH)H5	H_LD$L\$HI?Hx
HHQH5'	LLL\$ LT$LD$݌LD$LT$L\$ Ix
HILLLLD$L\$_L\$LD$HHIx
HI
Ix
HI
Ix
HI
H5	L	_IHHD$I9@"IhH}EMhtEAEtAEI
HHt$@IUfHnfHnLfl)D$@HHD$_LT$MIExHIEq
Ix
HIt
H5	L4^IHHD$yLT$HIHY	t	HI	I@LLLT$LD$H%LD$LT$HIIx
HI2Ix
HI5HLLـLiIHHLHD$LD$HIIx
HIUI$HI$H
IMLLT$[LT$LLD$CLD$fL(LLE1E1L\$L\$MtIx	HItSMIHIL躁HHHMIL舁fDHL$0HT$@MLL
wL聩~H\$0L@LLT$+LT$LLT$LT$TfHIfLYfDME1E1A@Ix
HIMtIx
HIE1E1MtIx
HIHtHx
HHMtIx
HI"H
tDL\$H=\7ML\$I$xHI$E11A{@vLLT$T$LD$LT$T$LD$LLT$E1T$LD$LD$T$E1LT$LLT$L\$T$ZLT$L\$T$HLT$L\$T$*LT$L\$T$LL\$T$~L\$T$LE1DL~CH~AL~LHt$HLD$HD$@Ld$H軵LD$IM)LLT$k~LT$;H	L蚺IHE1E1E1ҺAγf.I1fDHD$LD$HuLDIHE1E1E1E1ҺA)E1AгIE11DÆIE1E1E1A+_蓆LD$I|fDI]HIPL@}CE1E1E1MA@MxMAMptAAtAIx
HIfHnfInHt$@Lfl)D$@IIHIxL|kA@IE11E1DMrMAMztAAtAIx
HIKfHnfInHt$@Lflº)D$@@II{HInL{aE1E1E1ҺAۄI苀HFLIH4	E1E1ҺANXKHqsI5E1E1MAAPM_MAMWtAAtAIx
HIfInfHnL׺flHt$@L\$(LD$PLD$ LT$)D$@ޱL\$(LT$ILD$ IHILLD$ LT$rzLD$ LT$M׺AekIE1LE1E1AsLL$LD$zLL$LD$)L^(H8A@IEIx8A@HE|$H;B	cLߺL\$RzL\$HIH;Z	@H;ׅ	@L;=	LNL\$ILAuE11E1E1LAywL4y[DD>HyL
yHt$@E1E1LE1ҺAHLT$ xLT$ L\$LD$E1E1LE1ҺA
LHT$Ht$xHt$HT$DDME11E1AMLE1AYLD$HyLL\$xL\$LD$.+LD$IE1LE1ҺALAIL}M5ALEtAAtAHExHHEzfInfInLǺflHt$@LD$H\$P)D$@艮LD$IIHILL\$ LD$'wL\$ LD$LL\$LD$wL\$LD$WLv
LvLvXLLD$vLD$-I@HILL\$vL\$AE11E1E1LIغAHt$@CLLT$9vLT$xL'vLLT$vLT$E11AFLLD$(LT$ L\$uL\$LT$ LD$(LuLIuLHT$Ht$uHt$HT$E1E1LE1ҺAԴQ1/fA.C@E8A 1E1A{LAMHt$HE1ACMHt$HjMLLT$tLT$LtE1E1E1E1AγyE1A"E1ILE1ҺA1JLIMUE1E1E1AN#LLT$6tLT$MHt$H1E1E1LE1ҺAME1ILAEE1ILE1ARMHt$HE1E1LAyIjHEIZtEtIx
HIIںE1ILATLM׺AILAYHLD$sLD$oILE1AiE1ILE1ҺAsILAuE11E1AuHILzrIںHD$IIf.AVAUATIUHHGH5	HHHHHUHBpHt\H@HtSLHHbHUx
HHUtH]A\A]A^@HHD$qHD$H]A\A]A^fHBhHHxHy~	I9D$ID$HAI)AD$LIhHUH;~	_H;|	LbpM
I|$LsIH}HHAT$IUHIULHD$pHD$H}	HH2qt+ID$L`tH^}	H58LH81xfHExHHE. H
cH=jLmH1]A\A]A^SyHH, fLbhMID$HMLHMHULH9HUH‹DLHHoMHELI9s0JDyrIDHUJ*sILrIHHHQpI$HI$LHD$nHD$sHHUH;O|	mH;*z	IDHELI)fLwIHtHqIIHILUnHƹHH)HHt5HuHAD$AL$HH	H;{	It_H;zy	El$AD$II	ILqII$HHHxIID$HUHy	H8o
qID$AWAVAUIATUSHHT$HItE}`EAudLHHH;y	HPH%HXLp tAtAHExHHEKI$xHI$UH;vy	H;x	uuH;>y	tlHtrŅyaAH)AE1H
`DDH=H菬HAuHHhUfIEHt$LPIHH;x	L;%Ax	L;%x	LqIULLHJpHRhwHHAHHHIELLHPIHHExHHEIExHIEHxpHHug1SHT$LLP IHHxHI$uL
kHE1xCHAHu4HAjMt$I$xHI$uLjf.Ix	HItPHD[]A\A]A^A_fDHjI$LpjLXjfDHWHAHJHH|H;-v	IELHT$HPIHzA)HEAaHHESHiFfDH5I	H=	Ul)H
&]H=EMA诩f.#)@HQu	H5"6M1A:)AE1H8VjHEx
HHEt4H
\DDH=`E;HAHhfDNHx.HHE]H
[HEHt	H5=AH81qMA+)A1E1\fHqt	H5)H81pƐLxhHhhAR)AA)AA^)AHHz蟙HKHHzwHAh)A/A)AAj)AAH5	H]JA)cHGH56AHPHr	H81o.H!HmfAVIAUATUSHjHIH@L-5s	H5f	HL91LofHHtWHEH5	HL91H=fIHHExHHEuHgfiHL[]A\A]A^#kHtilHHH5Q	E11HLlIHExHHEuHefLHHHqdIHr	ME`H(MWIxH9HEHAHW
@@HXHHJH1DHH9H;luIE`L@HHIML;-q	L;-q	u	L;-_q	u]HEx
HHEt'IEDHIE6Ld)HdIEy@L8jHH92HuH;-"q	 E1KmHDbHx`IH0q	H0(xI}`IE`?HEj~lIIEx
HIEtbHEx
HHEt-I$hHI$ZLcMfDHxcHndME`9LUcLuM1	HI9tH;|u	1HtH9tH|$dH|$uHI9uAWAVAUATIUSHHxH=	HD$8HD$@HD$HHD$8HHHsXLDbHD$8IH'*aHD$LphM.Mt
L;-o	+MvMuHD$E1HEH5#	HHHHD$@HH{hfHD$HHH|$@HUm	H9WLMAHtAtL\$@H|$@IHIHT$PHD$HH|$@HD$(HT$ fHnfInH|$flLd$`)D$PEc1HT$(Ht$ HH|$HD$8MtIx
HIkH|$HHx
HHL|$8H|$@HD$HMHxHHL|$8HD$@H{hHD$8aHIGH;En	aH; l	HXpHH{1kcHHD$HLSLD$HIHILL`AEtAEMuAtALLaHD$fALtAHD$H@hH8L(HtHx
HHMtIx
HIHL$HtHx	HHtWHExHHEI$xHI$+MtIx
HIHxH[]A\A]A^A_HH_fDL8_r+_LII_tHD$8D$c,HE1E1H|$@HtHx
HHkH|$HHtHx
HH_t$H
%RH=;跞Ht"HE1ۅxHHEufDHp^MfLX^LH^;^fD+^4fDHL$PHD$HHD$(HL$ lL]HL$PHD$HHD$(HL$ H|$@?fDL]c]fDH@hHH@H1LHH\$8HpD$,M@D$o,cI?IGH)&OfD$,LT$8MIHIH|$@HD$8HtHx
HHyHD$@H|$HHtHx
HH\HD$HHT$HD$8HB`HB`HD$@Ht)HHHL$8tH@(HD$HHt	tHEH5	HHHSIMRH|$8L9QIx
HI0HL$@L|$HH\$8Ht
L;y(.HD$Hx`HH`HtHx
HHHtHx
HHuMtIx
HIGHD$8HD$@HD$Ht$H
NH=7pH|$HL$8HT$@Ht$H'D$,E1HD$H@hH8L(HtHx
HHLMtIx
HIH\$HtHx
HH'H|$8HHHHHT$ZT$DE1TLkZH|$@jT$XZT$T$FZT$D$,D$,,HT$XE1HD$(HT$ qHD$(HT$XHT$ YHD$8D$,LT$ YT$ LT$YT$T$YT$H߉T$YT$H5	H=	E1\D$-=WY}MYLT$ <YT$ H߉T$ 'YT$ vT$ YT$ K1[HHLHD$,ZsbID$,LYHLT$(HL$ VT$(HL$ Hff.@HHxHtHHt&HÐ[Hui@f.Q@H
KH=4C1Hff.AWH7	fAVfHnAUATIUHHHHSHh)D$ fHnflHD$PHD$0HD$X)D$@H	L,HCHTHHLuHD$ MH	MB	1HL9H;\uIDHD$(H	L}IHj	M1DHL9H;\uIDHD$0HI+HHFLuHD$0HFHD$(HHD$ MH\$ H|$(&HHFoHH~HD$0)T$ HGh
HGHHHH)HHH7[II"
LLt$0=YHHEH=	HWAŅ
HExHHEqEH=	H5R	HGHHHHH`	H9EL}MzALmtAAEtAEHExHHEfInfHnHl$@Afl)D$@LW1LHLH	IMtIx
HIx	MrIExHIEL;5ja	t<IFH;=`	LLlHH{
Hx
HHA$MtA$I$HI$LjTDAI)ċGLH	LHLuiHD$ H
L}IHH_	HvJH5ATL
MHAH
GH81/\X@NZH
CGH=0ГE1HhL[]A\A]A^A_HS31HC(HtHD$H9*H`	H9CH9F;3HCH;FHVH{H9AHAt
HDS DF DD@@8A ~H{8A [Hv8DA	A	DDE9GHXHL$HUHL$,HD$0BWH8HH6^	H
#FH5jL
FAHHH81ZY^,NL@L^	L9uL9uHߺLD$HL$hRHH\H;u^	HL$H;=]	LD$L9HL$H|$^WHL$H|$Hx
HHHL9HtH9ID<.OHH
H	t	H	HEHL-Ň	xWIHAH5|	LE1HHVIIx
HIHEMxHHEH5o	L诉HHtEHExHHEIExHIELeSIHH=r~	HzYIIEMxHIE.LHRI$xHI$NH
]CH=,HEHHEHODgGII	cDDgGII	I>fHhOHFLuHD$(HMHD$ 1HC(HtHD$H9Ha\	H9CH9F;3HSH;VHFH{H9AHAt
HDS DF DD@@8bA dH{8A Hv8DAAUDDE9H0HL$HtQHL$HD$(RHHHY	AH5jL
XBH
AH8H`D19V_"NAX@LQZ	L9uuxL9uuoHߺLD$HL$(NHHcH;5Z	HL$H;=Y	uLD$L9Hx
HH:fHL9
HtH9IDHD$@H5hZ	H\$HH}H9t
-UHUBLl$HHZE1 uLeH=K
Ku*LLIIQMqQHIIEN1HIEWH
?H=))lHyfDL0LJQHuHX	H5D?H8MPHIfDKBfDAsNAHEx
HHEt"H
5?DDH=~(@HKfDLK{PIRHL$H|$)QHL$H|$IAHl$HE1H{8A@HE|$*NO NEDLt$T$JT$t$HL$ HT$@MLL
QAHr
1NSHD$HL$JD$HL$H|JLV(H8A@IEH{8A@HE|$sHGJL:JNH
=	H=&E15D$HL$JD$HL$LI*LILILV(H8A@IE2DDANADDIE=NMNH\NDDNaH
<NH=%>ODDH@`HHHHHH@L%U	L9upHEHv|HHH)HHHtkHMIHEHHHE:HfH-HH5A$HH>H@mAI)ċELDeLDeHI	HEHHEDeEII	I\;NHHHS	H5<H<H81PN}H@`HHHHIHL9`u2LlIIEHIELLGH5@H#IHuHEHHEHGH:R	H5H8HfKHuHR	H5:H8GH
G:qNH=#φH
%:NH=j#譆H
:NH=H#苆H
9~NH=&#iH
9NH=#GrNAWHw	AVAUIATUSHHL={R	HD$PHHD$XHHD$`HHD$0HD$8HD$@HD$hHD$pL|$HH5LH7HIHHcH@HFHD$HHFHD$@HFLEHD$8HHD$0HgH%HLHL5v	HE1f.ID$H9"IN;tuKHD$8HTLuIL%wz	M1f.HL9L;duIHD$@HIM}H|	LHLT$LD$YLT$HLD$HD$HIM~@HL$0HT$PILL
:HAlyxHuMDLL$0HL$8HT$@LT$HIEtEHIuH=O	AAWj5sy	RLj5ou	QHj5su		HPHHUxHHU:HĈ[]A\A]A^A_HHtxHH
7H7AHMEIHHO	H9H5SL
t7H81cKXxZH
}7H=1cDLVLT$HHVoHNLHT$@)D$0HLAHD$0`LAHUt	LHLD$LT$WHD$0HGLD$HULT$I4MyHHD$3BHD$fID$(LT$1HD$ Ll$ILMH\$LIfDKtH9H#O	H9CH9F-%HSH;VHFH{H9AHAt
HD[ DV DD@@8u`A H{8A Hv8DAADDE9u!HHCDII9HD$@EHHHL	H
v5H5jL
)5AHI7H81IY^xL9uuL9uzHߺAHHnH;M	H;=L	u	L9Hx
HHy!LLT$H\$MLl$L!fLLT$H\$MLl$LIGM1Ll$ILIIF(H\$LKtHD$ MLT$H9fHL	H9CH9FKCHSH;VMHFH{H9AHAt
H(D[ DV DD@@8A H{8A Hv8DAADDE9HHALLT$H\$MLl$LHD$8]CHfHHQJ	AH5$
jL
2H
2H8H41F_xAX2fDL9uuL9uJtFfDID$L9wIKtH9aLLT$H\$MLl$LIHߺS>HH,H;`J	H;=I	uL9uBHx	HHt@of.H|$(6CH|$(@H|$(CH|$(밉D$(>=D$(H{8A@HE|$ !DDxx@HUxHHUH
f1xHD$H=|HD$DfDD$(<D$(uLT$|ALT$HNxL^(H8A@IE#H{8A@HE|$ L^(H8A@IEQDDHHD$-<HD$9@H
0AHxxDDDD@AWAVAUATIUHSH$10IMH1H	HBz	IGI_PI_XtD‰Hs	LmHD$@HD$pH-PHD$xH-8H$HPH$H-H$Hk	HD$HHD$PHD$`HDŽ$HD$XM;IOH
?JcHfHE8HD$`HE0HD$XHE(HD$PHE LHD$HHEHD$@8HIH>JcHfDL8HH5r	LHV?HD$@HHH5!n	LHVe?HD$HH?HH5l	LHV@?HD$PHHH-LL$@H|$HL-F	L9o
HGHH)ŋGHH8HD$XH|$`Ld$PHD$HH;=<F	H;=E	u	H9	D$IIH;
D	I9ˆT$ 
I92A$tA$I9IAHAG0IoHNHID$#
H;D	A$tA$IXHx
HH	MgXI9ID$ Ic0L$IG(H9IcW0L$HIG8HIW@-AtA1Iy=Ld$(LIMHl$8HHF8J,IM;g
OtDAtAM9nIFHH)AFHHIxHIuLL$H4$7L$H4$l@IIIIH
3,H5,AHMEODHHTC	HH-H5&AUL
+H81?ZYH
*H=aLwIx
HI
E1HĨL[]A\A]A^A_HE8HD$`HE0HD$XHE(o]H} LMHD$P)\$@fDH5k	LHV;HHD$XHHH5f	LHV;HHD$`HHw1HL$@HT$pML
9,Ln^QL|$Ld$(IL4$A:L$LL$HIx
HIY
HL$HL$9L$HIH8d	HL$t	H#d	IPLl$~H-;LDDHHiQHH%H%Ikd)HDfEu1	HI)III1
IMcLD$M)LL$HL$L$>L$HL$HLL$LD$I
@  xI~8M~6LҾ LD$LL$HL$L$6L$HL$LL$LD$HMIuH\LN1HDoAHH9uLHHL9MH)I)Hv!~J4fLHHL94HB4HPL9}utHB4HPL9}`tHB4HPL9}KtHB4HPL9}6tHB4HPL9}!tHB4HPL9}DHBI^Mp H5_	t	H5_	HCL$Ip(IH$MHףp=
ףLIHLH?LHH)HH<LIHH)HDfAHu1ILL)Ht
AF-HIHHIHVHcHLD$H)LL$HcHT$<HT$LL$HLD$H?@  b
Hy8H~5 LD$ HL$LL$HT$34HT$LL$HL$LD$ HHHuHIL,1IAoATHI9uHHIH9H)H)HvMH4LHHIH9C4.J/@4IuH9~uG\.HIuF\(H9}]HCt.@4IUH9~GCt.IUBt(H9~3Ct.IUBt(H9~Ct.IUBt(H9~Ct.Bt(H$HYIH0H`	t	H`	IP8LHSLL$L$|L$LL$HI}Ix
HI	H=n	LL$p3IL$	H@AI	IHIuE1LL$0L$MYIx
HIH
#DH=~
ipMI$HI$L0fLL$H4$9H4$L$HHL$4Ht$H$3H<$Ht$HŋL$4HHHL$H4$/L$H4$L$W5L$D$Q4L$HDHELHD$@o-HL$'/L$]fDIHAL)HHwHMAnAFHH	fHL$LH5`	HD
L$HHC
H9	H9G	LWM	ALGtAAtAHx
HHHZ	LHt$pLL$(LT$pLT$L$HD$xSeLT$L$ILL$(Ix
HIM	Ix
HII$xHI$IFH;X9	t	I9MDD$0Hi:	H5X	18II0IHI;A@L@-Hl$8Ld$(MIIx
HICH5]	H|$	H]	tIPHx
HHHy]	IO@IW8IGPAG0pHcƅxH,H,HyD$Io LAGhH5$[	,HHH;9	@H;8	@%H9H<$2H<$sHx
HHD$Aol(I$HI$L+fL$4L$HItCHL$.L$HI$HI$L+L$DL$O0HL$HfDH6	LAH%H5LHH7	H8L13f.H6	H!H5H81Q3@HHH)HHH6L$-L$HfLL$H4$-H4$L$HAnAFHH	HvfHA6	H5H8Z+%H
H=bMj'@H5\	H|$H\	tIPHx
HHHu\	IcW0Iw@IO8IGP1H,H,HH9u@oGHH	fDLD$(LL$L$])L$LL$LD$(f.L8)oGHH	HdAIHIhfDLLD$L$(LD$L$L(@H5U	H=e	M+E^fDLL$(L$H@IV(I~8@HEyDH5A\	H=e	*bfDHq(Hy8@HED@;LD$LL$H$0H$LL$HLD$I8'AH3	H5H8(k@AA>LD$LL$M0LL$LD$HH1ADH5	a	H=Zd	)fDLL$'L$0L'L$V+H~Mo AGhLd,IGHHIwHH^HvLHHH1H?HH!H)Hq3HH1HHtH9XHL$ HuH93LL$$&L$:LL$&L$8*HHH1	HH5jL
7AH
gH81.^_i{*HDHQ	Ht$xLL$H<$HD$pHD$x\H<$LL$IIAHI!A;IH
DH=9$eA?)HHH0	L
/AjHH5zH8H
L1-AXAYO$tAMLd$(HI-L$HA111&	)H
AH3# e#q(H<$H{Hx8HHAt$$u#$t$)fHL$HAH;z0	$tH\$H=Q	H+HHrHx
HHH=%`	H}%HEHHEyHt$$"$t$^H5O\	H=_	+%!H
H={bH.	H5H8;#!LL~MuH[.	H5H8#!dH|$!MHHH-	H3MH5AH81)-LL$AL9uKH|$AUXHD$H|$+H
;H=cNaH;,	uH|$PXHD$뫽;AsH5RL	H|$`HD$fAW1AϹAVIAUATIUSHH|$@HT$HHLD$(DL$4H$E@H:AHJAHBAH4AHeAttH[At`HqAtLHgAt8HA	t$	IƐyzHA9fIcHH\$8#HHthHE1JD-II9>K|.L"IHuHE&fD1fDH+	H5jH81'ffoL$PfoT$`LA$fo$fo\$pfo$AL$fo$fo$AT$ fo$fo$A\$0fo$Ad$@fo$Al$Pfo$At$`A|$pA$A$A$A$A$H[]A\A]A^A_IcHHD$8h"HH@H$L@hHD$8fqHN	t	HN	H|$(L$ IHL$L"HH$
!L$HIEtEfHnfInMA(flAAtIY0H=I	1LL$L$HIIx
HI|AtAIx
HIHHx
HHIt$4LL$$PHbwL$HI"HpxHE~xHT$8H$L$H6!L$AWIIupHfEH|$PLD$HHNH$ H$H$H LD$IE@LD$AE8fHnfInDDfl)D$@)$$$$$$$$$$$$$$$$$$$$$$$$$$$AAAAAAAAAAAvxAvpAvhAv`AvXAvPAvHAv@Av8Av0Av(Av AvAvAvA6$%yHĠfo$LD$xFHExHHEt`fDIHIL)$fo$nIEx
HIEtHHEfx)HfHEuHL$)D$]L$foD$MufLL$4L$fDfDHL$L$LL$L$LL$L$osiHZL	HFL	?5x
HIH
G"H=oYHx
HH1[@DH@XIMpHcHHAwAHcHHAwAHcHHAwAtjHcHHAwAtPHcHHAwAt6HcHHAwAtHcHHtH$EEH|$PL$HHNHH$HھL$5"H
uH=WXHIILIEx`HIEuVL7"IEx
HIEt?I9"xHIuLlj4$x4$vLh7"_LL$ML$H1=_UHHpHE@DUdHwpHOxH,$IDHD$HAE#HeH$H9L9AD	H9L9AD	!AR„)HD$H)HxH=o6D)t$o9)|$Po)$tpov)t$ oy)|$`ow)$tJo~ )|$0oA )D$poO )$t$of0)d$@oi0)$oW0)$DЃAt"HH4HtHHLPHHĐLEXDLH$HHUAXPyZYHNfo$Hfo$H$fo$fo$fo$fo$)$fo$)$fo$fo$ )$fo$0fo$@)$fo$P)$fo$`)$ )$0)$@)$P)$`)$p)$)$g5HXHp]DH$H9L9	AR„@HD$H)HxH=(oDfv)T$o)$)\$Ptao^)\$ oa)$)d$`t@on )l$0oy )$)|$ptoN0)L$@oi0)$)$DЃAHH4HtHHDŽĐHTPHHD$HHD$PHH$AHFHD$HAHD$XHGH$AhHFHD$ HAHD$`HGH$A@HFHD$(HAHD$hHGH$AHF HD$0HA HD$pHG H$AHF(HD$8HA(HD$xHG(H$AHF0HD$@HA0H$HG0H$AHF8HD$HHA8H$HG8H$wf\5H
H=CRHp1]HHD$HHDŽ$HD$PA'HFHD$HAHDŽ$HD$XAHFHD$ HAHDŽ$HD$`AHFHD$(HAHDŽ$HD$hAHF HD$0HA HDŽ$HD$pAHF(HD$8HA(HDŽ$HD$xA_HF0HD$@HA0HDŽ$H$A4HF8HD$HHA8HDŽ$H$fUHHHuRH]fHH	E1L
RH
oH4H8H5J1XZ1]DHytH5
Hu@ATUHHHE@DUdHwpHOxH,$IDHD$HAE#HKH$H9L9AD	H9L9AD	!AR„HD$H)HxH=o6D)t$o9)|$Po)$tpov)t$ oy)|$`ow)$tJo~ )|$0oA )D$poO )$t$of0)d$@oi0)$oW0)$DЃAt"HH4HtHHLPHHĐLEXDLH$HHA8PZYH<fo$LHfo$fo$fo$fo$)$fo$ fo$0)T$fo$@fo$P)\$ fo$`fo$p)d$0fo$)l$@fo$)t$P)|$`)D$p)$)$)$)$)$4HdHĨ]A\H$H9L9	AR„JHD$H)HxH=2oDfv)T$o)$)\$Ptao^)\$ oa)$)d$`t@on )l$0oy )$)|$ptoN0)L$@oi0)$)$DЃAHH4HtHHDŽĐHTPHHD$HHD$PHH$AHFHD$HAHD$XHGH$AzHFHD$ HAHD$`HGH$ARHFHD$(HAHD$hHGH$A*HF HD$0HA HD$pHG H$AHF(HD$8HA(HD$xHG(H$AHF0HD$@HA0H$HG0H$AHF8HD$HHA8H$HG8H$f4H
H=sKHĨ1]A\HHD$HHDŽ$HD$PA7HFHD$HAHDŽ$HD$XAHFHD$ HAHDŽ$HD$`AHFHD$(HAHDŽ$HD$hAHF HD$0HA HDŽ$HD$pAHF(HD$8HA(HDŽ$HD$xAoHF0HD$@HA0HDŽ$H$ADHF8HD$HHA8HDŽ$H$UHHHuRH]fHH	E1L
2RH
HqH8H5z1XZ1]DHytH5GHu@AWH9	AVfHnAUATUSH	HfHnflHH	H|$0HT$(HD$`H$HDŽ$H\$hH\$p)$H
HIHD$HH
L.LALl$`ML$I3L$MMIMl$H(M1HI9I;luH|$HHHD`IHMuMMLl$`HD$hLd$pHD$AEtAEA$tA$L5=	H=+3	IVL
HHtEHEH58	HHH
IHEMxHHE
H	I9GH$LHDŽ$L$>MHD$H|$Ix
HIIExHIEI9H2	I9D$$HE	H5LID$H5?	LHHHHH|$H5>	HGHHIMwLH	IHHExHHEuHSIxHIuL;L;5	L;5b	I9LŅdIx
HIcH-;	H=
1	HUH
IHtAIFH57	LHHsIIMx
HI 	IHA$tA$HL$MfD$tHD$IF HHQH=	H55	HHLLIH+Ix
HI:Ix
HIHExHHEIx
HIH9\$H=a:	BHHD$;H=O:	BLT$HIH@H59	HHLLT$HHIx
HIH]	H9E:HLT$IH$L$HDŽ$;LT$IMIExHIEuLLT$LT$H	H$E1I9B.fInLL$D$LT$)$:LHILT$xHIu
L-LT$HIxHIuLHO)AŃHExHHEuHH56	LDl$\eIHlHQ9IHIx
HIH5:	L!IHHct$\11HIH; Ix
HI6L8HD$HIx
HI%H5";	LHoHct$\11HHD$;LT$HHC Ix
HIH^8HD$(H HExHHEHJ@	Ht$\LXIHH9L
IHGH5T3	LHHH5I4	HIHHExHHEL;
	L;6
	I9LLT$LT$Ix
HIHD$0H53	HzjHH%HD$0H52	HFHHb#H	H9G=#H_H"LGtAtAHHH$H%%LLD$ H$HDŽ$7HHD$LT$LD$ M"Ix
HIqIx
HIIVIN H9H\$0HD$Ld$0MHl$8HHH\$H\$(HD$ HHHH|$(I$0HD$ILt$ MxwH\$(Ld$@MHH|$LIHL$LLHL4LdHLLVHLLHH)IuLd$@IL$ IT$IcD$HIT$I$(ID$(I$0H93MHl$8Ld$0H59	1H-IHExHHE#MY Ix
HIL/A$tA$IHIHD$MHMHH		HH5t$0L
AH
H81
XZH
'H=kE1=HĨL[]A\A]A^A_fDHE(HL$E1HD$ LMLL$I@HUH;VHFH}H9AHAt
HDU DN DD@@8ucA H}8A DHv8AAHDDE9u$HHIM9#KtH9H		H9EH9FtH9uuH9uuHHHH;	H;=P	H9H|$8H|$8Hx
HHIHL$LL$MyELL$HL$HL$LL$HE
@HL$LL$MHD$J
DsHL$LL$M두D$8GD$8]fDH|$(DL.H\$ILl$`LV(H8A@DIEA0DD3H}8A@HE|$ LQL-4	1MfHL9.M;luHL$L,Ll$`MMBH|DDLb>LUH|$H5+	HGHHIMsIH7H(	H5k0	HH54%	LLIHIx
HIZ
Ix
HIHM܅HHHIm(E1Hl$LfDKtI9zH	I9EH9FIUH;VHFIMH9@H@tHu~EM DF DD8u^A ]I}8A :Hv8ȃ7
DA9u#HHt~II9sI9uuH9uuߺLIHtLH;	L;5	\I9SLIx
HI
tIy)HD$`HGDIHD$N,4HuL4HLl$E1E1`AfDH
!DL\$H=`7ML\$tIx
HIE1MtIx	HItNHD$HxH\$HHUMI$HI$LtLH5./	H|$0IHH!	I9GIoHEMWtEAtAIbHL$AI0fInfHnLLflLLT$)$-HIMLT$Ix
HIIx
HIA$A$HD$HH\$HHMH1LL\$IL\$OILl$E1bAE1E1HEx
HHEtf1MtIx	HItrMtIx	HIt~HHEHHEHL\$L\$sHLT$1L\$L\$LT$yLLT$L\$LT$L\$mLL\$L\$kLl$E1E11E1MAwIoHEMGtEAtAIx
HI
fInfHnLǺflH$LD$)$Z+LD$HD$HEHHEHLD$LD$LL2HL\$L\$LL\$L\$LL\$L\$LLT${LT$]LHpE1A^E1E1E1AiE11AIx	HItE1HfDLLT$L\$LT$L\$H5K(	H|$qHH5A-	HHD$?LT$HHKIx
HIoH;-3AH;-D<H93H+AŅjHExHHEWE<I9AD$@uH0	 1LhIHH9NH5)*	H|$0L\$zL\$HH5E)	LL\$HD$SL\$LT$HIL\$LT$HIH	H5'	H<L\$LT$GH5	LLL\$LT$HHIx
HIIx
HIHSI9BMrMAMjtAAEtAEIHL$IfHnfInLHflLL\$)$'LIGHEL\$xHHEMIExHIEIx
HIH.	L\$Lp	
.	L\$t	A$MA$H5!,	H=-	1IH
H1UIx
HIhE1E1ALD$(Ht$LLHL$`L
)+LPE1E1AͪE1E1A֪:HRE1AتnI`
AE1E1Aڪ;A$8I$(H@8Hc@ I$0ݪAE11E1E1^H5*	H=+	10IH
H1Ix
HI
E1E1AEBIHuHX*HE1ALE11E1ۻAE1E1ۻAE11E1A/It$0I$0I;$0HI$0It$0I$0AE11E1%LD$@D$aH\$ HaLt$(Ld$@IHl$ILILILHIIHD$H0H3I7H0HIM)IuLLd$@IIL$ IT$LL\$L\$HN(H8A@HEI}8A@HE|$LlLL\$ZL\$LLD$CLD$LE1A#E1{LLL.LHAE11E1ۻAE1һAE1AIdDE1E1A.LLT$LT$H"E1E11A,E1E1A*HHHD$0H5P	HHH
H9H9GqH_HRLGtAtAH8
HH$Hy
LLD$ H$HDŽ$!HHD$7LT$LD$ M
Ix
HI	Ix
HI+	IVIN HD$@H9H\$0HD$Hl$0HHH\$H\$(HD$8HLd$(HMHH|$ I$0HD$IwLt$8MxsH\$ Ld$HHfDH|$LIoHL$LLHL$LHLLHLLH)IuLd$HIL$ IT$IcD$HIT$u~I$(ID$(I$0H9;MHl$0Ld$(H|$@H5y$	1HIHExHHEf
MzE1A.fA$8tI$(H@8Hc@ I$0pIt$0I$0I;$0pHI$0It$0I$0.H\$8HLt$ Ld$HILIMIH\$LHIIHD$H0HuI7H0HEIM)IuILLd$HIL$ IT$I$0%ID(I+(HI$0|MD(M;(}HII(MD(I$0MHLT$XLT$?MjMAEIjtAEEtEIx
HIIH$LE1E1ACHLLuMALmtAAEtAEHExHHE	fInfInƺLflH$LT$)$LT$II}HIpLLT$-LT$YE1E1AZqI$0%ID(I+(HI$0BMD(M;(}HII(MD(I$0H5	H|$06HHD$H5	LLT$HHLT$HIH	H5	HLT$H5p	LHݿLT$HIHExHHEIx
HIGH+I9BIjHiEMjtEAEtAEIeHH$AIfInfHnLHflL)$HI#Ix
HIM)IEHIELDKHQLE1kE1AKE1E1Av&LE1AE1E1E1AE1E1AWHAME1E1A{1E1E1A*E1E1A(E1A#̬tH5e	H= 	1追HH1HD$LT$Ix
HIE1A!H54	H5LAE1E1E1ALmA$]QH$:LLT$<LT$xE1A#Ѭ1LAE1xvLE11E1E1AFE1A,E1?I$(ID$(I+$0ID$0I$0LE1E1AHLT$tLT$E1A#άLOLLT$=LT$L$ALnA	1LI$(ID$(I+$0ID$0I$0HE1AE1H5-	LeE1E1A7H$LLT$XLT$HEHA.bHEt`LE1E1E1LD$8HT$ Ht$Ht$HT$ LD$8_HEHANA.HEuHLD$A.LD$MuH
1DH=uE1A.bSIH$1IH$11E1A.LA.NE1E11AoA	ML$E1OLLT$L\$LT$L\$1lA	1A	jSE1A	hH5+
	HHD$L\$LE1AE1]HLT$[LT$E1E1AML$AML$A1ME1E11AثE1A%*?E1A[,HEA%IH$1E1E1A&E1E1AE1E1AHTLT$TE1A!LA!$E1|IH$11HEHA߬A%HE-HLD$A%LD$L1MH$A1LLT$LT$E1AE1E1AMH$AL=H$AA%߬eDLL\$L\$NL$<ML$'HL\$dME11A	FLL\$L\$TLL\$L\$Q1E1AH=s	L\$@HLT$CLT$L1LT$L\$LIH$IEE1A%ݬJHT$8Ht$ LD$LD$Ht$ HT$8HHHEfAWH
	AVfHnIH`AUH-fHnHATfHnH@flUSHHL-0	HD$pH)D$PfHnHD$(flHD$0H]H|$HD$ HD$xLl$8HD$@)D$`M~L,HXH5HcHHF HD$@HFHD$8HFHD$0LfH.M~Ld$(Hl$ HHHcHfDM~H
	LLHD$ HHIMH]	LLIHHD$(IM<H}	LLzHHD$0IM~wH
	LLQHHD$8IM~NMfH-
	MO
1fHI9#I;luIDH'
HD$@IMHl$ HD$0Ld$(Ll$8L|$@HD$EtEA$tA$L;%L5	Ll$XHD$PI~H;=H5tGLHt$X1LHoH$H<$.L5
	H=	IVLHH
tHCH5	HHHa
IHM@
x
HHW
H<$LHHJ
Ix
HIf
H;H;Uu
H;!DHx
HH9
EL;=AL;=Du
L;=WEHD$HtH1LHSHD$HT$ LH	IXZMiHx
HHHD$H;AtAH$HxH$HHl
M@IVBHt$XHZE1ɨ uMNH=LL$H4$H4$LL$u;LHH$HHuHH5YH8H
!faE1H=IHHHcHfDEtEHHxH
HHuH'L5	At
AL5	HExHHE
ILDHAƅaAmE1Hx@HHu7E1HLL$t$t$LL$MtIxHIH
DH=wE1H$HxH$HHMtIx
HI:HtHExHHE/I$xHI$)HĈL[]A\A]A^A_@H.M~Hl$ LAD$DD$HanH
H=E1H$HAH$HH0E1HPH@HL=bHD$IH.Hl$ DL=ALnLl$8HFHD$HD$0LfLd$(L=HYL=HD$L~ L|$@DHL$ HT$PILL
XL*aIH$fAEtAEH5LIH
H;H;ZL;
zLLL$LL$Ix
HI
rH5LNIHrH;[H;fL;
YLLL$LLL$MIx
HIIExHIEL=	H=]IWLQIH
tAIALL$LH5 	HH
LL$IIM
x
HIH
I9C
LHt$XL\$HD$PLt$XL\$HMH_
Ix
HIHCH5	HHHUIHMQx
HHH5dLHHMIx
HIH;H;u
H;`
DHx
HH	EVAEtAEHHt$X1I9E
fInfHnLfl)D$PHI)M:
IExHIEuL6H$HfH	H=BHSH6IH	tAIFH5]	LHH	HIH	x
HIH<$H/IH
Hx
HHL;5(L;5u
L;5Ix
HIL;=AL;=aDL;=LAlHD$LAtAH1LHAWHD$HT$ LH	[IXMbIEHI8L+HH3H
#HOAL
BHELONHH6HSH5H81XCaZH
H=#E13

fDHLHLLHLωt$t$1HE(L<$MIHHD$ItI9If.HI9D$H9FIT$H;VHFI|$H9AHAt
HEL$ DF DD@@8A I|$8A gHv8DA2AjDDE9ufHtwHuJL<$Hy]BH%a!L;%uuH;5u2t.fDHI9tItI9L<$HIDiLHHH;H;=u
H;=XRHx
HHc{,fDsHhLIH
aAmfDIEHIEL>faAmY;IHILDAmaME1MfHD$0Hl$ Ll$8L|$@HD$dfHADžcADL`Å/MaAoE1H|$6H|$@ESD$?D$fDI|$8A@HE|$UcIE
HIE!APf.LL\$L\$fMH`DL@H=yIH	H5HIHIx
HIH<$LκLL$LL$HHIx
HIH;H;EH;HAƅHx
HHEL;=nL;=EL;=28LdAHD$HtH1LHSHD$HT$ LH	AZA[IH"bArkfH(L9aAn9LCLHTHaHLPkHuLIHgcAf;H_a[LL$IPfDcAcAIHIuLt$t$`MKM#AM{tAAtAIx
HIfInfInHt$PLflúLL$)D$PLL$HIHILSLN(H8A@IEDNL뾀cAVHuH[IHaoXIcAHAoacAH|a`L(aAoDDD6H
AL
H	aDDE1aAmH=sIHH5pH舞HHIx
HI6H<$HGIHHx
HHL;
@L;
L;
LLL$1LL$OIx
HIL;=AL;=\DL;=LÃHD$LAtAHA1LAWHD$HHT$ LH	AXAYIHMAtNbfD$gDD$H}apLLL$]LL$MApaSL뾈cAfL%cMcAH(AVI]H_M}tAtAIExHIEBMHt$PDLLL$LL$
bAqLbE1AqMAqbYbAqE1lA2H=IHH5H裛IHIx
HIH<$LκLL$]LL$HHIx
HIH;QH;dH;WHGAƅ.Hx
HHoEL;=L;=v'L;=LAǃHD$HtQLHESHD$1HT$ LHT^_IHUzbAvfDD$DD$HbrL芿HLL$xLL$LMcHt$PLL	9bsAs;b;DE1>bAsED@bAsE1[LLL$LL$LѾ$H=0IH
H5MHEHHl
Ix
HI
H<$HIH
Hx
HH
L;
L;
{\L;
OLLL$LL$d	Ix
HI	5L;=AL;=DL;=^LÃ4	HD$LAtAPA1LAWHD$HHT$ LHIXZMMAxbn6HUKbtlbAuE1dAmebAuLgbE1Au5MAujbHLAHH="IHH57H7IHIx
HIH<$LκLL$LL$HH_Ix
HI^H;H;cH;HAƅHx
HHEL;=L;=
L;=PtLAǃtVHD$HtASE1LSHD$HHT$ LHA_IXMbAz3HtbzDH=IHH5H貕HHIx
HIH<$HqIHeHx
HHdL;
jL;
 L;
.LLL$[LL$Ix
HIL;=	AL;=DL;=LÃt]HD$LAtAAP1ALAWHD$HHT$ LHLAYAZIH'MA|b褾Htb|AH=IHH5#H#IHIx
HIH<$LκLL$ݹLL$HHGIx
HIFH;H;OH;HǾAƅ/Hx
HHEL;=xL;=L;=<t}LrAǃtTHD$HtQLHESHD$1HT$ LH^_IH*cA~!Ht'c~DH5H<$跒IH?H;H;2L;
xLLL$襽LL$Ix
HI
H=H;=,PH$H@t
H;2H4$IMH=Ht$XLt$XHD$PIHtIIx
HI1L边IEx
HIEtmceLAhcfc<Ac%cA}E1L袶H5H=1HIHt+H1IEx
HIEtOScOcH4$ͺIL-CcAE1L
DHMA}cLڵLcE1A}cA}/bA{E1LLL$菵LL$"LuE1bA{HLL$PLL$A{bIb{bAyE1MLDHMAybLִLbE1AybAy+bAwE1LLL$苴LL$
\HbxL\\E1bAw}HLL$7LL$Awb0bwvHwbvYL_@AWIAVAUATIUSHHHH=LHHIT$H@H5AHHHIMIh:IH"tIH4LxHI9D$\A$tA$LL芲IHEIxHIuLI$xHI$uLܲIELM H=Qp蜱%1LLAIMIExHIEuL~IxHIuLfIFH;L%޾M9AtAINIV HH9HIv!L)LHHH)H8I.HL)HpIH1HAoL HH9uHHHHH9I)H)IvML LHHHHH9tl;HBH9v]BD;HBH9vLBD;HBH9v;BD;HBH9v*BD;HBH9vBD;HBH9vBD;Ix
HIA$tA$HExHHEIx
HIHHL[]A\A]A^A_fDH/IM.IhpIHEHݻI9FQMVMAM~tAAtAIHHL$ HD$IHL$QfInfInLLT$flLd$0)D$ ܱLT$HHT$Ht$1LLT$IMtIx
HI|IExHIEM(Ix
HIIFH;&3L%M98HHHUHMH5-AH81觷IHIE1E1fLHT$Ht$1LLT$WLT$If.LLT$ӮLT$IExHIE~-I$AxHAI$lMtIx
HIMtIx
HIH
աDE1H=|E1\HEXHAHEt M+:fL+HfDLLحL)1H AT HTH9uL蘭 L舭)LxHD$HD$ HD$'LHwH!H5MH87-H
H=GE1'HEѱ-HIE9E1HIEuE1L迬MA1LL軴IH-裵I-O臵IAs-MA-u-OHD$(ME1HD$HD$IEHIEIMw-E1?11,L讳IHIE|-AfDHD$(MHD$HD$TA-L%M9%HHHBHԥMH5-AH81蔳I5Aw-@HAH5hH8
~-$Mw-E1w-AqIH
>]-E1H=A HHIHHt"LЅtAHtH@LpHHt@HxHHu3@H
H=31H@@ff.AWHAVAUATUHSHH^H$HhH|$(HDŽ$H$HDŽ$H$HIL4HHH^HH	H
AHOL
EHIHLOHH
H	UH5tH81lXZH
H=E1
HL[]A\A]A^A_DHHVLnL$L>L$(o.LnHI)$HL$HD$xLHDŽ$HDŽ$HD$0H#HH(hLE1AHƹHD$xIHH$tAL|$xIx
HIL%H=HD$xL$HDŽ$IT$LˬHHotEHl$xHEH5HHHIL$H|$xMgHx
HHH-H=UHD$xHUH@IHtAIALL$LH5HHLL$IMIx
HI
HI9D$HH$LHDŽ$L$H$MHD$xHHZIx
HIn
H$HH9GMHD$xH$HDŽ$H$*H$H|$xHx
HH
H$HD$xHH$HxHHkH$H;-DHDŽ$H;-H9H2AąH$HExHHEHDŽ$EMwI9w貣HD$L@hfMI9t	MM@MuE1E1H-9H=L\$LD$HUHLD$L\$HHutH$HGL\$LD$H5HHLLD$L\$HH|$xL$HIxHI'H|$xH
{H$1HDŽ$H9O]fHnfInL\$flLD$)$LD$L\$H$H$HtHxHHcH$HDŽ$H|$xHOHx
HHH|$0L\$LD$HD$x{LD$L\$HHD$xYLD$L\$HH$H#~$HDŽ$HDŽ$D$xHD$x@MtIx
HIMtIx
HIMtI$xHI$CL%tH=IT$L谧IHtALT$xIBH5LHH	IL$H|$xMHx
HH@L%H=:HD$xIT$L$IHptALT$xIBH5nLHHIH|$xMHx
HHH$1HD$xH
ŬH$H9OhfHnfHnL$fl)$pH|$xH$HtHx
HHHD$xI$xHI$+H$HD$ HH$HxHHiH$HD$ HL$ HDŽ$ỈD$t
L$ID$At$HDŽ$I|$ HD$H$H|$0HD$8-
IGH5LHH^HD$H$H-HhH9PLhM
HxAEtAEtL$H$IxHIYH$H$L$HDŽ$HD$H$IExHIEH$HD$H|$H$HxHHH$HD$H51H|$HDŽ$衟HD$H$HH$HxHHkH$HD$HL$H;
vHDŽ$H;
H9HdAŅH$HD$HT$Hx
HHuHDŽ$E&H='HD$H$HH5MHxIH>H$Hx
HH^H
>H$1HDŽ$I9IMfInfHnLLL$fl)$H$H$ayH$LL$HDŽ$HHD$IxHIH$HD$H9\$4HD$fHDŽ$LhHD$0HHD$AXADHsff/	H\$(H5SH见IHtHH5HD$@胁LT$@HIHDŽ$HߧI9AIAH$HIYttIx
HIH$H$HLT$@H$HDŽ$@H$H$wH$LT$@HDŽ$H/HxHHH$Hx
HHLT$@HDŽ$#H|$8LT$@HD$PHD$0LL|$XMHl$hH\$IHHl$Ld$`HD$HHD$(HD$@LT$(HIHfHnHtgE1f.IL9tOCLCDLT$۞T$ff(YB
fC.\\YzuHT$0HT$@HT$HD$@H\$HTH9D$8^LT$(L|$XLd$`Hl$hH|$PLT$;LT$H51LuLT$IIx
HI_MIHILLiL=1MHL93M;|uM<L$MIMHBL$6IDHL>HIL$H~HLLHL$ծIH|HL$H$HL8`+fDLcAtAMCAtALLD$L\$LD$L\$IfLȘ軘fDE1IG(Lt$MMMMHD$KtI9DHI9D$H9FIT$H;VHFI|$H9AHAt
HEL$ DF DD@@8ubA I|$8A LF8V7EA9u&Ht;LHIM9KtI9MMLt$MO<fDI9uuH9uuLٗHHtfH;H;=hH9H|$H|$Hx
HH~QMMMLt$dHDŽ$誛H
gAL
H}H|$0趙H$IH/蘚H$HHH$HDŽ$HDŽ$HE3fDH\$(H5HzHD$HHH5<zIH(HDŽ$H I9A IAH$HMitAEtAEIx
HIH$H$LH$HDŽ$H$H$
qH$HDŽ$HlIExHIEbH$Hx
HH`HDŽ$mH|$8HD$PH\$0HT$L|$XE1Ld$`HHl$hHHD$0HHHHD$@HHHD$HDHHD$(fE1L`CLT$,T$BDIXL9u
^H8	HD$@HLHfHfY@H9uHD$HH9tHL$LHYIHl$0L9l$8BL|$XLd$`Hl$hH|$PyH\$H5%1HSnIHxH\$HH<MIx
HIHD$H\$ D$tILl$ f.HD$ 1E11AE1E1E1HD$A5fH|$xHtHx
HHH$HtHx
HHH$HtHx
HH@MtIx
HIWMtIx
HIfHtHx
HHeDDE1H
H=qIMtIx
HIMtI$x
HI$tyH\$HtHx	HHtoHtHEx
HHEthHL$ HHHHH蚑DL舑sLxzHhfDHXfDLL$(HT$LT$<LL$(HT$LT$LHT$LT$HT$LT$LHT$HT$HؐLL$(HT$LT$輐LL$(HT$H$LT$LL$(HT$LT$茐LL$(HT$LT$Hh*H$E11A	A6HD$ E11E1HD$^HLZHD$xHHyE1H$AA9HD$ 1E11E1AHD$A9˘IFL
ILLH$H$蛷L$fDKLPL\$LD$<L\$LD$H$ LXLL\$L\$(H|$fH$1)$HD$H$`AH\$Hx
HHHD$A1E1HD$VLL$Hh
HLL$HI)HD$ 1E11HD$AA95D;LL$IAfDHD$ 1E11HD$AA9fDӍfDMt$MAMT$tAAtAI$xHI$
HfInfInLflĺLT$H$H$)$zLT$HD$xHIHItHl$xLLT$Hl$xLT$@H$A4A9HoHEHtEtL$H$IxHI/	H$HD$xH$H$H$H$HEZHHELH6?1E1AKA9f.LL\$LD$H|$xL\$LD$f.D[Lȋ軋"fDAOA91E1E1HD$ 1E1HD$L\$LD$qL\$LD$f[fDH5H=1eH$IH H1轍H$Hx
HHA^A:HDŽ$@1踏H/HD$蛏LT$H	LHD$xIH/H$A2AF4D$rD$p1E1E1A4HD$ AFHD$NYIL\$LD$LD$L\$HHL\$LD$MLD$L\$HH$HJH|$xH@H5HHxL$HD$xMtIx
HI-H$HDŽ$HtHx
HHGH
}BL\$H=hLD$HDŽ$MH|$H$HT$xH$LD$L\$HeI9EhAEtAEH|$0L\$LD$LD$L\$HIL\$ LD$HD$軌LL$LD$HL\$ HULHHLHD$܇HT$LD$HL\$ H:IExHIEgHx
HHoH$L\$LD$cH|$xHDŽ$cH$HD$xcHD$L\$HDŽ$LD$H@hH8LHtHx
HHMIHIL}HD$NLT$H	LHD$xIHnH$A7AFx?L\$LD$HLN(H8A@LDMI|$8A@HE|$1E1E1A9HD$ AFHD$яIHGH$HHttLL$xH|$xIHIH$H|$xH$7HƦ^%1E1E1E1HD$AOAFHGHD$xHHttL$H$I&HIHD$xH$H$)HD$xʦoLbLL\$LD$KL\$LD$L\$LD$-L\$LD$L$jL\$LD$L\$LD$̦H~LلbL̄L\$ LD$HT$}HL\$LD$覄L\$LD$pLL$荄LL$7EA1E1E1ACHD$H@hH8LHtHx
HHMtIx
HIMt\I$uHI$gLLL$(1E1HT$LT$LT$HT$HD$ HD$LL$(HD$ 1HD$L蠃L蓃8艃LLT$wLT$LeLXHD$ 1E11E1AHD$A?67EO1E1E1AALD$L1E1E1AAhHD$1E1E1E1HD$ AA?HD$1E1E1AAhLL\$LD$QLD$L\$HI-1E1AAD@:HLL$.LL$1E1E1AAhM1AADE1H$HD$xAA9LȁiA1E1E1HD$AhLD$ LL$HT$LT$舁LD$ LL$HT$LT$4LLL$HT$LT$XLL$HT$LT$"1E1E1AAp;MADAME1AADHD$ 1E11E1AHD$A9HD$1E1AApMAMH$11$1E1AȧApIAH$HMitAEtAEIx
HIH$MH$SMH$1H5H|$vH$HD$HLT$@H$LT$@LT$@LT$@H$H$HD$xH$LL\$LD$iH|$xL\$H$H$LD$:LLT$@3LT$@H$H$L\HD$ 1E11E1AZHD$A:LLL$~LL$HD$1E1AAHD$xH$A2AF;HLL$Ao~LL$1E1HD$g1E1AAzQH|$xHDŽ$HVDAIx	HItyAz1E1LH$11HD$xH$A7AFuLH$1yIA'1E1AAzLLL$Azv}LL$1E1wL_}!A̧1E1E1HD$ApHƦIHI$ff.AWHfAVfHnAUATIUHHHSHHhHD$PH()D$ fHnflHD$0HD$X)D$@HL4H	vHHHHMHD$ IL-M
1
HL9	L;luM,Ll$(M
HH
	Hl$ L|$0AHHFHMHD$0HFHD$(HHD$ HOHl$ Ll$(L|$0HL(hE111HALAIH
tA$I$xHI$H5El$L(hHE11HA1AHH
tEHExHHEdH=UEuMmHH+H5|LH=NLfIHLH评IHtIExHIE]L-fH=IULIHtAI@L$LH5۲HH1L$IM	Ix
HI
H^I9B/LHt$HL$HD$@Hl$HL$IMMIx
HI
IPH;H=7I@CH{L$H¸H)APHH<H%L$IMIx
HIa
LHL$xL$HIIx
HI
LLL$_yL$HIIx
HIIx
HIL5H=IVL}IHtAI@L$LH5HHL$IIMx
HIGL
(H=qIQLL$a}L$HItAI@L$LH5HHL$IMIxHIuLL$wL$HL$zL$HIHI9ALHt$HLD$PLD$L$HD$@Ll$H萮L$LD$IMIx#HIuLL\$L$0wL\$L$MIxHIuLL$wL$HGI9F	Ht$HLL$L\$HHD$@L$MIIx
HI:MIx
HIiL;7L;
L;u
LL$)|L$AtIx
HIWE)H5H=_1PIHH1xIHG|ILt$$u$t$DHHL~L|$0o.LnH.)l$ fDHMHLHH$ފH$HHD$ S
L}HH
iAHHHlH5@ATL
iH81o}X`ZH
iH=TE1
HhL[]A\A]A^A_HH
qiHsiAHMEIvL=9@LmMt$AEH=A~	AA]\f(f^f.Df(QYHIE1XYf/m	LAtAHHsE1LjH=SAL5D5j5NATj5ULT$PHPL$HHlIx
HII$xHI$,IHExHHEM[IEOHIEAL&s4LEL=}M1HI9L;|uIHHD$0HLr?HrLnHHMLl$(HD$ `fDE1IE(JtHD$I9fDHI9EH9FC;IUH;VHFI}H9AHAt
HE] DV DD@@8zA I}8A Hv8DA	A
DDE97HHLL$HH$tH$LL$HD$(CvHHH7}H5=L
ejAH
eH hH81y^B_
DL}M9uL9uu{LLT$LL$H$hqHH[H;u}H$H;=|LL$uLT$L95Hx
HHfDIM9JtI9O,@HHp1LI3pHDIG(E1HD$@JtI9HC}I9GH9FIWH;VHFIH9AHAt
HE_ DV DD@@8uxA I8A Hv8DAAh	DDE9u9L$HHL$HZrHL$L$IM9fDL{M9uuL9uuLLT$LD$H$ToHHt|H;e{H$H;=zLD$LT$L9yLD$HL$H<$FtLD$HL$H<$Hx
HH[<y(sHI K/E11;H
bH=MMDI$xHI$E1fE1=Ê밐Lm#HL$ HT$@MLL
~dH衕NgLL$HL$H<$%sLL$HL$H<$L:mnL-mL$II}8A@HE|$-LmMNMAMFtAAtAIx
HIfInfInLǺflHt$@LL$L\$L$)D$@轣LL$L$IL\$IHILL\$LT$L$NlL\$LT$L$|@)L(lLL$lL$LL$kL$:DLL$kL$E1AfDE1MfDD$LL$H$kD$LL$H$@LL$dkL$ME1NEfDE1B-fDAUE1f.Ix	HIt8MtIx	HIt;H
l_DH=JfDLL$jL$fDLj뻺EH5PH=ɧ1BEIHH1mIExHIESE1SԋCL^(H8A@IEYME1AEI(HIE1LiME1E1E1Ix	HIt)MtIx	HItDMfDLLD$LT$L$iLD$LT$L$f.LLT$L$oiLT$L$H$;nL$HL薥L$HInE1E1AE7E1E1AE!%rL$ID$LD$H$hD$LD$H$MjMAEMZtAEAtAIx
HIfHnfInLߺflHt$@L$)D$@蟟L$IIEHIExLLD$L$=hLD$L$YE1E1MAE-DDQlHrH
\AH;JsLL$0hL$IfIHIAEE1L^(H8A@IEI8A@HE|$LLT$L$`gLT$L$AMƒAE1E1AE"<LL$gL$HB`L$LPL$I%-DD'LfkHuLIHF3oL$I(5AFfDD)H$LL$IkL$HuLL$L裢IH0E1E1AF8HE1AE1E1AF:'+oL$IE1AF=DDIIHDMQtAtAIx
HI'fHnfInL׺flHt$@HL$LD$PLD$L$)D$@螜HL$L$ILD$HHHHL\$LD$L$/eL\$LD$L$ME1E1һRAFLE1dSԋMAFiAFmLL$dL$SЋE1E1E1AE8wLLD$LT$H$idH$LT$LD$AY@L$/gL$ILL\$LD$L$dL$LD$L\$JG|Gxf(T$$mT$$IcE1AEfAWH7AVAUATUSHHHD$PH0HD$XHHD$`HHD$hHoH|$HD$0HD$8HD$@HD$pHD$HH#L4H)HgHHcHfHFHD$HHFHD$@HFHMHD$8HHD$0H
HHIHL%M)1HL9
L;duIHD$8HLmHL%[M
	1fDHL9L;duIHD$@HHH~qHLHHL$wH.HL$HD$HHH~>HL$0HT$PILL
XHy)HuHDHD$HL|$0H\$8Lt$@HD$HXH(hE111HALIHtA$I$xHI$HH(hE111HAHHHtEHExHHEHL(hE111HALAIHwtAEIExHIEVEA;D$L=aH=IWLeIHtAIFH5eLHH+IM*IxHIuL`f(T$bIHHLq`IHWIx
HIH
kI9GxHt$XLLLD$XLD$ HD$P踖LD$ IIx
HIMHx
HHL;kL;vksL;kfLL\$ dL\$ A]Ix
HIE<D$aIH+H=nHHD$hL\$HIIx
HIeH=՛Ht$XLT$XLT$HD$P`LT$HIIx
HIHL1L\$`L\$Ix
HI7
JE1E1E1HHHH
RHRAHMEIHHiHTH5)SL
 RH81fXZH
)R.
H==E1譝HĈL[]A\A]A^A_HFHD$HD$HLvo&H^L>Lt$@)d$0@HHIHD$0PHIHLHHL$}rHD$0HHL$LmH.DHD$|fDA;EF>L^IHHIHH\L4IHmf
SI*L$f/vfH*f/D$aII9THD$LAtALL\$@_L\$HIvHHD$ "_L\$LT$ HIL_L\$LT$ HIOHt$HE1LjH=hA5HPj5AWj5+ARHT$`LT$hL\$X\HPL\$LT$HHIx
HI6Ix
HIIx
HI6Ix
HII$HI$
HEI܅fHHEM<IE0HIE"LZfLZGE1ID$(H\$LJtHD$II9f.HgI9D$H9FB:IT$H;VHFI|$H9AHAt
HEL$ DF DD@@8^A I|$8A 
Hv8DACADDE9H+H\H\$L	fDHD$@2^HHH&eH
MH5$jL
MAH.PH81paY^~\@L;%euusH;5|euufLiYHHmH;veH;=du
H;=>e
Hx
HHQfII9JtI9H\$LK@HHXQL8XIHE	HHE	IHW!1LIWHHEfDE1ID$(H\$LJtHD$II9f.HdI9D$H9FB:IT$H;VKHFI|$H9AHAt
H%EL$ DF DD@@8A 4	I|$8A y
Hv8DAADDE9HHYH\$LHD$8X[HD	HHLbAH5"jL
JH
JH8HQM1^_tAXfL;%buuH;5bu:t6fDII9mJtI9eH\$LKD@LSVHH1H;`bH;=au
H;=(bHx
HHsfDE11E1E1E1
E1E1MtIx
HIMtIx
HIMtIx
HIMtIx
HIMtIx	HItAH
RIH=4ܔMI$xHI$E1DLωT$TT$fDLLD$ L\$T$LL$]TLD$ L\$T$LL$DLLD$ L\$T$LL$%TLD$ L\$T$LL$DLLD$T$LL$SLD$T$LL$LljT$LL$ST$LL$fH=IH
H@H5LHH@
IM
IxHIuLLT$ OSLT$ D$LT$ *VLT$ HIHHSLT$ HI
Ix
HIOH=^I9B'LHt$XL\$XL\$(LT$ HD$PLT$ L\$(ILIx
HI
M
Hx
HHL;=!_AL;=^DL;=^LXAƅIx
HIPE1L5H=?}IVL3WIH
tAIBLT$LH5HH
LT$IIM
x
HILH=|IH
H@H5LHH
IM
Ix
HIH=$L\$誏L\$HI
H@L\$ LLD$H5HH
LD$L\$ IM
Ix
HIH\I9A
LHt$XL\$ LL$HD$PLd$XHl$`ŇLL$L\$ IMM!Ix
HI~H[I9C5LHt$XLD$XLD$ L\$HD$PLl$`XL\$LD$ IMIx
HI;M'Ix
HIcH0[Ht$X1I9F[fInfHnLfl)D$P߆HHD$r+IL\$x
HIE1
M#Ix
HIKL;\L;[,L;[LL\$TL\$Ix
HI=HD$LAtAHt$HLML
iH=*[j5HAUj5UjHT$PL\$HiH@L\$HHIoHIbLlNUE1E1E1E1
DE1E1E1
IOH|$ SH|$ W@H|$ SH|$ UD$ MD$ WE1ۺ
pI|$8A@HE|$
E1E1GDDE1E1ۻ
f.Ix
HIE1E1MIx	HIt5E1|ryE1E1
B@LLD$T$LL$LLL$T$E1LD$@LL\$T$LL\$T$]fLLD$ LLD$ fLL\$ LL\$ 
fHL\$ cLL\$ 
fLHLND$ 7LD$ fDL LLLT$LLT$LKLKPH#LN(H8A@IEI|$8A@HE|$E_tPH
-E1E1E1#NPHuL豇IHE1E1
PH
7E1E1E1OH
AE1E1E1@D$MIHxH=r{HHD$TL\$HIhIx
HIyH=هHt$XLT$XLT$HD$PLLT$HIKIx
HIGL1L\$LL\$Ix
HI6
oE1E1E1*SIE1ۺ
H5H="1$IHYH1eLIx
HI}
E1E1E1IE1E1
ME11E1ۺ
LN(H8A@IEvLOIE1
MwM{AI_tAtIx
HIfInfInHt$PHflźLD$ )D$PLD$ IIBHI5LLD$(L\$ HLD$(L\$ IE1
/
DDLL\$VHL\$ʏ
LL\$ LL$+HL\$ LL$GLH
<AH'jODD'LLD$ L\$GLD$ L\$aLLT$GLT$LGLLT$(L\$ GLT$(L\$ L|GLoGL\$H]G3LHL蒃IHE1E1
\DDQLL\$GL\$E1E1ۻ^
xPLT$ILFLFE1ۺ
aZE1E1
8E
c6OIE1E1
E1M
fE1E1

UOIM
h6OL\$ LD$IIYH3MytAtAIx
HIfInfHnHt$PLflǺL\$Hl$`)D$P|L\$IHHHHLD$ L\$jELD$ L\$MM
}E1
L,EvLLT$ELT$pLL\$EL\$LDIE1E1ۻ'
dE1E1MӺ
oMrMAIZtAtIx
HI
fInfInHt$PHflƺL\$ )D$P{L\$ IIHILL\$ ,DL\$ yI[HMStAtAIx
HI.fInfHnL׺flHt$PLD$ LT$Ll$`)D$PzLT$LD$ IHHHxHLD$ LT$~CLD$ LT$WI^HIVttIx
HIIHt$P\M
+E1E1
E1E1LLD$ BLD$ H5~H=1IHH1WEIx
HI\
E1E1E1;E1E1
ې&E1E1
E1E1
]E1E1
gLLT$*BLT$E1E1j
LL\$AL\$LALL\$AL\$E1E1E
KLLD$ LT$ALT$LD$ LHT$AHT$Ht$PIֺLL\$ iAL\$ E1E1E1
\L?AE1E1
I0ff.fAWH7rAVIAUATUSHH~MH-ouH$HH$HH$H-H<$HDŽ$HDŽ$H$HDŽ$H$H$HLHHEIJcHHFH$HFH$LnHIL$L$H$ItcIM_	IIH-uMP1fHL9I;luM,L$M-HHR	H$L$H$HD$IuOH~SMl$H-ItM
1@HI9I;luIH
H$HH	H$L$L$H$HD$HD$PHD$XHD$`HD$hHD$pHD$xA$tA$EtEH5pHHl$H-
H|$HH5s-Aƅ*%H|$HHx
HHHD$HE<IH@hH8H9t	H/H@HuHD$XHD$PHD$`L=TtH=iIWLCHHtH|$hHGH5qHHHH|$pHLD$hIxHIH|$pHD$hH
H1H$H9OBfHnfInfl)$gtLD$hHD$HHMtIxHIH|$HHD$hHPLD$pIxHIH|$HHD$pHx
HHHD$HH|$PHtHx
HHXHD$PH|$XHtHx
HH!HD$XH|$`HtHx
HHH5v1LHD$`<HD$hIHH;HL;=FHu	I9DIx
HIVHD$hE0"H>HD$hIH"HL4<HD$pIH"H|$hHxHH2
L|$pHD$hL;=HAL;=GDI9L
AD$"L|$pIx
HI]HD$pD$"LqHD$H#9HL$PHT$XHxhHt$`I!H=p0yHD$hIH#H@H5jLHH)'HH|$HH'LD$hIxHI H|$HHD$hH
E1H$H9O&fHnfInfl)$LqH|$hHD$pIHtHxHH-!Ll$pHD$hH|$HM&HxHH Ll$pHD$HI$xHI$IEH5oLHD$pHH&IL|$pM&H5sL9:IGH;EF'IGHHHuIx
HI HD$pH|$`H|$XHD$`H|$PHD$XHD$PH;HD$xIH/H=iHAHD$pIHu/H|$xHxHHG.L|$pH=uH$L$HD$xHDŽ$9HD$xIH3H|$pHxHH-L|$xHD$pL1:H|$xHx
HH&-M E1HD$xE1E1Jf.Hx
HHHD$HbfDHHHIH
,H,AHMEODHH4CHL.H5AVL
+H81?XyZH
+H=aE1)wHL[]A\A]A^A_@H|$XtHWHT$Pt7HD$`HHIH$@HIHgLLHL$LT$KH$HT$HL$Ml$LT$HiHnLLHL$LT$KLT$HL$HH$HL;Aƅ*L|$hH\$oLnL&)$HnH$HFHD$H$ƐAƉD$w5fDL5Lx5bk5fD[5fDK5fD;5fDL
0,MLLH$H$+]dfL4c4fDL4HE(E1HL$HD$LMILT$KtH9HAH9EH9FC;HUH;VEHFH}H9AHAt
H DU DN DD@@8A H}8A h Hv8DA!Ar#DDE9HH6HL$LT$MHDŽ$e8HBHHY?Hq*H5+jL
'AH
'H81;XQZH9uuH9uBt>fDIM9uKtH9mHL$LT$MO,Hc3HH1H;p?H;=>u	H9Hx
HH/ofHE(HL$E1HD$LT$f.KtH9H?H9EH9FHUH;VHFH}H9AHAt
HDU DN DD@@8A H}8A Hv8DA'!Ae"DDE9umHH4uMHL$LT$LT$96LT$H_H9uuH9u"tfDIM9LT$@H1HHtH;=H;="=u	H9fHx
HHutEf.HL$LT$K]DȟqE1E1E1DH|$HHtHx
HHBH|$hHtHx
HHDH|$pHtHx
HH>H|$xHtHx
HHMtIx
HIH
p$ډH=-oMtIx
HIE1MtIx	HItOMI$HI${L|/nIHIsM@LP/fDL$?/L$.fDL(/4L$/H|$hL$fL$.L$fDL$.L$fD1LI.fDH5jH=k1c	HD$HIHdH1(1H|$HHxHHun.H|$hE1E1HD$HrE1C.3H0LxjHD$hHHPH|$HHtHx
HHSHD$HH|$hHtHx
HH"HD$hH|$pHtHx
HHIF`L-jHD$pHQHxI9IEHnHW%@
A@
HXHHJH1fDHH9L;luH
u!uH=/
lHL$hHT$pLHt$HX$H=iH5h1fHD$xHH1./H|$xHx
HHHD$xJw-HI9\HuL;-9JfDuIFhHT$XL|$`Ll$PH8HHtHx
HHBMtIExHIEOM	Ix
HI?E1E1E1;L+4H:vUH|$ N1H|$ H|$ :1H|$ D$ W+D$ D$ E+D$ yH}8A@HE|$%AIx
HIHD$pH5bcLHD$pIHH5ReHǺ]+HD$HHHLD$pIxHIfH|$HHD$pH;=>7H;=6fH9];0AąH|$HHx
HHHD$HEH=`hHD$pIHO H5]HHD$hIH H|$pHx
HHH5[LHD$pgHD$pIHH|$hH541HD$xH9w fInfHnH"UHfl)$H$`H|$xHD$HH|$pHD$xHx
HH5HD$pH|$HH] LD$hIxHIH|$HHD$hH;=5H;=5oH9f.AąH|$HHx
HHyHD$HEyH=c^fHD$hIHH5~XHHD$pIH[ H|$hHx
HH(H5b1LHD$h(HD$hIH*H+HD$xIHHLi(IHH|$xHx
HHH|$hLHD$x^+HD$xH0H|$hHx
HHHD$hIx
HIH|$pH
2E1H9O"HL$xL$H$H$H4HL$0<^LHD$HH|$xHx
HHeHD$xH|$HH"LD$pIxHI(H|$HHD$pH;=Q3H;=2H9N,D$ !H|$HHx
HHLHD$HH|$`H|$XHD$`H|$PHD$XDd$ HD$PE1H=[mdHD$xIHH5%VH}HD$pIHH|$xHx
HHW
HD$x)HD$xIHAEt	AEL|$xMo+HD$HIH
H=<[cIH)H5XHHD$hHHIxHI7HT$hH5WH|$H,"H|$hHx
HHVHT$HHt$xHD$hH|$pHD$hIHH|$pHx
HH0HD$pH|$xHx
HHHD$xH|$HHx
HHHD$HIELd$hxHIEH5\LHD$hHD$hIH0H RHD$HH|$hHx
HH@HD$hI9ID$E1H|$HD$(2H|$HIE1H1HIH9HIL)H9~L(IHyHq&HD$hIH{H=q\Lƽw,H|$hE1HD$HIHHx
HH+HD$HH=.`H$HD$hHDŽ$H$d$HD$hIHH|$HHx
HHHD$HH|$h1%%H|$hHx
HHE1HD$hfDH|$HE1HOL(#'E1E1HGHD$hHHttLD$pH|$pIHIHD$hH|$pH$XHD$HE1ey5I
H5UHt
Iɚ;H5RH\tHI9L;l$VH9\$xH=Vm_HD$hIHH5TH}HD$xIHH|$hHxHHiL|$xHD$hH
+1AI9OfHnHD$0LD$H4L)$WH|$hHD$H"LD$HHD$hMH|$xHxHHLD$HHD$xL;,AL;:,D:I91L%AƅLD$HIx
HIHD$HEHL$H+H9ADD$8tHD$HD$xH|$HD$HIH}#HD$hIHHD$HH|$xLHD$HIGHD$HIHAH|$xHx
HHHD$xH|$hHx
HH@HD$hL|$HHD$HH=T.]HD$HIHH5XH>HD$hIHH|$HHx
HHHD$H"HD$HIHAtALt$HM~$HD$xIHH=S\HD$pIHH5zQHIHH|$pHx
HHH5OH|$xLLD$HD$p%LD$Ix
HIHT$xHt$HH|$h>IHH|$hHx
HHPHD$hH|$HHx
HHxHD$HH|$xHx
HH`HD$xH|$H5aULIHH|$HD$FLD$HHD$xHL&LD$HHD$HIx
HIH|$xHx
HHHD$xH|$HJHD$HH|$HHx
HH|HD$HI9IFH5MHHD$8.ŅH$H5iNHUHD$PIHDHH5NHD$xHHH&H9GHoHtGEHtEtLD$xH|$xIHID$ H|$xHcT$ H\$0H$HDŽ$H)H4RRHLHD$HH|$HH|$xHx
HHHHD$xH|$HHx
HHHD$HK"H<$LAQHt$@LL$HLD$(HL$8HT$ NHTH|$`AZA[HtPH5U1(H|$PIHx
HHJHD$PMIx
HI-AtAIHINIM<MF@LnfyE1E1E1;LH5UH=V1OHD$hIH|H1H|$hHx
HH	uzE1E1HD$hΟqE1E1E1E1{DD$LHD$pD|$EE1E1{ILLE1E1|E1{E1E1E1WLT$HL$#HL$LT$HXH7HD$pIH
H=NHG!HD$hIHFH|$pHxHH{	L|$hH=UH$L$HD$pHDŽ$7HD$pIH
H|$hHxHH	L|$pHD$hL1H|$pHx
HH	|E1E1HD$pE1H!}E1E1E1uH|$HMՠHtHx
HHHD$HH|$xHtHx
HHHD$xMtIx
HIH|$hHtHx
HHHD$hH|$pHtHx
HHdIF`L%nSHD$pHHxI9ID$HHW@A$@HXHHJH31HH9L;duH

ډH=UHL$xHT$pLHt$HFAjH|$HH|$pHD$HH|$xHD$pIFhHT$XHD$xHl$PLd$`H8HHtHx
HHMtI$xHI$HHEHHEHHI9HuL;%T!fDIFhHT$XL|$PLd$`H8HHtHx
HHSMtI$xHI$BMt~Ix
HIME1E1E1yLet͡eL@TE1E1MLV(H8A@IEנME1HE1MfHGHD$hHHttLD$HH|$HIHIHD$hH|$HH$LH}8A@HE|$LV(H8A@IEI(H|$H{!Ln8dZE1E1M2L5DDKH
AHGfDI]H1HH9+I;|uHD$hH$^E1E1M4H;LIH
H;H;I9LD$Ix
HID$yGH|$HE1$LME1E1E1kLL|$pIHILE1E1M7
<DDqDDDH|$hE1E1M<4LL'ZE1E1M>IT$H1HH9I;|uSMCE1E1E1<ENMME1@AH|$HD$hIHJHD$HIHHD$HHD$hHD$hIGqDDH|$hE1E1ܟrH|$H HD$hE1MEE1TvD$ MM5L$$E1AHHKtH9DL$$‰D$IHILW/M{H|$HE1QH59LBTaE1E1E1fHVE1E1E1ZFw,$E1HՉ\$HKtH9,$\$
*
QH5IH=J1)HD$hIH
H1H|$hHx
HHE1E1HD$hL
HD$hH$H|$E
HD$HIHHD$xIHHL$D$8tHD$xHD$IGHD$HHD$HIG 1,PfA.GD‰D${EE1E1E1CHD$hIHH=k;HSH|$hHD$HIHHx
HHWHD$HH=
IH$HD$hHDŽ$H$C
HD$hIHH|$HHx
HH_HD$HH|$h1H|$hHx
HHZE1E1HD$h(}LE1qz
2
hH|$Ht
H5FH=G1iHD$hIHH1.
H|$hHx
HH8E1E1HD$hR
.E1E1|3
L&
`LD$
LD$8
E1oH|$H*H|$H'H|$H%E1E1| E1|>L	|	r	Le	H|$H~lH|$H|XE1E1qE1E1ME1E1MsH|$HzH|$HyH|$HSE1MG/HGHD$xHHttLD$hH|$hIHIHD$xL|$p1ɺH|$h80E1E1E1E1ףL`H|$HvH|$hE1ͣjH|$hE1ңSϣQbHD$PIHH$H59H:HD$xHHTHH9GzH_HtBHttLL$xH|$xInHIJH|$xHcHL$0H$H)нHDŽ$H4=HHD$HH|$HH|$xHx
HHHD$xH|$HHx
HHHD$H
H<$LQHt$@LL$HLD$(HL$8HT$ =HH|$`^AXHH5A1H|$PHD$XHx
HHAHD$PLD$XMIx
HI HD$X~E1E1RIGHD$hHMtAtAH|$xL|$xHxkHHHD$hL|$x1AE1E1ME1E1H|$hE1E1HD$h1AWH!IL9,$\$EM콕0dH|$HE1}sLf	HD$xL|$p1ɺLgMA$HtA$tLD$pH|$pIHIH|$p1kE1E1E1OfLE1BH|$HH\IL9DuL$$H|$hE1E1VE1TLrtecH|$hE1E1dzE1%ޣE1E11H|$hE1E1
E1H|$+
HD$xIHE1E1E1ۣE1٣18H|$PHx	HHtGHD$PE1JLD$ H|$x_D$ R벽6^HE1+E1H5,Lb!E1L 9L$L$LHD$HIHH=0/H
HD$xIHH|$HHx
HHHD$xH==H$HD$HHDŽ$H$HD$HIHtfH|$xHx	HHteHD$xH|$H1H|$HHx	HHt H|$hE1HD$HH|$h딽KH|$hZLH|$h/}*E1L^W1E1E1E1E14ԤH|$PHx	HHtHD$PE1U1$LϽH|$xҤ
AWH8AVAUATIUSHHL58H$H-	HDŽ$H$HDŽ$L$HIL<HHIHpHHH
AHOL
EH4IHLOHH	HSH5pH81XKZH
9H=E1=HĸL[]A\A]A^A_HtHXLvL$H.H$HD$HHD$PHD$XHD$`HD$hHD$pHD$xEtEAtAHlHHHX(H}H9t;HXHHqH1fDHH9H;TuHH5/HHK HH|$HH%HGH5l6HH%IL|$PH|$HM\%HxHHz L|$PHD$HL;=L;=)
L;=o
LAŅL|$P
@oLvHI)$HH$UfDLqH-51MyHL9{I;luI,H$H[INH"L$H.HIH$H~H}+LLH$vIH"H$H$HADMHXH=HqHX1@HH9CH9TuH53H5HD$PIH~(H54H9"H@H;a+A_Ix
HI%HD$P"H=08HD$`IH-H5k3HHD$XIHJ/H|$`HxHH'L|$XH%H$HD$`HD$H1I9_./fHnfHnH4LflL$)$H$0H|$`HD$P7H\$PHD$`H.H|$XHxHHW'H\$PHD$XHExHHEy'HD$PH=.n7HD$XIH0H5+H~HD$`IH1H|$XHx
HH7)H55HHD$XeHD$XIHQ1H|$`HL$1HD$HAH9O~2fInfHnH$flHtL)$f/H|$HHD$PH|$XHD$HHx
HH*HD$XL|$PM2H|$`HxHH{*L|$PI$H51*HD$`HD$PzIH!2I$H5)H$VL$HHD$`Hm5HD$XHD$H9GD5HGHD$XHN5HttLT$`H|$`I8-HI/HD$XH|$`HL$H$HDŽ$.H|$XHD$PH|$PL$HD$XH22LT$`IxHI,H|$PHD$`Hx
HH,L$HD$P	HL$xHT$pHxhHt$hI^HL$HH}5HHL$ID$Ll$Lt$IHLIH9HHD$PH1HD$`HH@5HD$PL%.HFA$tA$Lf HHD$PbHD$PHH4H|$`HxHH,HT$PHD$`LLE3H|$PHx
HHE.HD$PHCHD$PH5+HD$`HH5HD$PHFA$tA$Lf HHD$PaHD$PH4H|$`Hx
HH/HD$`LHD$`Hn4HD$XHH4HD$`HFA$tA$Lf HT$PHHD$`.6H|$XHx
HH2HD$XH|$PHx
HH2HD$PH
HD$PH6HD$XHH5HD$PHFA$tA$Lf LHHD$P4H|$XHx
HH3HD$XHML$Lt$H|$hL$H|$pHD$hH|$xHD$pL$H5.1HD$xLL$HD$xIx
HI5LL$xM5Ix
HIx5HD$xHEMHHD$$Ld$fHH9HuH;LfDH=Y!0HD$`IH. HH`AŃ H|$`HxHHuHD$`EH5y,L9t%IFH;(MnIAE<(I$H58$IH'I$H5#sHD$HIH)HD$`HI9A*IAHD$`H,MItAtAH|$HLL$HH"HH #HD$`LL$HH$LH$HDŽ$)(H|$`HD$XLL$XHD$`Mq)H|$HHxHHG"LL$XHD$HIx
HI"HD$XHI"HL$hHT$pHxhHt$xH$vHHL211HHIHD$XH11HHsHD$HHs!HEH;HT$XHHpHHyHL$HHT$HT$HL$HY!HD$HHQLD$Ix
HI$*!H|$XHx
HHwHEH;HD$XHT$HHHpHHyHL$LHT$HT$HL$H&!HD$HHQLD$AIx
HI
$E H|$HHx
HHHD$HHbH|$xH|$pHD$xrH|$hHD$p_H5*1LHD$h5HD$hIx
HI0L|$hM0Ix
HI0HD$hHH\$$tLd$M0
@DIx
HIyHD$PEH=#B,HD$HHH=#(,HD$`IH%H@H5#LHH.IM	H|$`Hx
HH"HH$HD$`HD$H1I9OfHnfHnLfl)$C$H|$`HD$XH|$XHD$`Ix
HIH|$HHD$E1H$H9GfInHD$XfInfl)$H$#LHD$PRH|$XHx
HH3Ll$PH|$HHD$XMHxHH4Ll$PHD$HIx
HIH}HHD$PH9HH5\!HHeIL|$PM<H5F&L9IGH;IG0HE1HuE1AAIx
HIVHD$PEH5#HHD$PIH|H;L;=hL;=LAƅL|$PIx
HIHD$PEHcHD$H9dHEH5#H$HEHHoHIL|$PMiL111HD$HHHnLD$PIxHIH|$HHD$P HD$HH|$HHx
HHYHEH5HHD$HHHHH|$HHHGH5HHIL|$PH|$HM
HxHH
L|$PHD$HL" IHdH|$PHx
HH
HD$PH=,'HD$PIHXH@H5KLHHHD$HLT$PHIx
HIk
HD$PLHD$PIHqHD$XIHHD$PHD$PIGHD$PIHH=c&IH+H5HHD$ LL$ HHD$`IIxHIxL|$`H5(H|$PLH|$`Hx
HHHT$PHt$XHD$`H|$HHD$`IHH|$HHx
HHHD$HH|$XHx
HHHD$XH|$PHx
HHHD$PL|$`HD$`L;|$IGH5BHHD$ HD$`IHNH5-HHD$PHHLL$`IxHIH|$PHD$`H;=H;=5H;|$*@H|$PHx
HHHD$PH5I$;IHI$H5HD$(LL$(HHD$`HKHD$XHD$H9G[HGHD$XHHttLT$`H|$`I#HIHD$XH|$`H$LL$H$HDŽ$H|$XHD$PZH|$PLL$HD$XHLT$`IxHIH|$PHD$`Hx
HHID$HKHD$PHD$IsHH\$H$Hl$L|$0Hl$ HLL$ HLl$(IL$fH|$LH$LHHL<LLLLLLHI)IuHl$LL$ Ll$(L|$0H5L1L$L$HD$xHIxHIDH|$xHC"Hx
HH9HD$xHD$$]H\$IfDHE(E1L$$IHD$LLMIItI9HI9D$H9FIT$H;VHFI|$H9AHAt
HEL$ DF DD@@8ujA 
I|$8A 
Hv8DAADDE9u*Ht?Hf.HL9ItI9LL$$MIIK,D@L!M9uuL9uuLLD$HHtmH;H;=LD$L9H|$H|$Hx
HH{@LL$$MIIͅSHDŽ$H
AL
H/)MAE1E1AyH|$HHHHHLT$PHMtIx
HIH|$XHtHx
HH)H|$`HtHx
HH#MtIx
HI"DDE1H
H=!MtIx	HItqHtHEx
HHEtjMEIE9HIE+LME1AArLT$PLd$LhfDHXfDLL$DL$L$/LT$PL$L$L$fDL$L$fDLHDHH9DHuH;-L
ILLH$H$H$8fDIx
HI)HD$PH
H}MH9ZH=9HD$`IHH5H褹HD$PIHgH|$`Hx
HHgHD$`HD$`IHHtHL|$`IWH}H5&HD$XIHH@H;AAL|$XL|$HMH|$XHxHHL|$HAG HD$X@u tDH|$`IWHD$HL H5(tH5H|$`Hw(HHD$HHH|$`Hx
HH~HD$`HD$`IHHD$HHWIGtL|$`IW HD$HHD$HHHHH5HT$HHt$`H|$P諷HD$XIHH|$PHx
HH6HD$PH|$`Hx
HHHD$`H|$HHx
HHwHD$HH|$XHx
HH_HD$XED;1L$D:HL
MAE1E1A~6;@LofDfD:|L|LozDaH5HrA/AE1E1HKIH|$HA9AfE1HgLT$PA;AE1E1c访IH$I$H5
HD$(艿LL$(HHD$`HHD$XHD$H9GjHGHD$XHHttLT$`H|$`IHI
HD$XH|$`H$LL$H$HDŽ$<H|$XHD$P͵H|$PLL$HD$XHLT$`IxHIRH|$PHD$`Hx
HHLL$0HD$P#ILL$0HKHD$(ID$HD$
HH\$L|$8Hl$Hl$ LL$ ILLl$0L$$I@H|$LH$LHHL<LLLLsLLHeI)IuHl$LL$ Ll$0L|$8H|$(L$L$H5G1LuL$HD$hHIxHIH|$hH_Hx
HHHD$hU@H%A>AE1E1[HFLT$PAIA/H_6nIx
HIB	HD$PH@hH
H@(Hy
HH!L{IAKAHx
HI8HD$PL%MA$A$xMLT$PAA~MH@hH_H@(HRLHAHANAE1E1A@H|$HAYAMAA~IpD$D$s|WA[AnH|$HA^A6HMH4HH9t	HMHHHHHvlH5XH=11誰HD$PIHH1oH|$PHx
HH
MH|$HE1HD$PAAH|$HAAkILN(H8A@IE<I|$8A@HE|$HMILH9t	HMLHH.HH!E1A`ACLMLT$PAʮAH|$HAeAD$(D$(Ix
HILd$ME1A̮ALcAlAE1E1E1AgAL+HD$PLLH;Z	LoIHH;|AH;DL;=>LpAIhEIAAE1E1ME1AήAvIIrAiAIGHD$`HMotAEtAEIx
HI
HD$`MH$MME1AALoMAEHtAEtLD$HH|$HIPHI6H|$HH$DDSME1AA+E1AnA|"<ME1AA[MH|$HAjADDAAH5NLaA}AE1HzMAE1E1AH|$HAAMHD$HAHH|$PHD$HH|$XHD$PH|$`HD$XH
D溻HD$`H=
H<$HL$`HT$XHt$HHt$HHL$`1HT$XHD$PHH1LWIIx
HIH|$PHx
HH
HD$PML;%L;%|L;%LI$xHI$uLd$HL迫H|$XHD$H謫H|$`HD$X虫H$HL$hHD$`HT$pHt$xHxhnI$xHI$uLqxnAAE1L|$H	H;\
LIHH;H;L	L;=	LI!MAlE1E1AH|$HA ALAEHD$`H$kLxnHD$HAA"AE1E1AͲH$HL$hME1HT$pHt$xAHxhE1aHD$HALL$LL$.LLL$H|$PLL$hHD$XH$LL$LL$ZHD$XH$LLLL$iH|$PLL$U{HHT$#HT$HHHHD$LD$ImuIEHILKLLL$HD$XH|$`H$LL$LLL$HD$XH|$`H$LL$WME1AALbXHrLd$ILL$H$Ll$LH,$Ll$ HL|$ HIHLLIHH0IuH3H0IEHL)IuH,$LL$Ll$L|$ LHT$HT$HHHHD$H&Ld$IH$LL$H,$LLl$Ll$ HL|$ IHHHLL4IHH0IuHuH0IEHEL)IuH,$LL$Ll$L|$ LljD$
D$fxLLE1fA.GADE3ME1AAMH|$HE1AAmIGHD$`HMtAtAH|$XL|$XH
HH	HD$`L|$XH$jME1ApASLL$H|$PL$LHD$XHL$L$ELffA.FzfA/FH5H=1FHD$XIH
H1H|$XHx
HHk
MA]E1E1HD$XAH;oLIH
H;AH;/DLL;=t?LAI\EMAOE1E1A-IArHIME1AE1ME1HAAL=MA/E1E1AsME1AA\LL$HD$XH|$`HL$AIx
HIAE1AAAAMH|$HAAcH$11MIAME1AAME1HAAuME1HAA[ME1AADAIx
HIAE1H$11AMLT$PAAH$1H;cLPXIME1AAL8H$jH$11gH$1HGHD$HHpHttLD$`H|$`I4HIHD$HL|$X1AH|$`MHAٰAMH|$HHAʰA:H$1&A`IۅHIL
!LMLT$PAA1ffA.GEjAֲuME1AAAѲSAڲHAIx
HI2MHAE1L$Ll$5ALt$H|$HL$H|$PHD$HH|$XHD$PٟH|$`HD$XƟH
wDHD$`H=jHL$`HT$PLHt$XXHt$XHL$`1HT$P{HD$HHH)L$1L<L$HIx
HI5H|$HHx
HH)HD$HHH;-H;-]H;-HAHExHHEEHl$XEH蝞H|$PHD$X芞H|$`HD$PwI}hHL$xHD$`HT$pHt$hfDHExHHEuHcrAI}hHL$xMHHT$pHt$hAE1L$H$11A۰{H$1E1AЯA+MH|$HAAL$Ll$BALt$bIEHIL{qqgEAMLT$PA-APLA0E1}E1A>AiH\$`L|$XELAHHL.HD$HHD$XHD$`LAE1
AkL$Ll$?ALt$ML$Ll$7ALt$/LME1AXE1E1AA7HD$`H$pL$Ll$YALt$L$Ll$VALt$ڿcL$Ll$[ALt$zHL$`Ld$PH$H$LHHA̽HD$XHD$PHD$`A	AL$Ll$LALt$LMHA$E1qME1A8AZL$Ll$NALt$ME1AYAHIL$Ll$xALt$YME1AlALwHD$HL|$X1AME1AOAL<L/HI.L$Ll$cALt$L$Ll$pALt$L$Ll$nALt$MHAAME1AAH;H5LIHILRfLE{L|$PL|$Pff.AWH/AVAUATUSHHHD$PHHD$XHHD$`HHD$hHhH|$HD$0HD$8HD$@HD$pHD$HHq	L4Hw	HLHHcHHFHD$HHFHD$@HFHMHD$8HHD$0HHH	IHL% M1HL9L;duIHD$8HLmHL%M
1fDHL9L;duIHD$@H
HH~qHLHHL$H+HL$HD$HHH~>HL$0HT$PILL
HoyTyHuHDHD$HL|$0H\$8Lt$@HD$HH(hE111HALIHtA$I$xHI$|HmH(hE111HAHHHtEHExHHEr
HL(hE111HALAIHotAEIExHIE&
EA;D$L=H=IWLIHktAIFH5LHHIMIxHIuL脹H]H=HSH蚾IH`tAIFH5ILHHHIH~x
HIH]H9CHt$XHHD$PLd$XHl$`IILúADŽMIx
HIHI9G=Ht$XLLHD$PLt$XIIx
HI#IߺAބMwHx
HH)L;L;`u
L;tIx
HI%ZL5H=IVLIHtAIGH5LHHIMIx
HIL=^H=IWL蛼HHtHCH5KHHHIHMx
HHbH_I9GHt$XLHD$PHl$XLl$`MHHIxHIuL蹶HI9F,Ht$XLHD$PH\$XMIHx%HHuHL\$ LT$`L\$ LT$C6MIxHIuLL\$&L\$L;L;H5
L;(
LL\$軻L\$,Ix
HI ;H=$IHuH5H9IHxIx
HIH=RIH|H5HHHpIx
HIH{Ht$XE1H9CPfInfInHLD$flLl$`)D$PLD$IL诐EwMHx
HHHHt$X1I9G;fInfHnLfl)D$PHHD$CIL\$x
HIEMqIx
HI]L;L;ZL;LL\$͹L\$Ix
HI9HD$LAtAHt$HMLL
H=jHAQAUjAQUjHT$PL\$HMH@L\$HIIHILLD$CLD$fHHHH
HAHMEIHH׾HH5~SL
@H81/XhZH
I
H=uE1HĈL[]A\A]A^A_HFHD$HD$HLvo6H^L>Lt$@)t$0M@HHIHD$0HIHULHHL$HD$0HHL$LmHDHD$|ٶHuH<IHAE1Ix
HI<	MtIx
HIH
$H=UI$E1xHI$HtHExHHEMIEHIELLD$,LD$ufA;ELƶf.f(	LL$ 覶f.L$ D$	HL$ ~f.vL$ f(	f/b
f/T$
f.L$&HD$Htf(T$ PIH
T$ f(5IHD$IH\
Ht$HH5jAMHPHH=ARLT$0jPAWjPHT$`LT$XIHPH
Hx
HH=Ix
HIIx
HIIx
HII$HI$HEL8wE1ID$(H\$LJtHD$II9f.HAI9D$H9FB:IT$H;VHFI|$H9AHAt
HEL$ DF DD@@8^A I|$8A Hv8DA
ADDE9H+HTH\$L	fDHD$@ҲHOHHƹH
{H5yjL
.AHH81Y^H@L;%)uusH;5uufL	HHmH;H;=u
H;=޹(Hx
HHAfII9JtI9H\$LK<@HLجIHEaHHESfDHLD$蓬LD$-fLLD$sLD$fE1ID$(H\$LJtHD$II9f.HqI9D$H9FB:IT$H;VKHFI|$H9AHAt
H%EL$ DF DD@@8A I|$8A Hv8DA:	A	DDE9HH脮H\$LHD$8HHHAH5vjL
eH
H8H1F_>AXfL;%YuuH;5Lu:t6fDII9mJtI9eH\$LK@LHH1H;H;=u
H;=ض:Hx
HH7sfDL׉t$T$T$t$XH
y-H=E1&E1.fD/ɃfLL\$cL\$sAMIHIL߉t$T$IT$t$H
H=NfH|$ H|$ @H|$ ήH|$ D$ D$ LڨPDI|$8A@HE|$H謨DDWF<fDLLT$t$T$kLT$t$T$fLH/LL\$3L\$fLeHL\$L\$fD$ D$ fDLЧLLD$辧LD$ALLD$LT$袧LD$LT$LLD$LT$聧LD$LT$HLD$eLD$LT$1HOvDD$
L$H*2l6L$ ׫L$ H36f$L$ D$(虫L$ T$(H4DLN(H8A@IEI|$8A@HE|$BHuLIHAH5H=l1IH H1诨IEH7IJLt$T$ݥT$t$-IAMH5YH=1[IHH1%IH96IqH5	H=1IHH1ͧIH;VIhE1Hx	HHtM&fHLT$t$T$ˤLT$t$T$LN(H8A@IEE1ҾAIx	HItHLLT$t$T$cLT$t$T$oH=sME12<LKMALCtAAtAHx
HHfInfInLǺflHt$PLL$ LD$Hl$`)D$PLL$ LD$IIHILLD$艣LD$E1Ҿ}>DDMGMAI_tAtIx
HIfInfInHt$PHflǺLD$)D$P-LD$IIsHIfLL\$ТL\$O?<L蠢H5<H=1F}IHGH1INHBI\DDH
ԖAH'4OHuLUIH4CGCI,LơH蜦HuLHHMCDDC
;蓪I8Lc,MOMLAMGtAAtAIx
HIfInfHnLǺflHt$PLL$ LD$Ll$`)D$PLL$ LD$HIHILLD$轠LD$ME1MƾCH蓠L膠L\$"M~MAMVtAAtAIx
HIfHnfInL׺flHt$PLT$)D$PGLT$IIHIuLL\$ LT$L\$ LT$TLL\$ɟL\$7
C:'L號96H5.H=10zIHOH1I+HDIIFE[;VrE]MHLD$ LL$LL$LD$ E`E1ҾbE*LCMALstAAtAHx
HHLHt$PcLLD$jLD$9I_HIGttIx
HIGIHt$P|BeE7G928H5H=
1xIHH1PIHFI;RHLLD$ LL$YLL$LD$ 'LLT$=LT$BDIrDEcHLD$LLD$Ht$PLHD$՜HD$Ht$PI#FFAWHfAVfHnAUATUSHH0HL%H|$HH-fHnH)$fHnfHnflHĨH)$fHnH$Hfl)$fHnHD$`flH$HPHDŽ$HD$hH$L$)$HL4HHuHHcHDHF H$HFH$HFH$LnHL}L$H$H4H,HcHHLyH$HLHH$IHk-IM6H$HD$PH$H$L$HD$`H$HD$hHL$PD$tAEtAEA$tA$H5L藉Ot"H5LyI$xHI$%H-H=WHUHKIHtAIFH5"LHHIMYIx
HIHI9GHD$PH$LHDŽ$H$MHD$HH|$H
Ix
HI~Ht$PHx
HHUH-H=gHUH[IH?tAIALL$LH5*HHLL$IMIx
HIHI9GH$LHDŽ$L$MHD$XH|$XMIx
HIyIExHIESH-,H=uHUHiIHtAIFH5LHHuIMIxHIuLLL$ڗLL$H|$HLL$H5HGHHLL$IM=HI9A(HULϺH$LL$HDŽ$L$H$LL$HMIxHIuL,H(IExHIEuL	H;-H;-0
H;-vH訜AŅAA@HLHH(H$IM HYLHHH$IMLEL%M1
HI9L;duIHH$IIM@H$L$HD$PfDHt]@HfH3
H^H$Ho.LnHD$P)$HnHF HD$hH$HFHD$`H$f.H5YLlŅ@(I$xHI$H5H=V1oIH,H1虗IxHIuLHD$PLl$XAAHD$HHD$1E11HD$0E1E1E1HD$ HD$@HD$8HD$HD$(HD$MtIx
HIHtHx
HHH
DDE1H=uL\$`LD$P6MLD$PL\$`tIx
HIMtIx
HIMtIx
HIHL$HtHx
HHkHL$(HtHx
HH]HL$HtHx
HHOH|$8HtHx
HHAHL$@HtHx
HH3HT$ HtHx
HH%Ht$0HtHx
HHH|$HtHx
HH	HtHx
HH`HD$HHxH\$HHHRHD$XHH\$XHHHpH@LyHLH貧H$H&IH
ƆAHHH7H5]SL
YH81HX>ZH
bH=rE1HL[]A\A]A^A_ÐID$(H\$E1LHD$JtI9ZH˞I9D$H9FIT$H;VHFIL$H9@H@t
HET$ DN DD8bA #I|$8A #Hv8ȃp%{'DA9"HHH\$ntH*IH$LHHڥIH"H$H$L$H$HD$PH$HD$`H$HD$hcf.L8LLzDHExHHE
EH5H=1hjIHd$H12Ix
HI-AaADL$mHPH@H0H HfDHHHЎÎfDLL\$hHT$`LD$P衎L\$hHT$`LD$P8DHL\$`LD$PvL\$`LD$P+LL\$`LD$PNL\$`LD$PLLL\$P+L\$PGLRLL.HL؍uH=4HO#H5HHD$GhLL$HI#Ix
HIH5{H|$XhIH.$HH$E1I9Fv$fInHfInLfl)$H$GLHhIxHIuLHo$IxHIuLӌH;-|AH;-DH;->HpAŅW%HExHHEEH;H{NIH.(tIGHH|$HH5VHGHHHH,H茑IHHExHHEI H5H|$X^fHH H:HH!HExHHEOH
H5^H=1(fIHH1HD$LD$Ix
HI(1AAHD$1E11HD$0E1E1HD$ HD$@HD$8HD$HD$(HD$`fDL;%QuuH;5Du"tfDIL9H\$LHHtH;$H;=u
H;=fHx
HHwtfDH\$KfHD$PLl$XLAHD$HAHD$1E11HD$0E1E1E1HD$ E1E1HD$@HD$8HD$HD$(HD$HtHEx
HHEtuMtIx
HIMIHILL\$pLT$hHT$`LD$P7L\$pLT$hHT$`LD$PfDHLL$xL\$pLT$hHT$`LD$PLL$xL\$pLT$hHT$`LD$PLfLLL$xL\$pLT$hHT$`LD$P诈LL$xL\$pLT$hHT$`LD$PHH
*}H,}AHMEOD@Vf;H HIHQHD$1E11HD$0E1E1HD$ HD$@HD$8HD$HD$(HD$HD$PLl$XAAHD$H[fL
~ILHH$H$軯%fHD$PLl$X1E1HD$E11E1HD$0E1AAHD$ HD$@HD$8HD$HD$(HD$HD$H{IH|$ 趌H|$ @E:D$ 迆D$ wL讆'HD$1E11HD$0E1AAHD$ HD$@HD$8HD$HD$(HD$fDH5thI߃IoHOEMOtEAtAIx
HIfHnLϺLL$D$PH$)$ټLL$HD$HHEHHEHLL$xLL$fDHD$PLl$X1E1HD$1E1E1HD$0E1AʒAHD$ HD$@HD$8HD$HD$(HD$HD$H|H軉H7HIHvOLl$X1E11HD$E1E1AؒHD$0AHD$ HD$@HD$8HD$HD$(HD$Ll$X1E11HD$E1E1AڒHD$0AHD$ HD$@HD$8HD$HD$(HD$qDLL$IfDIoHEMwtEAtAIx
HI<fInfHnźLflH$)$蒺HD$XHEHHEH;fDLl$X1E1E1HD$1E1E1HD$0E1AAHD$ HD$@HD$8HD$HD$(HD$2HD$PLLl$XAHD$HL萂_cHH¾IHMHD$1E11HD$0E1E1AHD$ AHD$@HD$8HD$HD$(HD$HD$1E11HD$0E1E1E1HD$ AAHD$@HD$8HD$HD$(HD$
諊I[HHD$1E11HD$0E1E1AHD$ AHD$@HD$8HD$HD$(HD$f.LL$I8fDHЀH5H|$XW[HHd111HiIH?"HExHHEH5H|$X
[HH#11ҾHiIHC$HExHHEvLκLLL$覀LL$HHm$Ix
HICIx
HIH;-H;-\H;-JOH|ÅS%HExHHEH5H|$HZHH111HhIHBHExHHE>H5`H|$XLL$YLL$HH111HRhLL$HIHExHHELϺLLL$VLL$HH.Ix
HIIx
HI#H;-6H;-H;-H,Hc؅HExHHEH11E1jL1L蕗Y^HHZHH9EH}EEIHExHHEH5H|$HLD$MXLD$HI% 111HfLD$HHi Ix
HI<IP I@HHH9H9UtUIPH,HI@HExHHEzH5ɵH|$LD$WLD$HI!H:I9C"IkH$EMKtEAtAIDHH$IfInfHnLLD$flLL$)$蜳HI1XMLL$LD$O"Ix
HIH5LLD$VLD$HI"Ix
HI8H5*H|$HLL$LD$VLD$LL$HI"111HLL$
eLD$LL$HHD$#Ix
HIHچI9A%IiH%EMqtEAtAIHH$IHLLD$H$H$HD$H$3HHD$VHt$L\$LD$Hx
HHM;%Ix
HIH5H|$XL\$LD$;ULD$L\$HHD$W%H=\LD$L\$HLL$I%H5MHLL$(L\$ LD$HD$TLT$LD$HHD$L\$ LL$(;&Ix
HI1HLI9A%IiH'EMqtEAtAI_HH$I!fHnLL\$D$LD$)$貰HHD$PEUHt$LD$L\$Hx
HHH|$P$Ix
HIHt$XHx
HHH5bLL\$LD$hLD$L\$Hc%vLD$L\$HH6Ht	HHUHL\$LD$HH=Ʈ1wLD$L\$HI-HExHHE$H5LL\$ LD$LL$]LL$LD$HHD$L\$ H2D$tHt$Hx
HH$Ix
HI&%Ht$D$tHD$H5H9p0HźE1H$fInHL\$ D$PHt$XHLD$)$觮LHD$:SLL$LD$L\$ Md+HExHHE%IAH;-IQH,IAHD$(IA HD$IA(HD$8Ht$(D$tHt$D$tHt$8D$tIx
HIG$HD$0HD$ HD$@Lt$`L\$pH5ǩLD$LeLD$L\$p#H5[LneLD$L\$p*H57LBeLD$L\$p*t,H5gLeLD$L\$pl?-H5+LL\$xLD$dLD$L\$xD$p[*H=#L\$pLD$L\$pHIKH5jHPLD$L\$pHIKIx
HI>H=!L\$xLT$pLD$蝳LD$LT$pHL\$xKH5HLT$xL$LD$pHD$OLL$LD$pHLT$xL$HfJIx
HIJH|$8IH5H|$8L\$xLT$pLD$,OLD$LT$pHL\$xIuIH|$KHt$HL$L$LD$xHD$ptLL$pLD$xHHD$L$L$xKIx
HIIHKIE1H9EJHD$8Hl$SLfInHcL$H$fHnH)H\$XflL$LD$xH4LL$p)$躪LL$pILJOHELD$xL$L$xHHEtJM<KIExHIETKL\$xLT$pLD$7wLD$LT$pHL\$xHKKH\$PLpD$tHD$PL\$xLT$pHE LD$IyLD$LT$pHL\$xIpFH\$hH5HHgzLD$LT$pL\$x0FH5٢HLL\$pLT$h4zLD$LT$hL\$pELLHL\$xLD$pLLT$hLD$pHHD$L\$x{EIx
HI~JHExHHEEIx
HIEH\$H;~~H;}i<H;B~\<H|$L\$pLD$hhwLD$hL\$p
B*H5wLL\$hLD$``LD$`L\$hLcE%!H|$0DH\$0D$X)H5#HL\$`LD$XKLD$XL\$`HH)LHLD$`L\$XzL\$XLD$`HI{CHExHHE)H|$HLL\$hLD$`LT$XpLT$XLD$`HL\$hI/Ix
HI+Ix
HI+LLD$XnLD$XHHAH5^HLJLD$X-+HExHHEx+A$AHD$PMHD$XHD$1E11HD$0E1E1A)HD$ AHD$@HD$8HD$HD$(HD$f1imIH+HD$1E11HD$0E1E1A}HD$ AHD$@HD$8HD$HD$(HD$MqMWAMitAAEtAEIx
HIH|fInLfInflH$H$)$詥HI'HILVn
M1E11HD$E1E1E1HD$0AAHD$ HD$@HD$8HD$HD$(HD$p@rH!rHkrHHH_yAH529jL
aH
aH8Hd1u_AX[@H0mHN(H8A@HE)I|$8A@HE|$HD$PLLl$XAHD$HHlYHD$1E11HD$0E1E1A˓HD$ AHD$@HD$8HD$HD$(HD$uHXA͓AHD$1E11HD$0E1E1E1HD$ E1HD$@HD$8HD$HD$(HD$UHLL$kLL$LLL$kLL$H5H=1vFIH;H1HD$;nLD$Ix
HI
AݓAID8pH
_AH/WHD$1E11HD$0E1E1A]HD$ AHD$@HD$8HD$HD$(HD$dHD$1E11HD$0E1E1AHD$ AHD$@HD$8HD$HD$(HD$HD$1E11HD$0E1E1E1HD$ A*AHD$@HD$8HD$HD$(HD$HiLL$AALi2HD$1E11HD$0E1E1E1HD$ A,AHD$@HD$8HD$HD$(HD$LbiD~LIiH<iHD$1E11HD$0E1E1E1HD$ A/AHD$@HD$8HD$HD$(HD$AMnM}AEIntAEEtEIx
HIIH$8HD$1E11HD$0E1E1E1HD$ E1ADAHD$@HD$8HD$HD$(HD$HD$PLl$X1E1HD$1E1E1HD$0AAHD$ HD$@HD$8HD$HD$(HD$HD$H-HD$1E11HD$0E1E1E1HD$ HD$@HD$8HD$HD$(HD$UAHA+HEIHLD$gLD$HHD$1E11HD$0E1E1E1HD$ A+AHD$@HD$8HD$HD$(HD$LfHf
HD$1E11HD$0E1E1A.HD$ AHD$@HD$8HD$HD$(HD$HnIH+HD$1E11HD$0E1E1E1HD$ AYAHD$@HD$8HD$HD$(HD$Ll$X1E11HD$E1E1E1HD$0AؒAHD$ HD$@HD$8HD$HD$(HD$L%eLD$HD$1E11HD$0E1E1A0HD$ AHD$@HD$8HD$HD$(HD$HLL$dLL$sHLD$dLD$oHD$1E11HD$0E1E1A3HD$ AHD$@HD$8HD$HD$(HD$Ld7HD$1E11HD$0E1E1AHD$ AHD$@HD$8HD$HD$(HD$@LcLL$A6A2LHLD$gLD$?HD$1E11HD$0E1E1AkHD$ AE1HD$@HD$8HD$HD$(HD$`HbkHD$1E11HD$0E1E1E1HD$ AAHD$@HD$8HD$HD$(HD$ LLD$bLD$=LobH$H5AH=1=IHWH1HD$dLD$Ix
HIC
AEALHT$ LL$Ht$LD$aLD$Ht$LL$HT$ 5LLL$aLL$LD$HD$1E11HD$0E1E1AWHD$ AHD$@HD$8HD$HD$(HD$HD$1E11HD$0E1E1AHD$ AHD$@HD$8HD$HD$(HD$sH5LL\$LD$OLD$L\$D$WL\$LD$^LD$L\$HIHt	HvIQLL\$LD$HH=1LL$O_LL$LD$HL\$ISIx
HIH5LL\$LD$LT$LT$LD$HHD$@L\$HD$tHt$@Hx
HHIx
HIcHt$@D$tHD$@H5jE1IH9p*fInƍULH)D$PHcL\$ H$LD$Ht$XH4LL$)$RLHD$:LT$LL$LD$L\$ M)Ix
HIIBH;Ij*+IRH_*IBHD$IB HD$(Ht$D$tHt$(D$tIx
HIHD$0HD$ HD$8HD$HD$1E11HD$0E1E1E1HD$ AAHD$@HD$8HD$HD$(HD$ELAݓA]L]LL$LD$(HL\$LD$]L\$LD$LL\$LD$]L\$LD$HD$1E11HD$0E1AfAHD$ HD$@HD$8HD$HD$(HD$HD$1E11HD$0E1E1AhHD$ AHD$@HD$8HD$HD$(HD$!H$hLHt$ HT$LD$\LD$HT$Ht$ =HD$1E11HD$0E1E1E1HD$ AAHD$@HD$8HD$HD$(HD$qHD$1E11HD$0E1E1AHD$ AHD$@HD$8HD$HD$(HD$HD$1E11HD$0E1E1AHD$ AHD$@HD$8HD$HD$(HD$HD$1E11HD$0AuAHD$ HD$@HD$8HD$HD$(HD$dLLL$ L\$LD$ZLL$ L\$LD$HZL\$LD$>HD$LL\$LD$pZL\$LD$/H$AYHL\$LD$2ZL\$LD$
MH$1xLZHD$1E11HD$0E1AAHD$ HD$@HD$8HD$HD$(HD$(LIYH$;HD$1E11HD$0E1AAHD$ HD$@HD$8HD$HD$(HD$HD$1E11HD$0E1AAHD$ HD$@HD$8HD$HD$(HD$EMH$LL\$(Ht$ HT$LD$XLD$HT$Ht$ L\$(HD$1E11HD$0E1AٓAHD$ HD$@HD$8HD$HD$(HD$HD$1E11HD$0E1AAHD$ HD$@HD$8HD$HD$(%L\$LD$ULD$L\$HIaHyt	HiIRLL\$ LD$HH=1LT$ZVLT$LD$HL\$ IIx
HINH5LL\$LD$"LD$L\$HHD$ H;D$tHt$ Hx
HHyIx
HI7Ht$ D$tHD$ H5a1IH9p7HcD$fHnLH$D$PL\$(H)PHt$XHcH4LD$LT$)$cHIHD$1MLT$LD$L\$(mIx
HIHD$@HD$HD$8HD$0HD$HD$(HD$MH$rMH$1[HD$1E11HD$0MAAHD$ HD$@HD$8HD$HD$(HD$HD$1E11HD$0AAHD$ HD$@HD$8HD$HD$(HD$^LAEATHD$11AHD$0AHD$ HD$@HD$8HD$HD$(HD$HD$1E11HD$0MAДAHD$ HD$@HD$8HD$HD$(HD$MH$16HD$11AHD$0AHD$ HD$@HD$8HD$HD$(HLL${SLL$L\$LD$HLL$ L\$LD$PSLL$ L\$LD$EHD$PAޔAHD$XHD$1E11HD$0HD$ HD$@HD$8HD$HD$(HD$dMH$LL\$LD$RL\$LD$HD$PAHD$XHD$1E11ALL\$pLD$_RHD$0LD$HD$ L\$pHD$@HLL$ L\$LD$RLL$ L\$LD$L\$xLD$kLD$L\$xHI&H5Hv,LD$L\$xHHIx
HI%H|$jH|$hL\$xLD$lOLD$L\$xHIH|$1HLD$hQLD$hL\$xHHD$Ix
HIH\IE1H9EHcD$pH\$LfInL$H)PHD$XfHnflHcLD$xH4)$LHD$h,HHT$hLD$xL$x
HH8HH%IExHIEH;*]H;\
	H;\	HL\$pLD$hHT$VHT$LD$hL\$p$Hx
HH$	H\D$t	H\H\HD$bHD$1E11HD$0E1AAAHD$ HD$@HD$8HD$HD$(HD$H5LL\$hLD$`>LD$`L\$hHc؅H|$(IH=L\$hLD$`蒍LD$`L\$hHHH5H)LD$`L\$hHIHExHHEH|${H\$H[H9CHC
D$`HYLE1I9BHt$XAVHfHnL)fInHcflH4L\$hLD$`)$kLHD$X)HHT$XLD$`L\$hx
HHBHHExHHEH|$(HL\$hLD$`HT$X0NHT$XLD$`HL\$hH3HHH{HL\$`LD$XMLD$XL\$`ZH|$(L\$hLD$`H=?ʋLD$`L\$hHHH5ͅHL\$pLD$hHD$`'HT$`LD$hHL\$pH(Hx
HHH|$SH4XIE1H9E
SfInLH)H\$XD$HcL\$hH4LD$`)$ɃLHD$X\(LT$XLD$`L\$hM
I$xHI$H|$(LL\$hLD$`LT$XLLT$XLD$`HL\$hH( IHILL\$`LD$XKLD$XL\$`HD$P1E1E1HD$1AAHD$0HD$ HD$@HD$8HD$HD$(HD$XHD$PA51E1A1HD$XHD$PAHD$XHD$PAQ1E1HD$A1HD$X麶HD$PA)HD$XHD$1E11A鏶HD$PMHD$XLL\$pLD$JHD$0LD$HD$ L\$pHD$8HD$	HD$P1E1E1HD$1AAHD$0HD$ HD$@HD$8HD$HD$(HD$HD$XHHDHH>H
<LL$pHEHUL\$hH5p"LD$`H81IRHD$PLD$`1E1HD$L\$hAAHD$XLL$p1HD$0HD$ HD$@HD$8HD$HD$(H;V3LL\$ LD$LL$PLL$LD$HL\$ HIx
HIHBL\$ HLD$HT$LAHT$LD$HL\$ HL\$(HLD$ AHT$LD$ HHD$L\$('HAHT$LD$ HHD$8L\$(HAHT$LD$ HL\$(HL\$(HT$ LD$6L\$(HT$ LD$Hx
HHHl$(yH5"H=c1L\$`LD$X"LD$XL\$`HHD$H1HJHLD$XL\$`x
HHHD$PA?1E1HD$A1HD$X6LpMHhAtAEtEHt$Hx
HH1(HD$P1E1A—AHD$X²H\$0HL\$hLT$`LD$XGL\$hLT$`LD$XIH,SD$t	HSHSH;SHD$IH|$`L\$pH5LD$h5LD$hL\$p_{H=L\$hLD$`LD$`L\$hHH/H5\HL\$pLD$hHD$` HT$`LD$hHL\$pHHx
HHH51HL\$hLD$` LD$`L\$hHHTHExHHEdHFHH9HL\$hLD$`ELD$`L\$hHD$P1E11HD$AAHD$0HD$ HD$@HD$8HD$HD$(HD$XLL\$LD$#EL\$LD$|LL\$LT$LD$DL\$LT$LD$HD$PMA֗1AE1E1E1HD$XLL\$`LD$XDL\$`LD$X8LLD$XDLD$X5HDLD$XvLL\$LD$dDL\$LD$LL\$LD$CDL\$LD$=HD$P11AHD$AHD$0HD$ HD$@HD$8HD$HD$(HD$HD$X_LL\$LD$CL\$LD$HD$P1E1E1HD$1AAHD$0HD$@HD$8HD$HD$(HD$HD$X黹HL\$LD$6CL\$LD$fHD$P11AޕHD$AHD$0HD$ HD$@HD$8HD$HD$(HD$HD$XRHD$P1E11HD$AlAHD$0HD$ HD$@HD$8HD$HD$(HD$HD$XHD$PAbAHD$XHD$P1E11HD$AAHD$0HD$ HD$@HD$8HD$HD$(HD$HD$XcHD$P11AqHD$AHD$0HD$ HD$@HD$8HD$HD$(HD$HD$XLLT$LD$XAL\$LT$LD$4HD$P11AtHD$AHD$0HD$ HD$8HD$HD$(HD$HD$XxHL\$LT$LD$@L\$LT$LD$HD$P1AǗAHD$X0HD$P11AHD$AHD$0HD$@HD$8HD$HD$(HD$X۫HhHLPEtEAtAHt$ HHD$H}HL\$(LT$LD$?LD$LT$L\$(RLuMALetAA$tA$HEHHEHL\$hLD$`x?LD$`L\$hHD$PL1E1E11AAHD$X靵HL\$pLT$h/?L\$pLT$hLD$`J=HD$P1E11A_AHD$X遪HhL1A^AH 6H5H81"GHD$P1E1LD$`L\$hHD$X6HD$PAT1E1A1HD$XHD$PE1A~AHD$XHD$P1E1E11AHD$AHD$X钴L\$hE11AHKLD$`Hz2H5AH81\FHD$P1E1LD$`L\$hE1HD$HD$X.HD$P1E1E11AHD$AHD$XL=L\$xLD$hWHD$P1E1E11AAHD$XijH|$L\$xHT$pLD$hO=L\$xHT$pLD$hLuMALmtAAEtAEHExbHD$pHEHL\$xLD$h<LD$hL\$xLL\$pHT$hLD$<L\$pHT$hLD$'D$p|H|$L\$pLT$hLD$`<L\$pLT$hLD$`HHHD$P1AeAHD$XܧHIH0L\$p1H5&LT$hAdAH81LD$`nDHD$PLD$`1LT$hL\$pHD$X逧HD$P1E1E11AaAHD$X%HHT$`LD$X;L\$hHT$`LD$XH\$L\$pLT$hLD$`HHD$x;LD$`LT$hL\$pHMbMA$IjtA$EtEIHAILL\$hLD$`;LD$`L\$hyHL\$hHT$`LD$X:L\$hHT$`LD$XH|$o<LD$`LT$hHL\$pH=H`AHD$PE11AAHD$XHG1AAH1H5DH81BHD$P1E1LD$`L\$hHD$X鶥HD$PI1AzAHD$X閥HL\$hLD$`9L\$hLD$`HD$PE11AAHD$XULL\$hLT$`LD$X9L\$hLT$`LD$X:L\$hE11AHGLD$`H-H5fAH81AHD$P1E1LD$`L\$hE1HD$X陯D$HD$P1E11A;AHD$X頤H|$L\$h1A?LD$`A8HD$P1E1HD$LD$`HD$XL\$hWHT$ LD$aLD$HT$ L\$(FAHx
HH?L\$ LD$DwLD$L\$ [IH,LL\$hH
+H5LD$`AGHEHDA1H81y@HD$P1E1Lt$LD$`E1HD$HD$XL\$hHD$0HD$ HD$@HD$8HD$HD$(HD$PE11A5HD$AHD$0HD$ HD$@HD$8HD$HD$(HD$XHD$E1HL\$ LD$27L\$ LD$HL\$pLD$7Hl$(HD$PLt$1E1AGAHD$XHD$E11HD$0HD$ HD$@HD$8HD$HD$(HD$PLT$8A?ALt$HD$XHD$PA/HD$XOLL\$xLT$pU6L\$xLT$pLD$I4IQHIAH0Ht$(HpH@Ht$HD$8LHT$LD$5L\$ HT$LD$HD$PA1E1HD$A1HD$XHD$0HD$ HD$@HD$8HD$HD$(
HRALL$pH5iL\$hH81LD$`=gI+HD$P11AHD$AHD$0HD$ HD$8HD$HD$(HD$HD$XnLpMkLHAtAAtAHt$@HHH/HLL$L\$LD$4LD$L\$LL$ICHH}HH(H
'L\$pHEH	@LT$hH5LD$`H81v<HD$PLD$`11HD$LT$hAAHD$XL\$pHD$0HD$ HD$8HD$HD$(HD$;H;*ALL\$LD$LT$;LT$LD$HL\$HIx
HIdHEL\$HLD$LALD$L\$HIHD$HALD$L\$HHD$(LL$HALD$L\$HLL$HLL$L\$LD$qLL$L\$LD$x HExHHE,LL$HD$PLt$(1E1HD$A1AHD$XHD$0HD$ HD$8HD$HD$(HD$鋨LD$L\$LL$XE1HExHHELL$L\$LD$pLD$L\$LL$IH)&LLL$pH
$L\$hH5
AĕHEHn=LD$`1AH819HD$P1E1HD$LD$`HD$XL\$hHD$0LL$pHD$ HD$8HD$HD$(HD$驧HLL$L\$LD$1LL$L\$LD$HD$PAĕ1E1HD$A1HD$XHD$0HD$ HD$8HD$HD$(HD$HD$P1E1E1E1AAHD$XǦHc0L\$hLD$`HD$PE11AAHD$XƛHD$PE11AAHD$X馛H5lH=Fm1L\$`LD$X
LD$XL\$`HHtJ1Hy2HLD$XL\$`x
HHHD$PA1E1A1HD$X+HD$P1E1AAHD$XHD$PAۖ1E1A1HD$XHL\$hLD$`E/L\$hLD$` HD$PA1E1A1HD$X馚HL\$h1ALD$`A.HD$P1E1LD$`L\$hHD$XhHD$PA11HD$AHD$XHD$0HD$ HD$8HD$HD$(HD$
HI:L\$pH5`LT$hH81LD$`61HD$P1E1MAԗAHD$X鶙IRHIBH0H@Ht$HD$(?LL\$LD$-L\$LD${HD$P11AHD$AHD$0HD$ HD$8HD$HD$(HD$HD$XHLL$L\$pLD$\-LL$LL$tHD$P1E1E1AėAHD$X醣H:1A?AH$H5H81]5HD$P1E1LD$`L\$hHD$XqHL\$pLD$h,L\$pLD$hкLL\$pLD$h,LD$hL\$púHD$P1E11AAHD$XעHD$PAHD$XHD$1E11A鬢HD$PAHD$XHD$P1E11HD$AAHD$XoHl$THD$P1AAHD$XtHD$P1E11HD$AAHD$XIL+L\$xLD$HL\$LD$+LD$L\$1ͳHD$PA˖E11HD$AHD$XHD$PLE1E1HD$E11AǖHD$XAyHL\$hLD$+L\$hLD$HD$P1E11HD$AfAHD$X-L\$pE11AeH:8LT$hAH!H5LD$`H812HD$P1E1HD$LD$`LT$hL\$pHD$X HD$P11AbHD$AHD$XʠLL$LT$xLD$p$*LT$xLD$pL$HD$P11A`HD$AHD$XwLL\$xLT$pLD$)L\$xLT$pLD$HD$P1E11HD$A]AHD$XHD$P1E11HD$A[AHD$XLMMlALmtAAEtAEHEHHE1HL$L$LT$xLD$p(LD$pLT$xL$L$H|$L$LT$xLD$p(LT$xLD$pL$Y鳴HD$P1E11AiAHD$X؞HD$xE11AhH5L\$pAHH5DLT$hH81LD$`0HD$PLD$`HD$LT$hL\$p1HD$XLL$xfHD$PL1E11AHD$AHD$X8LL\$xLT$pLD$'L\$xLT$pLD$遴HD$P1E11HD$AAHD$XLL\$pLD$ht'L\$pLD$haDAWH]fAVfHnAUIATUSHHHH$Hx0)D$`fHnflH<$HDŽ$HD$p)$HlHL4HyHHHLyHD$`LL%8]H1HH9L;duM$Ld$hMIM-H\$`Lt$pAHFHFLyHD$pHFHD$hHHD$`MUH\$`Ld$hLt$pHdHD$0HD$8HD$@H(HD$HHD$PHD$XhE111HALHHXtEHExHHEHAdD}L(hE111HAHAIHatAEIExHIE0EuAuH5[HcNH52ZLbPHl1HD$I9.
L%ZH=OIT$L)IHtAIGH5VLHH@HH\$0IHx
HIL%1ZH=zOIT$Lm)IH9tAIGH5WLHH~HH\$8HZIx
HIeH+/H|$0HD$H9GHD$8H$HDŽ$L$H$ZIH|$8Hx
HHHD$8H|$01AA/MPHx
HHLd$0A$tA$I$xHI$Ld$0E1HD$0HaAt$I|$ LHLLaHD$ 1AHHHD$8H;D$PMtIx
HIHCH5ZHHD$8HHHH|$8HLD`HD$0HHLT$8IxHIH|$0HD$8Hx
HHH$L=mTHD$0LLMpLD$L'HD$H~H@LD$HHBH|$LLHD$H H$H5SHPHD$8HHHD$@HD$H9GHGHD$@HHttLT$8H|$8I{HIHD$@H|$8H$H$HDŽ$
XLT$@HD$0HMtIxHIH|$0HD$@H:LT$8IxHIOH|$0HD$8Hx
HH#HD$0E1'HD$H$Hx@HH|$ H	L,$L|$ Hl$LILd$ IHDI$0HLL0I$@H0I$8H0H6'I$01IEAL$ID$ (ifH(H0HH@(HA;|$}CHH@HHtʀ8
H(HHI8HcI H0A;|$|HI9,LL,$Hl$Ld$ H|$Lt$H5Z1LHD$XHIxH|$HHH|$XHHxHHuHD$XA$tA$I$HI$vHHHLvLt$poLfH)T$`.fDHqSLHLy3HD$`HH]I`H
AHH)HH5AUL
HH817&XKZH
QNH=E1]HĨL[]A\A]A^A_HH
9H;AHMEIvfL5)@u3HH0H;0HHH0HH0H0@y2HF(HJ(H)0[HLcJ4LN(L;(}INL(HJ(H0$fDH@0HH@(HH(H+0H0L@"f.8`D$HSIH;H=RD$WZfH=cQI*3Z`H(HD$I9	H=QaZHD$8IH1H@H5MLHHILd$0H|$8MHx
HHkHD$8H=fQYHD$8IHH@H5NLHHMIM,H|$8Hx
HHCHt&H|$0HD$8H$HD$H1H9_ifHnfInL$fl)$RH|$8HD$@HtHxHHufDHD$8I$xHI$
Ld$@H|$01AAAMHxHHLd$@Ld$0A$t	A$Ld$@I$xHI$uLLd$0HXHD$@HD$0At$I|$ L4$H5ULHD$ID$IHD$ HHIH5K{HD$@HHHD$H9GLwM	AHtAtLT$@H|$@IHIH|$@H$L$HDŽ$IPLHD$0H|$0HJLT$@IxHIH|$0HD$@Hx
HHHD$0E1B HD$H$Hx@HH|$H~[L,$IH\$(H\$Hl$Hl$ Ld$ MID$LLL JDIL9uL,$H\$(Hl$Ld$ H|$H5SH1HD$XHHxHH0H|$XH/Hx
HHHD$XA$tA$I$HI$	M1;H
QVLH1IH^HD$0H;D$HD$0H=:MUIHH@H5^ILHHHD$8H4I$iIFH54OLHHIMH=LGUIHH5<JH\HD$@H#I$xHI$aLAaAIE1xHAIuLD$dD$LT$0MIHIH|$8HtHx
HH\H|$@HtHx
HHvH

DDH=VMtI$xHI$ZE1HtHx
HH6HtHExHHEMIEHIELhE1AA@H|$8fDHMLH*HHD$pIHsLLfHLyLd$hHD$``fDE1Ll$IID$(LHD$HtI9f.H!I9D$H9FB:IT$H;VHFI|$H9AHAt
HEL$ DF DD@@8^A I|$8A Hv8DA	A_DDE9H+HLl$Iم	HD$hxHHHlAH5?jL
H
H8H[
1_-AXyfLM9uupL9uugLLD$HHcH;H;=0uLD$L9yHx
HH@HL9
HtI9Ll$IO$HHH@HpH$H5DH$IHHH5DHD$8HHp
HD$@HdH9C
HCHD$@H
H[ttH|$8H\$8H
HH*HD$@H\$8H$HH$HDŽ$HH|$@HD$0NH\$0HD$@H
H|$8HxHH
H\$0HD$8Hx
HH
HD$0HL$HHT$PHxhHt$XHD$H$D$LHP@HxHHD$0HHHD$HT$PHD$0Lt$HL|$XH@hH8HHtHx
HH
MtIx
HI
MtIx
HI
H5K1LH\$HHD$PHI$xHI$
H\$PH
Hx
HH
HD$PLd$HHD$HHEYHHEKDH0D$D$fDLD$H|$8D$YfDD$D$xfDE1LMbDE11E1AA1LAH
*RH=2OAHD$8LT$0M1E1AĂzHL$`MLHH$L
69HI$L|Ix
HIMHH|$8E1H$HD$H9G	fInHD$@fInfl)$H$TELHD$0I$xHI$H|$@Hx
HHLd$0H|$8HD$@MHxHHHLd$0Ld$8A$t	A$Ld$0I$xHI$	HD$0Ld$8HD$8dH|$0H|$vI|$8A@HE|$3=
L0
&
ML

L>L_H$1E1+fL[1E1AA=1E1AALuH|$D$PLC'9,L,H?4?D$D$*LRLN(H8A@IEH}	LHIH1AA?HD$@H$]H1E1AAOfDAAZH1E1AAcH1E1AAYHL2GIH
1AAcHE(1E1AAl<AAHzAAjHH55HqH\$8:
DDEH1H
ALM4AHtAtLD$0H|$0IxHI-H|$0HD$8fInfInH$flĺH$)$@IIHILh	H|$8AAHfLAH8e	AL"	L		L,HD$HTAH|$HAHaD$D$O1AA$H$XDDLukHD$AƇHwH|$8AAƇH$113L!11E1A	QH=HH

HH|$8AKHD$0H1AA&IH$1H53HLLt$0
1AA)aLAXAKdAHD$@H$|H1AA+ IAA$AZI$,HI$LD$LE1AD$FfDmHGHD$8HHttLD$0H|$0I}HIcHD$8H|$0H$1LA]A-IA_AAeHBAgHHQ1A^&HA{yH|$81AA{ZL
LzH$14L^1HQF1AALMAHtAtLD$8H|$8IQHI7H|$8H$LAxA1AATI$AHI$a1E1A$H$11H$1I$AyH|$8E1AA1H|$8HD$0H|$@HD$8H
HD$@H=
DH|$HL$@HT$8Ht$0/HL$@HT$81Ht$0
H
1HLHD$ SL\$ II$xHI$Ix
HIM=L;L;L;T$LLT$LT$AIx
HIEHt$0EdHH|$8HD$0H|$@HD$8HD$HL$HHD$@HT$PHt$XHxh}LAAHD$1AfD$E1AA1E1AALD$1E1"AD$1E1AAE1AA#LHD$8H$LH$P1AAg)LAADIgHIZLQDLLT$ ?LT$ 1E1AAMAÈHD$HL$HD$E1HT$PHt$XAHxhD$LLT$(LT$(L\$ UAAYIILE1A8ALjtLt$@Ld$8H4$H4$HLLA؈HD$0HD$8HD$@)AЈLLA&AaÄAWMAVAUIATIUSHhH|$0HL$L$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$tAEtAEAtAA$tA$L55H=`*IVLTHH8tEH$HEH5#/HHHIH$MHx
HH
L\$HDŽ$L\$HH$H*A$tA$LeL\$L\$HH$H..H
H5/HL\$L\$fH$H$LL\$L\$HH$HIx
HIH$Hx
HHH$HDŽ$Hx
HHH$HDŽ$HD$I$xHI$QH|$H52HDŽ$HGHH7HH$H7H57H9H
HEH$H9;8DuAHExHHEeHDŽ$EH54H|$_H$HH9H$HiH$HH:H$HxHH7H$H56HDŽ$HDŽ$H9,HEH;$ODuAE,L;={LHD$8HWH=1X:H$HH@[H5]4HeH$H$HH[HxHHuH=m1HDŽ$9IH\H5-HHD$L\$HI?^IxHIuL3H=19IH3H5-HHD$L\$HH_Ix
HIPH+H$E1HD$@I9F7afInfHnLLD$fl)$1LD$H$LTHx
HHPPH$H_IxHI,VH$H5,HH$HHcHx
HHVH$HL$@1HDŽ$H$H9OdfHnfHnfl)$0H$H$zHDŽ$Hx
HHpVH$HdH$HxHHsYH$IH5$HDŽ$HDŽ$mEOH7L(hE111HALAHD$ H$HgH‹H׉D$t
H$Hx
HHA\HDŽ$Ix
HI+\HD$ H;,jH|$ H5-Lw
IH+hH52HHD$ULD$ArIx
HIh]EPuH5y0H|$ IHHvHHHD$vLD$HHD$(H$xIxHIcH$HD$(HSHt$(H9H$H;5lSH;5_SH9AH$HD$(E{HT$(Hx
HHdHDŽ$E_Ht$8L5H=,fI~s5IHH5*HHD$LD$HHD$(H$NIx
HIGqfInHD$(HyH$Ht$@E1H9wH$fInD$(H$H)$~-LH$HT$(Hx
HH1rH$HD$(HH$HxHHtH$HD$(Ht$(H$HDŽ$H9H;5YH;5>YHpAH$HD$(EHT$(Hx
HH#vHDŽ$E=H=2+3HD$(H$HH5)HIHH$Hx
HHlH5,LLD$HDŽ$LD$HHD$(H$Ix
HIЋH5"/H|$ 1.HD$(H?L$HD$@I9AģMqM	AMItAAtAH$L$HHHsH$L$fInLD$()$++LH$HT$(Hx
HHKH$HD$(HHQL$IxHIH$H;$IHDŽ$H;=-cH;= c'L$AƅIx
HIHDŽ$EfIn\6fT7HD$(H$H$HǺHkHD$(H$HdH$Hx
HHH$H;$HDŽ$H;=psH;=cs6AƅTH$Hx
HHFHDŽ$L|$ EH5-H=W/1HD$(H$HVH|$(1H$Hx
HHL|$ E1E1E1HD$xAiH$A<HDŽ$HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ QL\$L\$N@HExHHE)HDŽ$H$H$HxhH$IH='!/H$HHH5#H.H$HH-H$Hx
HHv+H|$H5*$HDŽ$H$AfHHHpHD$@H9EqCH]HELEtAtAHE`,HH$HE],LLD$H$HDŽ$&HH$dLD$H$BIx
HI+H$HD$@1H$H9GCH$H$H$Y&HH$H$Hx
HH]+H$H$HDŽ$AfHXHxHH+H$H$HDŽ$HDŽ$aH$HDŽ$HH$HDŽ$/H5(HHDŽ$H$HHcCH;H;Ru
H;%DHx
HH~&HDŽ$EH=#=,H$HHSH5$HJH$H$HHUHxHHLJH$HL$@H$1HDŽ$H9KWfInfHnHfl)$Z$H$H$H$HDŽ$HVH$HxHHLH$H5E'H1HDŽ$ÅYH$Hx
HHIMHDŽ$eH5'H=)1(H$HHSH1H$Hx
HHlHD$xE1E11HDŽ$AzgE1H$HD$0AHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ HxHD$xE1H$E1HD$01AVfAHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ Ld$HtHx
HH/MtIx
HIfH$HtHx
HHH$HtHx
HHMtIx
HIMtIx
HIH
DDE1H=k.*HD$xHtH;tHA8%I$xHI$'HtHExHHEHtHx
HHHL$ HtHx
HHH\$(HtHx
HHHT$HtHx
HHHL$HtHx
HHHt$8HtHx
HHH$HtHx
HHH\$HHtHx
HHHT$pHtHx
HHHL$hHtHx
HHHt$@HtHx
HHH\$PHtHx
HHvHT$XHtHx
HHHHL$`HtHx
HH:Ht$0HtHx
HH,HD$HxH\$HHMtIExHIEMtIx
HIHhL[]A\A]A^A_DL$D$D$L$cL$D$D$L$fDLD$D$L$D$D$L$]D$D$L$D$D$L$AfDD$D$L$D$D$L$"fDLD$D$L$XD$D$L$LD$D$ D$D$L@LIHHHHLHHHpH`HP
H@H0&#:fDHEHSHaHoH}Ld$AUfE11HD$xE11H$HD$0AHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ RfLffD.fDLH?L H$HHHD$xE1E11HD$0AIfAHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ Ld$|f.+I HD$xE111HD$0E1AKfAHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ Ld$fHD$xE1E11HD$0ANfAHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ Ld$
@AHT$xHHHHH91H$L;-zHD$H$H;$D$t	HqH$H9`HDŽ$AEtAEH=mHD$H$H2MH5HxHD$H$H{NH$Hx
HHBHDŽ$HD$H$HNAEtAEHD$LhIHPH=,HD$LD$HI[H5HLD$ 轺LD$ HHD$H$\IxHIFH$HD$HT$H5LLD$H$LD$YHx
HH<IH$H$LLD$ HDŽ$6LD$ HHD$H$aH$Hx
HH;KH$HDŽ$Hx
HH'KHDŽ$Ix
HIKH$H$IExHIEKHLl$(HDŽ$HD$ HL$H$H9H;
H;
HJCL;=];H5LHD$HYZHDŽ$HHzHD$@H9B]HBH$H^LBtAtAHD$HxHT$HHIH$H$LLD$H$HDŽ$H$H$UH$LD$HDŽ$HHD$\IxHIFH$HD$Lt$1ɺHHDŽ$LfH$H$]LHH$HD$H_Hx
HH`JHT$HDŽ$Hx
HH.JH5H|$0:HD$HH$H`HDŽ$HD$@H9BlHBH$HqHRHT$tHT$D$0tH$HD$H$HKHHiNH$H$H$HT$H|$fHnD$()$H$IHD$}H$HDŽ$MkHx
HHKH5H|$HDŽ$IH$pHD$0dLD$0HHD$8H$}tHT$D$0tH$HD$8HD$8HT$LD$0HPrLD$0HHD$8H$0wHH5HLD$0LD$0YH$H$LLD$0RLD$0HHD$8H$:~Ix
HI_H$Hx
HH_H$HDŽ$Hx
HHn_H$H=HDŽ$HDŽ$HD$8^HD$HH$H'H5	HiHD$HH$HH$Hx
HHpHDŽ$HD$HH$HHT$8D$0tH$HD$HHD$HHT$8HPHD$HH$HHTH5e
HuH=iIH!H5^HHD$0yLD$0HIϝIx
HIH5
H$LmÎIx
HIلH$H$H$$HD$HHH$Hx
HHH$HDŽ$Hx
HHH$HDŽ$Hx
HHHT$8HDŽ$Hx
HHHD$xHD$HHD$`HD$8HD$XHD$PHD$@HD$hHD$pHD$H$HLT$8H5Iz菹+H5LرHD$0H$HUHkH9PLhMHPAEtAEtH$H$D$Hx
HHSH/IcAVH$HcL$H$H)H
LIHD$0@H$MHx
HHHT$8HDŽ$Hx
HHςHD$0HD$8H5H|$諰IHdH5pH9vHH@H$H9EnAIx
HIyEv$udH5H|$82IHH5H9H@H;$7EnAIx
HIEgH5H|$ίIHH=
HD$0L\$0HIH51HL$良L$HHD$0H$bIx
HIL\$0L\$0HIHT$8D$0tHD$8L$IFL$HHD$0H$H=*
L\$0L\$0HI4H5HL$H$谮L$L$HHD$0H$ΤIx
HI)H$H5L\$0H$L\$0H$Hx
HHH$H$LL$HDŽ$ H$L$HHD$0H$Hx
HHnHDŽ$Ix
HI#H$Hx
HHL$HDŽ$L$HHD$0H$0H$HT$0L$HDŽ$HBL$HHD$0H$H$H5L$H|$0L$H$H$LL\$0جL\$0HIIx
HIH$Hx
HHbH$HDŽ$Hx
HH HDŽ$L$HD$0DH$AfDT$@HHDŽ$,H$H$HDŽ$I~`H5[HDŽ$:DT$AI~hH$11H$H$E1D$D$H$E1E1HD$xD$HD$0D$HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ ^fDHD$xE1H$E1HD$01ASfAHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ Ld$ff.E]WH=A
H$HH
0H5IH٩H$HHx1H$HxHH"H$H
JH$1HDŽ$H9KfInfHnHfl)$H$H$rH$HDŽ$H$HHxHH#H$H5HDŽ$H9*HCH;$75HCHAAHx
HH+HDŽ$EH55	H=.1觨H$HHaH1iH$Hx
HHg=HD$xE1E11HDŽ$AgE1H$HD$0A#HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ /H$D$tH$HDŽ$DŽ$HD$ HHT$(D$tHHD$(HH$D$tHH$IEHIELMH
DH=EH$H$LH$5
H$EtEH$M\$ICH;0FAtAM\$M2FH=|LL\$L\$HIGIx
HIC2H=H$LD$L$HDŽ$LD$HIxIIx
HI<3MKI@+3A@31L\$
L\$HI1LHL\$HD$LD$L\$HIx
HIDnHHHKIM@tHtkH;-LHEHt
@\@f\EHtEHLD$ LL$L\$vLD$ LL$L\$HLLD$L\$2LD$L\$LL\$軥L\$Ix
HI2AfAE1E1DT$ DL$LD$L\$(GL\$(HDŽ$HDŽ$HHDŽ$LCLD$L6HChDL$DT$ LHM&L;9+IPHT$D$tMX(MtAtAH$H$HL\$0H$LD$(DT$ DL$DL$DT$ LD$(L\$01;HExHHEO,H{hHt$LLDT$ DL$jH$H$HH$DL$DT$ HDŽ$HDŽ$HDŽ$0HH$AƅHD$xE1E11HD$0AGgE1H$HD$`AHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ HhuHXaHD$xE1H$1HD$0A
hA)HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ HD$xE1E1E1HD$0AgA"HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ OHCH$H5H[ttH$H$HRJHHSH$H$H$f.HSHD$xE1E11HD$0E1H$AefHD$`AHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ fDfDcfDH;)H>HH5H;KAH;DH;-
H?AHEKHE!HD$xE111HD$0E1E1H$HD$`AgfAHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ 6fDLH$fDHHt$(LD$ HT$QHT$LD$ Ht$(xD3pfDHD$xE1E11HD$0E1H$AgHD$`A!HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ fD1AfHD$xE1E11HD$0E1H$AgHD$`A!HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ fDAfAHEEjHHE\H%DH$HIHDH;$L; L; LLD$LD$AWPIx
HIS/E1RH5lH$1uIH+VH;$H;#L;E#LLD$rLD$D$HWIx
HI#=L$H^L;=H3H==HD$H$HhH5HӚHD$H$HgH$Hx
HH-WH5rLHDŽ$qH$HD$H$HlHE1HD$@HƸH9wkH$fInD$H$H)$LHD$6H$LD$Hx
HHYHDŽ$H$M5oHx
HH`\H$1LLD$HDŽ$聿LD$HHD$H$tIx
HI*aH$H;$H;=:H;=&x:[H$AŅ>vHx
HHbHDŽ$EpHt	HH5LH$HD$HzyHDŽ$HHD$@H9BiHBH$HiLBtAtAHT$AHx
HHmiH$IcLLD$H$HDŽ$H$H)H4H$H$$H$LD$HDŽ$HHD$I|IxHIL$1dIx
HI2dH=HDŽ$RHD$H$Hz~H5H]H$IH}Hx
HH8hLD$HDŽ$LD$HHD$H$"|HT$(D$tH$HT$(LD$HPLD$HHD$H$H=LD$vLD$HI߄H5fHLD$聖LD$HHD$H$&Ix
HItH$H5LD$H$aLD$:H$Hx
HHH$H$LLD$HDŽ$LD$HHD$H$pIx
HIH$Hx
HHH$HDŽ$Hx
HHMH$H5=HDŽ$HDŽ$HHD$H8HD$H$H[HD$HT$@HDŽ$H9PlHT$HBH$HRHzttL$H$IxHI'H$H$H$HDŽ$H$HcиH)H4H$H$脕H$HDŽ$HD$IHƒH$HxHHL$LL$pE1E1H$HDŽ$HDŽ$HD$XHD$PHD$Hl$8H\$`Ld$xH$1藹H$IHH;$L;%6hL;%_)hL葾ÅH$Hx
HHHDŽ$TH5H|$0H$HH$H$H$HUIHH$H$HDŽ$ID$HD$@H9GHGH$HHttL$H$IxHIьH$H$L$H)H$PH$HcH4H$H$!HDŽ$I$xHI$L$LM.H$HxHHH$LH\$hHDŽ$讒H5OH$HDŽ$IH$IHH;$AH;D|L;%|LAADžH$Hx
HHHDŽ$Et~H$AW1E1jH$A1IH$XZM+HnLL۳H$Hx
HHHDŽ$H=H$H§H5'H/IHH$Hx
HHHD$@LE1HDŽ$I9D$GH$H$AWHHcL$H$L)H4:H$H$ŐL$HDŽ$LMmHExHHEH$H|$}1ɺHHDŽ$HޝH$HHHBHD$HH$Hx
HHHDŽ$Hx
HHIH51H|$跎HH̩!H$HGH\$hD$tH$H\$hHXHH$HHH5HqH$H$HAH$H*HExHHEH$Hx
HHŲH$HDŽ$Hx
HHLL$HDŽ$ʎH=HDŽ$RH$H"H5HbH$HH$Hx
HHEHDŽ$蟶H$HAtAH$LxҸH$HUH$H5HȮH$H$H$ŌHH1H$Hx
HH[H$HDŽ$Hx
HH٭H$HDŽ$Hx
HHHDŽ$HEH;]HUHHEH$HE H$H$tH$tHExHHEH$H|$PH$ȌH|$XH$HDŽ$誌H5CHHDŽ$_H$IH8HDŽ$HD$@I9D$ID$H$HIL$ttH$H$Hx
HHSH$H$HDŽ$H$H$HcиH)H4)H$I蹋HDŽ$MصH$Hx
HH;HDŽ$I$xHI$H5L'H$IHHDŽ$HD$@I9D$ɴID$H$HIL$ttH$H$Hx
HHH$H$H$H)H$PH$HcH4H$I肊HDŽ$MH$Hx
HHHDŽ$Ix
HI/H5LHHH$H覭H$HHExHHEHD$pH@LxpMIHwH$H$RIHH|$pLHAWAI$xHI$jH$EHx
HHўH5LHDŽ$H$H8H$HmIHH$Hx
HHL$L$LHDŽ$IxHIH$H$L|$hH\$XHD$PfDH$LAf(fIH$11Ǽ@胬ufDH;ٷHHH"FH;AH;xDH;HAHTEHD$xE1E11HD$0AgE1H$HD$`A"HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ fDHoH
EHtEtL$H$IHIoH$H$鳻fIH$1fDӪefDHD$xE1H$E1HD$0E1AFgAHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ XH飯L!E1ff.EADEfH=DHD$ H$H?H5HOIH)BH$Hx
HH%H5LHDŽ$HD$ H$HDHt$@A1HDŽ$I9vKfHnHLD$ H$ H$H4L)$H$H$H$詄H$HDŽ$Hx
HH&H$HDŽ$HD$ HHIxHIf)H$HD$ HHt$ H9H$H;5
H;5˴s
HAH$HD$ EKHT$ Hx
HH(HDŽ$EH=JIHjH5WH_HD$ H$HkIx
HIpSH=nHD$ H$HkH5HH$IHyHx
HH\H55LLD$HDŽ$輁LD$HHD$ H$uHt$@E1I9puH$fInLLD$D$ LL$(H)$LL$(ILvH$LD$Hx
HH_HDŽ$M1vIx
HI_H5LHD$ HvIx
HI`L$HT$@1E1I9Q
sPfInLH)H$D$ Hc)$H4LH$蛁HT$ Hx
HH%`H$HD$ HrH$Hx
HH`HDŽ$tH$HH$ޥIHH;$H;hjLL;5]LL…8Ix
HI|_]H$t
H$L$IIx
HIeH$HDŽ$Hx
HHreL$AtAIx
HIUeHL$x
HHFeHDŽ$LHDŽ$iLǩD鹬HD$xE1E11HD$0AgE1H$HD$`A'HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ 闸Hx
HHHDŽ$*HD$E1E1 )骵H郩HH5H|$0}IHU@HD$H$HDH4tH$HHD$HD$HPEtEH$HD$HD$Hh HD$H$HAHT$(H5Ht$H=HD$H$HKH5H|IH PH$Hx
HH9H5H$LLD$HDŽ$荩LD$HIx
HI=H$H$LD|HD$8HXIx
HIHDH$Hx
HHDH$HDŽ$Hx
HHDHDŽ$HD$xHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$HD$@DpPqH=c1HD$xE1E1AhHD$0A)HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ aLE1m郦HD$xE1E1E1HD$0AhA)HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ xC魲HD$xE1H$E1HD$0E1AgA"HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ γHD$xE1H$E1HD$01AhA)HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ /IHILDT$ DL$՝DL$E1E1HD$DT$ 貝HD$xE1E1AgHD$0A"HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ z‰D$H{HD$xE1H$1HD$0AhA)HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ 頱k鵣L^ȣHL\$0LD$(DT$ DL$=L\$0LD$(DT$ DL$|HEHHHDkHD$xE1H$AhHD$0A)HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ 鈰HD$xE1E1H$HD$0AdjE1L$HD$`AIHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$DL豚鋢HD$xE1A"hA)HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ |HD$xE1E1ANgHD$0AHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ MFMAIVtAtIx
HIo2IH${LLD$*LD$LLD$ H$LD$ HD$H;](HߺrHH4QH;H;|H;CoHuAH.XEr|HD$xE1E11HD$0AgE1H$HD$`A"HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ LL\$ߗL\$HD$xE1E1E1HD$0APgAHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ mL5^HH5J[L\$H8%L\$E1HD$xE1E1E1HD$0A&hA)HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ 頫LhLD$YLD$鰶HD$xE1E1AegHD$0AHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ HCH$H]H[ttH$H$H1HH1H$H$H$HGH$HVHttL$H$I
1HI0H$H$H$HD$xE1H$E1HD$0E1A<hA)HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ `HLD$#LD$H$H$ILD$LD$鱴LD$LD$ŴLԓشLǓL躓HE1E1E1HD$xA!jH$ACHD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$Ll$(HD$ OHD$xE1E11HD$0AigE1H$HD$`AHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ 魧Huŵk閵H$HLHxE1E1E1HD$xA#jH$ACHD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$Ll$(HD$ L詑L蜑HȝE1E1E1HD$xA&jH$ACHD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$Ll$(HD$ 1HD$xE1H$E1HD$0E1AhA.HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(隥eH$H$hADL|$ E1HD$xE1HD$0AiH$A2HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ H›E1HD$xE1HD$0A+jH$ACHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$Ll$(HD$ %HD$xE1E11HD$0E1H$AgfHD$`AHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ 郣H5ܹHdL|$ E1E1E1HD$xAhH$A0HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ Ǣ蒍鍱HDŽ$HC`HDŽ$HC`H$HHHH$tH@(H$Hpe^H$HD$XHRHHD$PHID$E.Hit	HYH|$P'HD$`H|$XÏIHdH|$PHD$訏LD$HHD$HH$PdHt$`耖H$LD$HHD$H$-gHx
HH5MH$LǺLD$HDŽ$蓌LD$HHD$H$QgIx
HIGH$Hx
HHGL$L;$HDŽ$AL;-ɗDF6L;-96L@AƅeL$IExHIEy^HDŽ$EHfɿH*L$PfHDŽ$HD$8HdH@HD$H>dHD$0H5AHoHD$H$HcHD$0H5HgoH$HCIHϕHT$@H9P`LpM`HPAtAtH$H$HHHAHHIcոH$H$H)H$H4L$HDŽ$
LH$eA0nH${HH$Hx
HH:HH$HDŽ$Hx
HHHHDŽ$Ht$PH|$0IŸHL$HH+T$XHHNHdLH$Ht`H51cH$HD$Hx
HH`H|$HDŽ$`HT$Hx
HH_H$HOHD$H$HT_H$ARE1E1jH|$H11A[A]IH^H$Hx
HH`H5LLD$HDŽ$bLD$HHD$H$]Ix
HI+^L$HD$@I9AsMiMtTAEMItAEAtAH$L$HdHHdD$HL$HcT$HH$LL$HDŽ$H)H4腾LH$cH$HD$IHH$HxHH'dL$HT$8HDŽ$Hx
HHCVHDŽ$Ll$8HD$xHT$(H5H|$83aHD$0E1E1H$HD$XATpE1L$HD$PAHD$@HD$hHD$pHD$HHD$HD$`HaE1E1Ll$(HD$xA2jACHD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ ̚H;ELPXIŹE1AfA魻Le鬎L|$ E1E1HD$xHD$0AiH$A2HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ H趄^HLl$(E1A-jHD$xACH$HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ HDAfA>mHHD$xE1H$E1HD$0E1L$AxjHD$`AKHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$銘LRH~Ll$(A/jACHD$xHD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$ *H5	H=1s]HD$(H>IH18I1HT$(HH/L|$ E1E1E1HD$xAiH$A3HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ сE1̷AfAL|$ E1HD$xE1HD$0A#iH$A4HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ AHD$xE1E1H$HD$0AjL$ANHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8鶕IH$11鷢HD$xE1L$AjHD$0AKHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$UIH$1&HD$E1HD$xE1HD$0AjL$ALHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$鷔PHCЉHDcHHcH~L
D鬌H~L|$ E1HD$xE1HD$0A%iH$A4HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ 鉓HLl$(E1A4jHD$xACHD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$ 31鍳HD$xE1E1H$HD$0AkL$ARHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$gHD$E1E1E1HD$xAjL$ALHD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$ؑHD$xE1H$E1HD$0ABkL$ATHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$EHHEpfHD$xE1L$E1HD$0AjAMHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8H$H$阬L|$ E1E1E1HD$xA'iH$A4HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ LzXzjz鈠H=HD$H$HgZH5HUH$HD$H$HYHx
HHYHDŽ$N~HD$H$H[|H$D$tH$H$HPjIHzH=HD$=LD$HHD$H$5zH5#H|$LD$<TLD$HIG|H$Hx
HH+FH5hLLLD$HDŽ$LD$|Ix
HIEH$H$LLD$SLD$HHD$8xH$Hx
HHEH$HDŽ$Hx
HHREHDŽ$Ix
HIFEf
sHD$8H*D$XYWH@HD$f/DH,HHH	HHH	HHH	HHH	HHH	HH H	HD$hHp\HD$hH=LhpIHN]H5HHD$@RLD$@HHD$H$\Ix
HI'xL~IHOYHHD$@~LD$@HHD$H$XH=MLD$@ӵLD$@HHD$H$
XH5H|$LD$@QLD$@HHD$YH$Hx
HH6YHLL$HDŽ$HD$@I9E Y1H$LLD$pH)H$L$H$H$H$H4H$ HT$H$(PHc裭H$I3RLD$pHDŽ$Ix
HIXH$Hx
HHXHT$HDŽ$Hx
HH)xH$M^Hx
HHxL;5aHDŽ$eHءIFH9RHXHRHq1H;TRHH9H
1Ҿ=LHD$xH]HD$xHd7eHlHHDŽ$fHnfHnH$HDŽ$ flH$(H$)$foH$)$0H.fH$P)$@3H$(HJH$(HHHJH$(HBH@Hx\StLl$xH$IuhH\Ll$HD$xL
֝HPXL9;\Ht$xH~P~5HFpH8~HFxHeH9eHD$xHHo]HT$xLj@B8uH|$u
D$tIx
HI]HD$0H5*H~XHD$H$H*]HD$0H5ԥHPXH$HZHT$@H9PZL@MtHHPAtAtH$H$HI]HD$HH ]HcT$HH$L$H$LD$HDŽ$H)H4LD$ILNAYoMYH$Hx
HHkZHDŽ$Ix
HI\zLL$MIH\$hLt$PHD$HD$0L+t$XHxLILIL;t$P;X1E11LLT$hLL$HH|$@tLL$HLT$hHH|$@H!H9WHH!ILHHuH1HuIHqH5H=1nLHD$(H$H.OH1.tH$Hx
HH)L|$ E1E1E1HD$xA6iH$A5HDŽ$HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ HD$xE1E1H$HD$0ACkL$ATHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$^1ff.CDAHD$xE1L$E1HD$0E1AjAMHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8ĄLD$oLD$zH$1鎓L|$ E1HD$xE1HD$0AQiH$A7HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ H53H=1uIHD$H<Lt$1L8qI3%HT$HHA(HD$xE1E1H$HD$0ARkE1L$HD$`AUHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HyH5_OLD$L\$H8nL\$LD$龣1HLD$ LL$L\$rL\$LL$HLD$ HE酣H=VIH)9H5~HGHD$0H$HJIx
HI,sIH<9H5H|$GIH8H5HLHD$0tL\$0+9Ix
HI|,H$H5GLoGH$HD$0HHHx
HH9HDŽ$Ix
HIHHt$8H|$IH3HH5H|$0HH$jL$AIx
HIHHT$0$H'L$IӁHD$xE1H$E1HD$0E1AgA#HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ qH$QHD$xE1H$E1HD$0AjL$ANHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$xE1H$E1HD$0AdkL$AWHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$KHD$xE1H$E1HD$0E1AThA+HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(~iL|$ E1HD$xE1HD$0ASiH$A7HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ ~Lh#thɨHD$xE1E1H$HD$0AekL$AWHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$g}LD$-hLD$>L|$ E1E1E1HD$xAViH$A7HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ |HgsHD$xE1H$E1HD$0AVhA+HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ 
|LHT$ LD$fHT$ LD$H$IֺkHD$xE1L$AjHD$0ANHD$`HD$XHD$PHD$@HD$hHD$pHD$H{:fLD$HD$xE1H$E1HD$0E1AgA"HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ zLwMoAHtAtL$H$I+HI+H$1nL|$ E1E1E1HD$xAkiH$A7HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ yHD$xE1H$E1HD$0AYhA+HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(/yLcH$H$iLc/cZH$H$_vHD$xE1H$E1HD$0AjL$ANHD$`HD$XHD$PHD$@HD$hHD$pHD$H_xHD$xE1E1H$HD$0AjE1L$HD$`APHD$XHD$PHD$@HD$hHD$pHD$HwLD$bLD$錣H$ynHD$xE1H$E1HD$0AkL$ARHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$+wLaH$QnH5WH=1<HD$H@Lt$1LTdI!HT$HHHD$xE1E1H$HD$0AtkE1L$HD$`AXHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$1vHD$xE1H$E1HD$0E1AvgAHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ uHD$xE1H$E1HD$0AkL$ARHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$uHD$xE1H$E1HD$0AnhA+HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(stHx
HHjHD$8D$0HT$8L$HD$0ItL|$ E1E1E1HD$xAoiH$A7HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ sHHۘuHD$xE1L$AkHD$0ARHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$s]H$L$iL]ɞL]NjIFH$H;INttIx
HI H$IH$AHT$ 1L]髻]HD$xE1E1H$HD$0ArhE1A+HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ qL[\L\$骑L\B\HD$xE1H$E1HD$0AjL$ANHD$`HD$XHD$PHD$@HD$hHD$pHD$HpL[L|$ E1E1E1HD$xAiH$A9HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ LpH5mH=N15HD$(H$H&H|$(1]H$Hx
HH7L|$ E1E1E1HD$xA~iH$A8HDŽ$HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ HoL|$ E1HD$xE1HD$0AiH$A9HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ nL|$ E1HD$xE1HD$0AiH$A9HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ 
nLXL$麛LX魳HD$xA$kE1H$HD$0ARL$HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$SmHD$xE1L$E1HD$0AkA[HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$mHD$xE1H$E1HD$0E1L$AkHD$`A[HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$DlHHLVA~HD$xE1H$E1HD$0E1L$AjHD$`APHD$XHD$PHD$@HD$hHD$pkHD$xE1H$E1HD$0AkL$ARHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$)kUcU<cHaLL\$H5H\$H81 ^L\$LD$鹋HD$xE1H$E1HD$0E1L$AjHD$`APHD$XHD$PHD$@HD$hHD$pojEHD$xE1L$E1HD$0AjAPHD$`HD$XHD$PHD$@HD$hHD$p1jHD$xE1H$E1HD$0E1L$AjHD$`APHD$XHD$PHD$@HD$hHD$piLD$STLD$鴗LD$E1铖HLD$/TLD$|LT郬LoMnAEHtAEtL$H$I.)HI)H$H$HD$1LS{HD$0E1E1ApH$L$AhfS|\S}HOSHD$0HD$8$};SL{H.Sd{$SzS{HD$xE1L$E1HD$0E1AkA[HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$gH|$(E1RL|$ E1E1HD$xAiH$A3HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ gHD$xE1H$A!kHD$0ARL$HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$fL|$ E1E1E1HD$xAiH$A9HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ eH$E1\L|$ E1E1E1HD$xAiH$A3HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ #eHD$xE1L$E1HD$0AkA[HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$dL|$ E1E1E1HD$xAiH$A9HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ cHD$xE1H$E1HD$0AjL$APHD$`HD$XHD$PHD$@HD$hHD$pHD$HcL|$ E1E1E1HD$xAiH$A9HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ bH5(H=1Z(HD$H$H^9H1PH$Hx
HH=)HD$xE1E1L$HD$0AkA\HDŽ$HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$)bL|$ E1E1E1HD$xAiH$A;HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ [aH5H=]1&HD$(H$H9H|$(1NH$Hx
HH#L|$ E1E1E1HD$xAiH$A:HDŽ$HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ W`H;VLKHD$0HJHT$0H$H9AH;WDEH;aW8HPHT$0AHKJEtHD$0ApE1H$L$AE1_LD$mJLD$'H$<VHD$xE1L$AkHD$0A[HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$4_HD$xE1E1H$HD$0AjL$APHD$`HD$XHD$PHD$@HD$hHD$pHD$H^HD$xE1E1H$HD$0ARkE1L$HD$`AUHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$]HD$xE1H$E1HD$0A&kL$ARHD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$HD$j]HD$xE1E1L$HD$0AkE1A[HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$\G0HD$xE1H$E1HD$0E1AgA"HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ 2\LLD$FLD$9L$AtAL$MFLD$4LFPHD$xE1H$E1HD$0E1L$AjHD$`APHD$XHD$PHD$@HD$hHD$pj[H|$E1-FH$E1HD$xHD$0ARkE1L$HD$`AUHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$ZLEbHEΟ{ELT$jET$oL|$ E1E1E1HD$xAiH$A;HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ YHDLD׸Lt$0L$ZHD$xE1H$E1HD$0E1L$AkHD$`A^HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$<YDJL|$ E1E1E1HD$xA
iH$A3HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ XAHHoHD$xE1E1H$HD$0AmE1L$HD$`ApHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$WH|$E1BH$E1HD$xHD$0AtkE1L$HD$`AXHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$RWHD$0Lt$8L$WL|$ E1E1E1HD$xAiH$A;HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ V]A鼷SA1A&AnH$Hx
HH$HD$xE1E1H$HDŽ$AzE1L$HD$0HD$XHD$PHD$@HD$hHD$pHD$HHD$HD$U@H;KH5kL>ItHHŧ5LO@LB@wME1HD$xL$HD$0AlA_HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$UHD$xE1E1H$HD$0AtkE1L$HD$`AXHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$UTL?f?鄚L?鞚H>魚LD$>LD$鷲ME1E1AkHD$xA_L$HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$SME1E1AkHD$xA_L$HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$/SL$E1E1AspASHD$xE1L$AkHD$0A^HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$RLHL$"=HL$H$AH$HT$ I1ʓHD$xE1H$E1HD$0A}hA,HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ QHHIAL5<fLL\$0#<L\$0bgHD$xE1H$E1HD$0AhA,HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(PHD$xE1E1AhHD$0A,HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$([PHD$xE1H$AjHD$0APL$HD$`HD$XHD$PHD$@HD$hHD$pHD$HOE1cE1E1cL?HcHD$xE1E1H$HD$0AmE1L$HD$`AoHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$NE1E1E1ApL$ANL9[1CE#9z9~LD$k9LD$}LY9D~O9V~MA
lE1E1HD$xA_H$HD$0L$HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$MME1E1AlHD$xA_H$HD$0L$HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$WMME1E1E1HD$xAlH$A`HD$0L$HD$`HD$XHD$PHD$@HD$hHD$pHD$8HD$LME1HD$xH$HD$0A
lL$A_HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$FLME1HD$xH$HD$0AlL$A_HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$KME1E1AlHD$xA_H$HD$0L$HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$&KH$1{L5H${ME1E1A2lHD$xA`L$HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$8HD$JLt$@Hl$8E1E1L|$hH\$`ME1Ld$xHD$AAlAaHD$xH$HD$0L$HD$`HD$8J4=|L|$ E1E1E1HD$xAziH$A8HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ lIHD$0E1E1ApH$L$A<IE1ApAHD$0H$L$IHD$0E1E1ApH$L$AHApAE1HD$0H$L$H}3\H,H?LD$[3LD$隺LI3魺LD$:3LD$LLD$#3LD$LD$3LD$&MqMAMItAAtAH$L$H2HH2L$镌HD$xE1H$E1HD$0E1AhA,HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(=GHD$xE1H$E1HD$0E1L$ANkHD$`AUHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$FHD$xE1AhA,HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(YFMHMAMptAAtAIx
HIJ2H$MHD$ 1黉H0鰩HD$0EHZHT$0HHZH|$0c0E1ffA.FADEtZHD$xAhA,HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ EHD$xE1H$E1HD$0AhA,HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(LDH$L$A!qA+DHD$0H$AqAL$DE1H$L$AqACLL\$0.L\$0ZE1AqAHD$0H$L$CE1L$AqACE1AqAHD$0H$L$PCHD$0E1E1AqH$L$A CL-[LL\$0-L\$0ZL\$0-L\$0ZL\$0-L\$0~ZA$qAE1HD$0H$L$BL\$0m-L\$0YHD$xE1E1AhHD$0A,HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ AL,zLt$@Hl$8E1E1L|$hH\$`MABlLd$xAaE1HD$xHD$0H$HD$`L$HD$8HD$~ALF,u<,8u2,uH;7L,HD$0HHt$0H$H9H;5#8tH;5i8gH1Ht$0AH0ESVHD$0ApE1H$L$AE1@HD$0E1E1ApH$L$A@Lt$@Hl$8E1E1L|$hH\$`ME1Ld$xHD$AMlAbHD$xH$HD$0L$HD$`HD$8@1<sL*H$"s*NuL*H$HD$1j*XH$ApE1E1L$A?E19E1E1.HD$xE1H$E1HD$0AnL$A~HD$XHD$PHD$@HD$hHD$pHD$HHD$?L)ȡHD$xE1H$E1HD$0AnL$A~HD$XHD$PHD$@HD$hHD$pHD$HHD$HD$u>HD$xE1H$E1HD$0E1L$AnHD$XA~HD$PHD$@HD$hHD$pHD$HHD$=H(HD$xE1H$E1HD$0E1L$A~nHD$XAzHD$PHD$@HD$hHD$pHD$HHD$r==(HLD$.(LD$ן(BHD$xE1L$AmHD$0AvHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$=HD$xE1H$E1HD$0AmL$AvHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$J<HD$xE1H$E1HD$0E1L$AnHD$XAzHD$PHD$@HD$hHD$pHD$HHD$;z+HHD$xE1H$E1HD$0E1L$AnHD$XAyHD$PHD$@HD$hHD$pHD$HHD$F;HD$xE1L$E1HD$0AnAxHD$XHD$PHD$@HD$hHD$pHD$HHD$HD$:HD$xE1E1H$HD$0AmE1L$HD$XAvHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$@:HD$xE1L$E1HD$0AmAvHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$9HD$xE1L$AmHD$0AvHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$9$H$E1E1ApL$A 9L#ٷL$E1E1ApA8L#RHD$xE1H$E1HD$0AhA,HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ J8#G#D$HL$lD$H_"ϛHH9tHuH;/BIH=#L'ANd}Lt$xHD$$E1L$ApA7L|$ E1E1E1HD$xA2iH$A5HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ 6HD$xE1E1H$HD$0AhA,HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$(HD$ a6HD$xE1H$E1HD$0E1L$ApkHD$`AXHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$5 VHD$xE1L$E1HD$0E1AnAHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$N5HD$xE1L$E1HD$0AnAHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$5HD$0A2qE1H$L$AE14pME1A3qAHD$0H$L$n4HD$xE1H$E1HD$0AoL$AHD$XHD$PHD$@HD$hHD$pHD$HHD$3HD$xE1H$E1HD$0AoL$AHD$XHD$PHD$@HD$hHD$pHD$HHD$~3HD$xE1H$E1HD$0AoL$AHD$XHD$PHD$@HD$hHD$pHD$HHD$HD$2LD$@LD$@鶦IEH$H˦IMttH$H$Hx
HHL$遦LP
FHD$xE1H$E1HD$0AoL$AHD$XHD$PHD$@HD$hHD$pHD$HHD$1LD$pLD$pL$ѥLt$@Hl$8ME1H\$`Ld$xE1E1HD$xAxlH$AcHD$0L$HD$`HD$8HD$j15ifDT$&DT$H$MLt$@Hl$8ME1H\$`Ld$xE1E1HD$AwlH$AcHD$xL$HD$0HD$`HD$80 HHD$xE1E1H$HD$0AnE1L$HD$XAHD$PHD$@HD$hHD$pHD$HHD$HD$C0HD$xE1L$AoHD$0AHD$XHD$PHD$@HD$hHD$pHD$HHD$0HD$xE1H$E1HD$0AoL$AHD$XHD$PHD$@HD$hHD$pHD$HHD$HD$U/HL!ITH:tHH!ITH:uL2Lu$LLMM%H|$H$HH5BU1sH$H$Hx
HHH$HDŽ$HD$Ht*HT$Hx
HHHDŽ$~HD$0E1H$E1HD$XE1L$A<pHD$PAHD$@HD$hHD$pHD$HHD$.E1龥AEoH$Hx
HHHD$0E1E1H$HDŽ$AE1L$HD$XHD$PHD$@HD$hHD$pHD$HHD$HD$Z-%鋥DT$DT$aH
IHaWHL_AHGHHOH#VH5H81* AXAYHD$HtHD$xHT$xHx
HHHD$xE1E1H$HD$0A5oL$AHD$XHD$PHD$@HD$hHD$pHD$HHD$HD$M,HrHD$xE1L$E1HD$0A1oAHD$XHD$PHD$@HD$hHD$pHD$HHD$HD$+H8H^"1H5eH81HD$0E1H$E1HD$XE1L$ACoHD$PAHD$@HD$hHD$pHD$HHD$,+L)LD$LD$̢D$H鿢LL(H|$0HL$Ht$XH
H0HHH|$0qHD$0DH?HT$0HHt?H$E1E1ApL$AN*1fD$fA.FDD?H/!HD$ .HLd$Hl$8E1E1Lt$@H\$`E1AilL|$hLd$xMAbHD$xH$HD$0L$HD$`HD$8)H$E1E1A+qL$A)E1L$A&qAk)L3LgE1霌HD$xE1L$E1HD$0AkA\HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$)HD$xE1H$E1HD$0E1AiA<HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ =(Lt$@Hl$8E1E1L|$hH\$`ME1Ld$xHD$AQlAbHD$xH$HD$0L$HD$`HD$8'Lt$@Hl$8E1E1L|$hH\$`MAOlLd$xHD$AbHD$xL$HD$0HD$`HD$8'5^ L|$ E1E1E1HD$xAiH$A:HD$0HD$`HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$ &HD$HHl$8MHD$XH\$`E1E1Lt$@Ld$xE1AmH$AlHD$xH$L$HD$0HD$`HD$PHD$8E&HD$HHl$8MHD$XH$E1AmLt$@H\$`E1AlLd$xHD$PHD$xL$HD$0HD$`HD$8&HLt$@Hl$8MHD$XH\$`E1E1H$Ld$xE1HD$xHD$0AymL$AkHD$PHD$`HD$8HD$V%!cHD$xHH5H81VHD$xHD$!Lt$xE1HPHH
OIHl$8H\$`Lt$@H5gH81Ld$xE1L|$XE1MH$AymE1HD$xHD$0AkH$HD$PL$HD$`HD$8HD$d$L,aHD$HHl$8MHD$XH\$`E1E1Lt$@Ld$xE1AymH$AkHD$xH$L$HD$0HD$`HD$PHD$8#%aH$E1E1A0qL$A#HHH5H8qHHHH5H8HmHT$HHl$8Lt$@H\$`Ld$xD$L|$hMHT$8HD$xHD$`HD$i6Lt$@Hl$8ME1H\$`Ld$xE1E1HD$AlH$AeHD$xL$HD$0HD$`HD$8"HD$HL|$hMHD$xHD$8HD$`HD$5Lt$@Hl$8ME1H\$`Ld$xE1E1HD$xAlH$AdHD$0L$HD$`HD$8HD$"Ld$Hl$8ME1Lt$@E1H\$`E1Ld$xAlHD$xAdH$L$HD$0HD$`HD$8!Ld$H\$`IMLt$@E1Hl$8E1Ld$xAlHD$xAeH$L$HD$0HD$`HD$8.!ID$H$HVIl$tEtEI$HAI$jVL]VLt$@Hl$8ME1H\$`Ld$xE1E1HD$AlH$AeHD$xL$HD$0HD$`HD$8h H0lVAULt$@H\$`IMHl$8Ld$xE1E1HD$AlH$AgHD$xL$HD$0HD$`HD$8H
OWLt$@H\$`IMHl$8Ld$xE1E1HD$AlH$AgHD$xL$HD$0HD$`HD$8oLt$@H\$`MIHl$8Ld$xE1E1HD$xAlH$AgHD$0L$HD$`HD$8HD$ILt$@Hl$8MLL$Ld$xE1E1H\$`HD$E1AlHD$xAfH$HD$0L$HD$`HD$8Z	
UILt$@Hl$8MLL$Ld$xE1E1H\$`E1HD$xAlHD$0AfH$HD$`L$HD$8HD$HTIH\$`Hl$8Ld$xHQHHH	H
mL$HEH`H5E1H81L|$@E1MHD$xAlH$AhHD$0L$HD$`L$HD$8HD$CH;H~H$HHExHHEH$HGLAH$HH$AH$HH$AHHHFx-H$Hx
HHHDŽ$5VL|$@Hl$8ME1H\$`Ld$xE1E1HD$xAmH$AhHD$0L$HD$`HD$8HD$	RHl$8H\$`ALd$xH$Hx
HHHDŽ$XEL|$@E1ME1HD$xA"mE1H$HD$0AhL$HD$`HD$8HD$QHl$8H\$`E1Ld$xUgIH\LH
H5\HEHE1H81,L|$@E1MHD$xA"mE1H$HD$0AhL$HD$`HD$8HD$HUHHEHH@H$H$SH:^L|$@H\$`IMHl$8Ld$xE1E1HD$AmH$AhHD$xL$HD$0HD$`HD$8iL|$@E1MH$HD$xAlE1L$HD$0AhHD$`HD$8HD$H6E1H5OL$H81L|$@E1MHD$xAlH$AhHD$0L$HD$`L$HD$8HD$R;RL|$@H\$`MIHl$8Ld$xE1E1HD$xAlH$AhHD$0L$HD$`HD$8HD$L|$@Hl$8ME1H\$`Ld$xE1E1HD$xAlH$AhHD$0L$HD$`HD$8HD$L|$@Hl$8ME1H\$`Ld$xE1E1HD$AlH$AhHD$xL$HD$0HD$`HD$8}PL|$@Hl$8ME1H\$`Ld$xHD$E1HD$xAlL$AhHD$0HD$`HD$8{L|$@Hl$8ME1H\$`Ld$xE1E1HD$AlH$AhHD$xL$HD$0HD$`HD$8L|$@Hl$8ME1H\$`Ld$xHD$E1HD$xAlL$AhHD$0HD$`HD$8KNLt$@H\$`IMHl$8Ld$xHD$E1HD$xAlL$AgHD$0HD$`HD$8ILt$@H\$`IMHl$8Ld$xE1E1HD$xAlH$AgHD$0L$HD$`HD$8HD$t1MjOMHHH$E1E1ApL$A\'L$ZYHD$xE1H$E1HD$0AnL$AHD$XHD$PHD$@HD$hHD$pHD$HHD$HD$L̇HD$xE1H$E1HD$0AnL$AHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$,HD$xE1H$E1HD$0AnL$AHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$LLL$eH$LL$MHD$ 1_WHD$xE1L$E1HD$0AnA~HD$XHD$PHD$@HD$hHD$pHD$HHD$6HʇHD$xE1L$E1HD$0AnAHD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$xE1H$AnHD$0AL$HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$HD$xAnE1H$HD$0AL$HD$XHD$PHD$@HD$hHD$pHD$HHD$8HD$HD$fH$.HD$HLd$xIHD$XH$MAvmLt$@Hl$8E1AkH\$`HD$PHD$xL$HD$0HD$`HD$8IHLt$@Hl$8HD$XH\$`ME1H$Ld$xHD$0E1HD$xAtmH$AkHD$PL$HD$`HD$8HD$bL*LH	MHL|$@Hl$8MHD$XH\$`E1E1H$Ld$xHD$0AfmHD$xAjH$HD$PL$HD$`HD$8HD$
L1KwKHD$HHl$8E1HD$XH$E1ARmL|$@H\$`MAjLd$xHD$PHD$xL$HD$0HD$`HD$8kLfJHLd$Hl$8E1HD$XH\$`E1E1L|$@Ld$xMAEmH$AiHD$xH$L$HD$0HD$`HD$PHD$8xIHD$HHl$8E1HD$XH$E1A1mL|$@H\$`MAiLd$xHD$PHD$xL$HD$0HD$`HD$8aHG1HHAWH?1AVfHnIAUATUHH@H-SfHnfHnHflHHHfHnHL-H()D$`fHnL
2flHD$0)D$pfHnflLl$8HD$XHDŽ$HD$@Ll$HLL$P)$H
LHHHcH@HF(HD$XHF HD$PHFHD$HHFHD$@L~L&LEL|$8Ld$0HHHcHDH/LHLD$LT$LT$LD$HIUHD$8IMH/LHLD$LT$LT$LD$HHD$@IMiH-LHLD$LT$gLT$LD$H\HD$HIM(H3'LHLD$LT$&LT$LD$HHD$PIML}L%.M1fHI9L;duI<HtjH|$XIuwLd$0L|$8HL$@Hl$HLL$Pf.M9uuL9fDIL9LT$H\$LT$LT$HHL$0HT$`ILL
rHH|$XLd$0L|$8HL$@Hl$HLL$PHH;=,H;=u[L9tVLL$HL$'HL$LL$HLILSLY^HĨ[]A\A]A^A_HH+HcHfDLEH$LHLD$LT$8
HD$0IHLD$LT$IMH|$XL|$8HL$@Hl$HLL$PfL&LELd$0fKHL$LL$HefHn(Hl$XLN HLL$PHnHl$HHNHL$@L~L|$8L&Ld$0wHHH
HOAL
HCELOODHHHuSH5}H81XeZH
 H=31[DID$(LD$1HD$ LT$H\$LMI@JtI9jHI9GH9F
IWH;VHFIH9AHAt
HE_ DV DD@@8A I8A Hv8DAADDE9HHeLD$LT$LH\$b{fLHH4H;H;=Nu	L9Hx
HHDLD$LT$LH\$I<mMH|$XHL$@Hl$HLL$PTfDH|$XLd$0HL$@Hl$HLL$Pf1>fH
	1LM<@H
1L1LfDH|$(H|$(	@D$(D$(I8A@HE|$ %e5e&DLT$LD$LD$LT$H
eLT$LD$YLD$LT$HeLT$LD$(LD$LT$H"eL^(H8A@IEaLT$LD$LD$LT$HeADDAH
kAL
HeDDDAWH&fAVfHnAUATUSHH HXHH$H)$fHnflH|$HHDŽ$H$)$HHL4HHH0HLyH$ML%%M1DHL9sL;duM,L$MIOHH$HD$ H$HD$bfDHHFLyH$HFH$HH$M*H$L$HD$ H$HD$HD$pH\$HD$xHDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$D$tHQ,H(hH|$ E11HA1HH(HD$ptEHExHHEHD$pHD$pHD$H+H(hE111HALHD$pHHm(HNjtEH|$pHx
HHOHD$pED$~(DL$EH5(H=)1KHH+H1Hx
HH.AA(H&HHFHD$H$HoLnHD$ )$fDH1!LHLybH$Hq-LmI@H
vAHHHH5rSL
	H81XvZH
H=+HD$HD$H[]A\A]A^A_fHH
HAHMEIffHHD$H] H+HcD$LtMHH5!H(&HEuH} HD$@Hk)H4	E1Ll$(H\$@MfMIMM9	J<Lw(f/o.v݃|$Ll$(#L%A$tA$L%HIEH9t>HXHHqH1fHH9H;TuH=P(HD$pHH-H5H`IH-H|$pHx
HHV&H5LLD$HD$pLD$HHD$pH.HH$HD$xHD$PH1I9H.fHnfHnLHflLD$ )$H$5 H|$xHD$H|$pLL$HD$xLD$ Hx
HH%HD$pM/Ix
HI%L5MM9L;
%L;
%LLL$;LL$A0Ix
HI(EH57LH7H5HHD$LL$HIT7Ix
HIp2M9L;Y(L;YL(LLD$LD$A7Ix
HIp3E1H5 LHH^<HD$pHD$PH9C<HCHD$pHu<LKtAtAHx
HH7HD$pH$LLL$ H$HDŽ$H|$pHD$LD$LL$ HD$pM"<Ix
HI7H5!1LLD$ LD$HI<Ix
HI[7M9L;
1L;
1LLL$	LL$;Ix
HI9$IH,H1t	H!IQL;%fLHDktB @u tDHrIQ Ht	HIQ(LHLL$LL$HIx,IxHIuL0H=i"H$HDŽ$L$HH"'H1Hx
HH$HD$ E1E11A:AE1HD$0HD$8HD$(H|$pHtHx
HHMtIx
HI	H|$xHtHx
HHH$HtHx
HHH$HtHx
HHH
DDH==$HD$HtHExHHEHtHx
HHHL$HtHx
HHHL$(HtHx
HHMtIx
HIMtI$xHI$MtIx
HIHL$8HtHx
HHH\$0HtHx
HHMtIExHIEHt$ HtHx
HHUHL$H7H,HHHfHH9HuH;<rfDnIH#H{t	HkIPL;%LHDtB @u tDHrIP Ht	HIP(LHVLD$LD$HI)IZHIMLu@HD$D@Eu|$H5H|$P#H=IH$H58HHD$ 諻LD$ HHD$pHS%Ix
HIHuH} HIH&LHD$ LD$ HHD$xH{'LD$ HH$H)HtHH$fHnHD$xfInHD$xflHC(CHD$xHH"*H=~IHW+H5HHD$ 莺LD$ HH$HIxHI"H$H5H|$xHu*H$Hx
HH#HT$xH$HDŽ$H|$pH$HHl,H|$pHx
HH$H$HD$pHx
HH$H|$xHDŽ$Hx
HH$H5H$HD$xjHD$xHH,H$Hx
HH%H5HHDŽ$"H$HH,t$HHE1jE111҃HcH$H^_H,H$Hx
HH'HcH|$xHDŽ$HD$PH9G.HGH$H0HttLD$xH|$xIj)HI)H$H|$xH$H$H$H$H$H/H$HDŽ$Hx
HH'HDŽ$H-H|$xHx
HH(H\$xtHx
HH(HD$xL%kHD$xHD$8L9d$u%H=&HD$xHHa/H5H6IH1H|$xHx
HH*LL$HD$xyLL$HHD$xH0HT$D$tHD$LL$HCLL$HH$H0H=iLL$HH$H/H5YHqLL$HHD$pH2H$HxHH,H\$pH5
H$HLL$HDŽ$BLL$.H|$pHx
HH].H$Ht$xLLL$HD$pLL$HHD$pH62Ix
HI.H|$xHx
HH.H$HD$xHx
HH-HT$pHDŽ$HT$0HT$(D$tHD$pHD$(L@HL$(1HD$pHT$8Ht$AIH0HD$pL97HD$pH$H$HxhH$I&H=ozH$HHJ+H5G
芴HD$xHH6L$IxHI.H|$xH\$P1HDŽ$H9_S7fHnHsD$)$H$HD$p+H|$pHDŽ$*H|$xHx
HH-HD$x7HD$xHHF5HD$pHt$HD$pHCHx
HH.H$HD$x蕴H$HDŽ$|H$HDŽ$cH\$HDŽ$H5LH$HH4Ht$HHD$pHH4H$HxHHY,H\$pH;HDŽ$H;6'L9'HAą\4H\$pHx
HHf-HD$pE1H5L=HD$pHH.LHD$xHHJ.H$HH.HD$xH|$pHHD$xHCHD$xHH-H|$pHx
HHg*H$HD$pHx
HHL*H=Ll$xHDŽ$HD$x1HD$xHH.H5HAH$HH.H|$xHx
HH[*HD$xHD$xHH.AEt	AEH\$xLkHD$pHH.H=H.H5	HHD$蛰LL$HH$Ha.Ix
HI-H$H5H|$p.H$Hx
HH-HT$pHt$xHDŽ$H$.H$HHp-H$Hx
HH-H|$xHDŽ$Hx
HH,HD$xH|$pHx
HH,L$HD$pALT$ tAL$IBLH5(
HDŽ$LHD$XGH$IH-H+HD$Hf-H$Hx
HH-HD$HH5HDŽ$HH$IHe1HD$HH5dHHD$pH0HD$xHt$PH9p>1HPHT$xH,1HHttH|$pHL$pHx
HH0HT$xH|$pHDŽ$H$HcиH)H
H|$xH$'AH$HD$x&0H|$pHx
HHS0H$HD$pHx
HH$0HDŽ$zH|$HD$PHD$HLT$XE1Hl$XJ4H\$`LMHt$HLX@HMLl$hHMI8HMIHT$@H0HHI0LH0H0AOIG 1I0.fH(H0HH@(HA;HH@HHtǀ8H(HI8HcI H0fL}L%=
M1HI9L;duIHH$LyWfDH<sfDLnHHIL$H$E1ID$(H\$LMMHD$JtI9HQI9EH9FC;IUH;VHFI}H9AHAt
HEM DF DD@@8bA 0
I}8A Hv8DAAhDDE9H0HiH\$MHDŽ$HHHH5L
OjAH
}HH81(AZXA[)f.L9M9uupL9uugLLD$HH^H;"H;=uLD$L9Hx
HHB	@II9JtI9H\$MO,\@HLHHHH,L5L@LxIHhWHXHD$H;^
H$H$HxhH$H%H=nyH$HHH5F艨HD$xHHL$IxHI`H|$xH
H$1HDŽ$H9OfHnAD$)$H$HD$p,H|$pHDŽ$Q
H|$xHxHHu*HD$xL9HD$xH!H$IH	~D$pH$HD$pHDŽ$D$xHD$x@胨H$HDŽ$jH$HDŽ$QHDŽ$H=N
HD$pHH
H5HHD$xHHBH|$pHx
HHHD$p,HD$pHHAEt	AEH\$pLk`H$HHH=0
HDH5(HHD$CLL$HIIx
HI
H5wH$LLD$2LD$Ix
HIeH$Ht$pH|$xHHIH|$xHx
HHEHD$xH|$pHx
HH-H$HD$pHx
HHHDŽ$tHCsH{ HD$8HJ	H|$ IHD$0HnfH=H*D$0kL|$HH5IHD$(H$HIH5VٮH$HHHD$pH5H9G"HGHD$pHjHttL$H$I|HI+HD$pH$H$H$HDŽ$H|$pIAlHD$pMH$Hx
HHHDŽ$Ix
HIHD$(LHIHD$H~{HD$HJE1Ll$PLl$0L|$8HT$ LH@HHl$8H\$HHLM@HL$@LMMLHHL|$ H9\$uHl$8H\$HLl$PH|$(&H$Ht~H51H$HD$(H$HxHH
H$HD$(HT$(HDŽ$HHx
HHHDŽ$tH\$E1E1E1H\$ HD$0HD$8HD$(DT$HD\$@LD$tDT$HD\$@LD$LDT$@D\$NDT$@D\$DT$@D\$)DT$@D\$f.DT$@D\$DT$@D\$fDT$@D\$DT$@D\$fL%A$A$L%r@ID$(HL$E1HD$fDJtI9HI9D$H9FIT$H;VHFI|$H9AHAt
HEL$ DF DD@@8udA I|$8A Hv8DAA?DDE9u$HHfDIM9fDLM9uuL9uuLLD$HHt\H;H;=|LD$L9H|$H|$Hx
HH`HL$yH_PHL$K*fHD$ E1E1E1HD$0E1E11HD$8AɘAHD$(HD$HD$ E1E1E1E1E11AؘHD$0AHD$8HD$(f.HAAP@L
UILHH$H$dHfA!AHD$ E1E1HD$0HD$8E1E1E11HD$(H|$PH|$&fDD<I}8A@HE|$LD$;LD$L)CLD$ LL$FLLL$LL$UAH$趞H$HDŽ$蝞H|$pHDŽ$臞H|$xHD$ptH
%DHD$xH=ͫHL$pHT$xHH$VHT$HH9BD$tHD$H$LFIHcHD$+LL$HI2LHH$HHD$QLD$HIfH$Hx
HH
HDŽ$Ix
HI
H$WH|$xHDŽ$AH|$pHD$x.H{hH$HD$pH$H$HD$ E1E1E1E1AAHD$0HD$8HD$(NVS@LH$HHHD$pIHH$HD$pHDŽ$IEHD$ E1E1E1HD$0E1E1AHD$8AHD$(H7THH0H;0HHH0HH0H0D$D$HHD$ E1E1E1HD$0E1E1AHD$8AHD$(LN(H8A@IE|XDD$eD$TLTLGILd$HL9t$Hl$XH\$`Ll$hH|$PH$HtqH51躙H$H$Hx
HHL$HDŽ$MI$xHI$HDŽ$Ht$ D$E1E1Ht$KHHH
ADDHD$ E1E11E1AAHD$0HD$8HD$(cLN(H8A@IEI|$8A@HE|$HD$ E1E1E1HD$0A6AHD$8HD$(LLD$菽LD$H}AAAhAy-(fHF(HJ(H)0HLcJ4LN(L;(}INL(HJ(H0DDLLԼHD$ E1E1E1E1AzAHD$0HD$8HD$(HD$ E1E11HD$0E1E1AqHD$8AHD$(HD$ E1E1E1E1AAHD$0HD$8HD$(jHD$ E1E11E1A|AHD$0HD$8HD$(*Ż軻豻觻!HD$ E1E1E1E1AsAHD$0HD$8HD$(HD$ E1E1E1HD$0AAHD$8HD$(H@0HH@(HH(H+0H0HD$ E1E1E1E1AAHD$0HD$8HD$(HD$ E1E11HD$0E1E1A~HD$8AHD$(m7cRYmDD~AuII@HD$xHMptAtAIx
HIHD$xH\$pMH$HD$ E1E11HD$0E1E1AHD$8AHD$(HD$ E1E11E1AAHD$0HD$8HD$(HD$ E1E1E1E1AAHD$0HD$8HD$({HD$ E1E1E1E1AAHD$0HD$8HD$(:ո3HD$ E1E11E1AAHD$0HD$8HD$(DMIHILDT$HD\$@LD$XDT$HD\$@LD$AAHD$ E1E11HD$0E1E1HD$8HD$(qAwHD$ E1E11HD$0A'AHD$8HD$(HGH$HHttLD$xH|$xI
HI]H$H|$xH$H
HHt$1IHHD$xH;D$HD$xHD$0HD$(IHD$ E1E1E1E1AAHD$0HD$8HD$(HD$ E1E1E1E1AAHD$0HD$8HD$(HD$ E1E11HD$0E1E1AHD$8AHD$(+!HD$pH$LHD$ E1E1E1HD$0E1E1AHD$8AHD$(诵sHD$ A
ADDALLD$kLD$yAXH$Hx
HH
H\$ AHDŽ$E1E1E1E1HD$0HD$8HD$(\AA'HD$ E1E11E1AAHD$0HD$8HD$(HD$ E1E11HD$0E1E1AHD$8AHD$(6LXN@H$H$H';LL
bHLD$.LڳAHD$ E1E1E1E1AAHD$0HD$8HD$(AAE1E1H{hDT$PE1E1D\$HE1E11H$H$LD$@H$LL$LL$LD$@HD$ HD$0D\$HHD$8DT$PHD$(rݷHH\$ A9AHD$ E1E1E1HD$0E1E1AHD$8AHD$(H\$ ACA\H\$ E1E1E1E1AVHD$0AHD$8HD$ E1E1E1HD$0E1E1AHD$8AHD$(lHD$ E1E1E1HD$0E1E1AHD$8AHD$((LL$辱LL$CHD$ E1E1E1HD$0E1E1AIHD$8AHD$(HD$ E1E1E1HD$0E1E1AHD$8AHD$(HH$IHE1AƝAzHD$ E1E11HD$0E1E1AKHD$8AHD$(H$117HD$ E1E11E1AAHD$0HD$8HD$(HD$ E1E11HD$0E1E1AHD$8AHD$(DJHD$ E1E11AAE1HD$0HD$8HD$(<H$1<AʝA5E1AȝA!HD$ E1E1E1HD$0E1E1A֚HD$8AHD$(H$1HLL$CHD$pLL$H$!LLD$LD$jLLL$LL$LL$H\$pLL$FH\$ E1E1E1E1AHD$0AHD$8\H$jH$HDŽ$QH|$pHDŽ$;H|$xHD$p(H
٢޺HD$xH=UH$HT$pLHt$xxHT$HwH9BXHӉD$tHT$Hx
HHH|$x蚉H|$pHD$x臉H$HD$pqI}hH$HDŽ$H$H$TH\$E1AϝAH$E1E1E1E1E1AAHD$ HD$0HD$(iLLLL$LجάĬH$H$蠬薬A"E1E1E1AE1E11HD$ HD$0HD$(E1E1E1E1E1AAHD$ HD$0HD$(LE1E1E1E1E1AAHD$ HD$0HD$(7«E1E1E1E1E1AAHD$ HD$0HD$(E1E1E1E1HD$ E11AHD$0AHD$(@L3qD\$$D\$NHD$ E1E1E1E1AAHD$0HD$8HD$(/IH$1IH$11AԙA`HD$ E1E11E1AΙAHD$0HD$8HD$(HPH
E1E1E1*RH=1CE1HD$pA?HD$ A]HHD$ E1E11E1AҙAHD$0HD$8HD$(E1E1E1E1E1AAHD$ HD$0HD$(E1E1E1E1HD$ A;AE1E1E1E1HD$ A6AE1E1E1E1HD$ A4AcE1E1E1E1HD$ A2A=E1E1E1E1E1A$AHD$ HD$0HD$(H
BE1E1E1	QH=П1E1HD$xAHD$ AHD$0HD$(=A3)E1E1E1AIHD$ AaL&YE1E1E1A\HD$ A'E1E1E1AKHD$ AE1E1E1ANHD$ AE1E1E1AWHD$ AE1E1E11HD$ AUAE1E1E1ASHD$ AvHAE1E1E1ANE1E1AA7ҦmAZE1E1E1HD$ A1辪HD$pHHHFt	H6H|$pH\$L-HGHCL9D$tH|$pH\$C @ADDHDŽ$HKH_ HtH|$pHHG(H5LLqCiH$HHH@L9tH$H\$xHYH$Hx
HHzHt$xHDŽ$F @DH|$pD9DHVHD$xCHw0HL0t0H|$pHsHG8HQHD$xHHfH|$pHx
HHCHD$xH=H$HD$pHDŽ$H$!HD$pHH2H|$xHx
HHHD$xH|$p1H|$pHx
HHHD$pAAE1E1E1E1HD$ 1XH5yH	JL|$xLϣ'^wHD$ E1E1HD$鿿E1E1E1E1HD$ AΛA۾AқAVE1E1E1E1HD$ AЛA餾H5HUL|$pCAH$Hx
HHAE1E1E1HDŽ$7ҢȢE1E1AA1蠢AAI}hDT$@E1E1H$D\$E11H$H$9D\$DT$@E1HD$ 鞽HGH$HHttLD$xH|$xI<HI"H$H|$x1ɺGHСE1E1E1E1HD$ AݛAH|${AAHHCoE1E1E1E1HD$ AA餼?E1E1E1E1HD$ AAjH;uHPXH\|H;JtH51HAH2E1E1E1E1HD$ AAAA}H;~H|$PXHH$HE1E1E1E1HD$ AA鞻E1E1E1E1HD$ AAxAAE1E1E1AE1E11HD$ CD\$ٟD\$LǟH$1ɺE1E1AAHD$ AE1E1HD$0AH|$p'H;ŪH5H|$趝Hf.@HHH?Pf*Y@+Hff.HGH?H~CAUIATIUHS1HfDH}UADHI9uH[]A\A]fDH~SAUIATIUHS1HfDI}AUf*Y*AHH9uH[]A\A]AUIATL%bUH-ZSHRH(I}AUfHHHH*YLH9IEI}AL$HcAT$\$L$D$f(fW%)f(T$L$f($YD$Xf/KH(f([]A\A]f.fW)豟
)H([]\A\A]f(fDH~CAUIATIUHS1HfDLxADHH9uH[]A\A]DAVAUIATL%UH-SHHI}AUfɉ	*YL9IEI}AL$HcAT$\D$L$A(W-(A(7T$L$(fA*Y7(YD$X/HH([]A\A]A^@f*Y'W4(菙
'H[]\A\A]A^(H~CAUIATIUHS1HfDL(ADHH9uH[]A\A]DH~[AUIATIUHS1HfDI}AUfW'苝fWs'AHH9uH[]A\A]fff.@H~sAUIATE1UHSHHDI}AUf*Y&W'ZZW&BDIL9uH[]A\A]AWAVIAUL-ATL%wUHSHdH(IFI>L$HcT$\$L$%|&D$Yf(Y-T$L$f($YD$Xf/wAI>AVfII	LH!H*AYLtfW
%I94?H(f([]A\A]A^A_@IFI>fW%誛
%I>Y$AVfWz%腛$fWh%f(XYf/vX
~%AzfW
9%m@H~CAUIATIUHS1HfDLȟADHH9uH[]A\A]DAWAVIAUATL%UH-SHHDIFI>HcL$\D$%$fAnfZAYAf(YRL$f(fA*Y$YD$XZf/wDI>AVfAA	A*AYfA~tW#fA~D9l/HfAn[]A\A]A^A_IFI>f*Y|#W#
p#I>YL$AVf*YD#W}#ؔL$Wk#(XY/vX
#AfA~RW
:#fA~AH~CAUIATIUHS1HfDL؜ADHH9uH[]A\A]DUHH0f.(D$d|$ff.8=f/|$@H}UHD$蓖
t$T$\f/r5
D$f(^\$f/rH0]D$zL$ \^D$轗|$L$ D$f(Y\f(
;^zT$\$\f/(H0]f.|$\=!!Y|$(ff.2Q5^t$@Hff(D$YXf/sf(L$H}YYD$UL$[!f(YYYS\f/wbL$ 薖D$D$腖%%\d$f(L$ f(X YD$(YYXf/D$'D$(YD$H0]DH0f]H0]`fDUHH . D$ud$f.R=/|$%d$H}UfH*YT$T$

t$T$\/r-
uD$(^裘\$/rH ]fD$BL$\^D$=|$L$D$(Y\(
^<T$\$\/#H ]Dt$\5fYt$.;Q=d$^|$H耘f(D$YXg/s(L$H}YYD$UL$Bf(*YYD$YY\/w_L$
D$D$=\|$(L$(XYD$YYX/D$D$YD$H ]@H f]H ]K%Sff.HHH?PHHff.HHH?PHff.HHH?PHHff.HGH?f.`E„f.Ef(D„USH(--f/Kf1X	
\$^T$YYX
Y\
YX
Y\
YX
Y\
YX
Y\
Yf(L$ґL$X
T$f(5b\$^f(\<f/YX
X\vHH~CH@\L$Hf(T$OL$H9T$\uH(f([]f(f\H,H*Dff(ff.@H$L$ܕYD$X$Hff.HD$YD$HfDHHH?$L$PYD$X$HHL$!YD$HfDHL$QYD$HfDUHH0D$ f/L$(f/f(f/vf/@H}UH}D$U
l^L$ D$D$蝏
M^L$(D$D$~XD$(f/rL$XL$ff/vf/L$H0]^f(fDD$ HHD$D$(ތL$X^H0f(]H?U\$ Hf(D$(XYfHnf/wfD$Ŏf(D$^L$ L$誎L$f(^T$(T$ f(_\\$f(L$賋\$T$ D$\f(蔋XD$IL$H0]\f(qHYߋHXfDUHH$D$H$Hf(Yf($*\$$H]Y^f(ff.fUHH裒HD$蕒L$H]^f(ÐHD$ы^D$Hff(ff.z
uHT$虋
T$H^ff.HD$a~
9fWP~
(fW
^L$H齌ff.fSHH$L$
ff/wFH;Sf/0r
.\\f(uL$Y$H[\@XOYD$X$H[ff.AVfI~SHHL$H;Sf(\f/vfW'L$H[YfInA^\SHH$L$DH;Sff/v
8\^胋YD$X$H[fH觏H鞈ff.HD$衉fXf.wQYD$H/ff.fUHHD$L$HY
$f(L$蘈L$ff(f.w!QY$f.w1Q^H]f(D$f(褑T$ff(f($膑$f(ff.AWf(AVATUSHH@f/D$f.zuE1H@L[]A\A^A_f.D$fWBE1:
D$f.IL$H;SL$Yf/L$wH@L[]A\A^A_fDff.-Qf(D$L$聉L$Y
X
D$0Yf(L$ \
\-f(s\%[^
wf(d$8XfI~XLfI~G^\fH~f.H;SH;f(\kT$ST$
TD$f(fT\fIn^L$XD$ YXD$XbL$f/
L,\$rfHnf/M_5f/v
f/Gf(L$(D$fInL$(t$8D$D$ Y^X߇|$ID$X|$f(f(\fI*YL$0\L$D$fH*L$cL$\f/L$H@L[]A\A^A_D$rf(fUH\^f(ÉH]麅f.AWfAVH*AUIATIUSHH$t
H9r	Me$AEf(\A}|$Pf/t$H#	L$PT$Yf(fD$HAEX\$AM(f(L$U\$Y\$HH,fL$T$f.Im0f(\$h	Qf(Y\$HY%-\f(fTf.05d$PXf(t$(fD(D$AE8ffA(H*XX1Xf(Am@$A\f(\$xA]PY|$8^f(A}H\XfD(\$@A]Xf(\^f(YXYf(Yl$H\\$`^A]`Yf(XYfA(AXXL$pAMhAYf(D$AEpfA(^D^Xf(D$XAExfA(XD$ AMl$LH)H$fH;Sd$ H;Yd$Sd$f/d$f(Vf/d$"t$l$@fH*\YT$0f(^XXD$8\X\$(fT^\f/L$[趉L$T$0L,MI)LH?HL1H)H~#D$hYD$(fH*\f/fd$P^d$HI*YI94f(jf/$M)f/L$(MGH[]LA\A]A^A_Df.
ADEf/d$Xwcd$0D$^D$`XD$8L,MSEJd$0\d$L$HYYL$`d$0D$\$x^D$p\f(VL,M9EL$d$0\d$XYYL$pqfDHEI9IVf(ff(H*H^\YH9uIFH9HUff(H*H^\^H9uWf(^<
t$hHX3
HHf(XYX 
^^XT$(YfH*^f(T$0\$4\$T$0f(f(\f/Xd$0f/IFfEfEL*HEfEL*LfL*$L)HH*fE(D$EYfA(fA(D$A^fE(D$AYEYfD(l$DYD$$D$D$>D$$D$fA(^D$T$HD$$t$Yt$PAYf(^=5L$-H)f(f(D$D$^d$0D$DY$D$D$D$D$\f(^\fD(^D\D^
f(A\fEL*DX\$(DY$A^D
EXfEM*AYDXf(A^A^AXfD(D\f(E^A\fD(A^D\f(E^A\fD(A^A^Xf(A^A^D\f(E^\A^A\fD(A^\A^D\f(E^\A^A\A^\^L$A^A^XXf/f($YT$\X踃L,~fDH,ffUH*f(fT\fVf(f(t$P\l$Hf(
f.Bhf/B]J8rz Hj0L$J@Yt$P5$JH|$HL$8JPYt$(L$xJXL$@J`L$`Jh\$hL$pJpL$JxL$XL$ 
D$hT$L$苃T$L$Ff.AUIATIUSHH8D$t
H9rWd$-ѽfMeI*AE\AeAm f($l${$Y"yd$$L$f(AEfYYAeXX
Uf.Q-Gf(YXf/aH,Im0$H;S$1f/f(vp@HH9})$H;S$f/1f(HH9|Lf\H)HH*YT$YfH*YT$^f/wH8[]A\A]Ðf.Bf/Bz ZHj0|$9H81[]A\A]f(d$(\$ T$$蓁d$(T$-$\$ YXf/f(l$ d$$H$d$l$ f(YXH,ff.Hf.lEurzfUHH*f/rYf/rM]?H\Yf/f(r&IH]L)fD1D]2wf+wIH]L)UHH$f(L$$vL$ff.$f/v]f(HL$\f(;}H$}L$ff(f.~QX$H]YXY
@Hf($wfHHH*X$H]|fD`H]fB$HH]|D$f(IT$f(hf.UHH$f(D$|$$Hf(Yf($6|\$$H]Y^f(ff(f(SHXf(H ^L$\$l$|\$L$Y
yf(YYYf(YXff.w\Q\YT$\$H;XT$S\$T$f(f(X^f/sY^f(H f([f(\$T$}\$T$f(UHH@D$8f(L$ssf/D$f/D$s|$f/
[-ft$Yl$YXf.Qf(XL$f(Xf.JQ\T$f(f(X^f(YXXL$^L$0&f(^uXD$L$ \f/D$sH}UY'v\$0H}f(YXXL$f(L$^\d$(YL$ UL$ f(\Y\f/D$\H}UD$D$(vf(f/D$vfW8XT$8
f(fTζT$X+ut$T$\f/vfWH@]H}UX\5YH@]f^D$f.QD$HJyYD$
\XD$8f/vXPf/(q\:dD=f(|$|$^Xf|$D$0(zD$qf(L$ zL$ f(f(zl$f(hff.fSHH0D$ fWsD$(H;Sf/D$ D$H;SYD$(uT$f(fWdYf/~f(T$\$s\$D$f(rL$^XxL,MaT$ff.E„EH0L[f/ArA@HHH?D$\$PL$$f(f/vf(fDYHXf/wHÐHD$qp~IT$$fWf(Ar~)$f(fW\f(^f(fTf.v3H,ff(%IfUH*fTXfVf(f/CHsH,HDf/rAukmff.AVSHH(\ֲf(D$qD$H;SH;D$S%\d$fI~
^L$f(p=Tf(fTf.v;H,f=MH*f(fT\
fUf(fVf/;]5
f/Kf(L$T$^X.pT$l$f(fInYf(\^Yf(\^f/H(H,[A^f.f(f(H8H\\T$H?L$D$(f(d$^l$ 4$P4$d$L$T$f/r;l$ \$(Yf(Yff.wPQXH8f(f(\
ذ\fYYf.w*Q\H8f(f($v$f(f($u$f(1HATIIUHI	SHLHI	LHL	IIL	III	LH I	ĸH9wfDH;SD!H9r[]A\DH;SL!H9sH;SL!H9rf.ff.@AWAVAUATIUSHHttHHH?IIH9wqHEAEDjAME9v,D1AAA9sH}UAME9wI IHL[]A\A]A^A_@HEHEuQLbIHHI9v+L1HIIH9sfDH}UIHI9wHL$DHEH}L!I9rL$oDHEH}D!D9wL$ODЉI>@I0fDAWAVAUATAUSHteHGIH?AEu`JL$Dl$AME9v%1AAA9sI>AVAME9wI AHD[]A\A]A^A_@IFI>D!9rD$f.AfAWAVAUATUSHt$H\$PfA։IAMfAAEEF-DD$H?AUDD$A$3EAfA9v^AAƙAAf9r&ID3A$xA<$3AfA9v%uI}AUA$3AfA9wD$H[]A\A]A^A_+A$PA$D!f9s!uI}AUA$D!f9rfD$H[]A\A]A^A_fuDH?AUA$D$fH[]A\A]A^A_@+AxA9+A)ff.@AWAVAUATUSHt$H\$PA։IAMAAEE~H?AUA$3D@A8v^AEAƙAA8r#Ff3A$xDA<$3@A8v%uI}AUDA$3@A8wD$fH[]A\A]A^A_f+A$PA$D!@8s!uI}AUA$D!@8rD$H[]A\A]A^A_uDH?AUA$D$H[]A\A]A^A_D+AxA9+A)ff.@USHHl$ tAHL˅tmA)EH[]fDH?QEAWAVAUATIULSH(HL$HujH~OHHHfInLHHLHH9uHt$HHtLdH([]A\A]A^A_IHH9EH|$~DrE1Dt$D$fI}AUt$I9s$D$19s@I}AUI9wH LJLIL9|$uLf.HEE1HLrH|$H\$fI}AUIHHL9s-HD$1IHH9sI}AUIHH9wHLJDIL9|$ufH|$1fI}AULHDHH9\$ufDH|$n1f.I}AULHDHH9\$uBIII	LHI	LHI	LHI	LHI	LH I	H|$E1fDI}AUL!H9rLJDIL9|$uIII	LHI	LHI	LHI	LHI	H|$E1I}AUD!9wLJDIL9|$u[1OfAWAVAUATMUHSHt$H~pHAHHfnLHfpHLHH9uHH@t,t$HHHA4H9~HAtH9~AtH[]A\A]A^A_@IӃEDrE1Dt$\$H~f.I}AUt$I9v$D$19s@I}AUI9wH L$CIL9uH[]A\A]A^A_fIII	LHI	LHI	LHI	LHA	HE1I}AUD!9rD$CIL9uH[]A\A]A^A_ÐH1DI}AUD$AHH9uH[]A\A]A^A_1zAWAVAUATUSLHfHHAHCHfnLHfaHfpLʐHH9uHHt\Hxf4CHH9~KHxftH9~=HxftH9~/HxftH9~!HxftH9~Hft
H9}ftH[]A\A]A^A_DIAfHEH~DrII1H$A1D$ufI?AWfD9s@D$Af9s1t1fA9vI?AWȉfA9wۿHDfKH;$2t1뒐AHHH	HHH	HHH	HH	HM4I11t@1!fA9sI?AW!fA9rDHfSL9uH[]A\A]A^A_@HI,IHDfCH9mI?AWATfHSH9uP1DAWAVIAUATUSH@t$uVH~<H@HL[]A\A]A^A_4`@f@t$H@sH9uUH[]A\A]A^A_fDIEH~I,	DzLˉD$11Af.8I}AUDD8nD+D$EϙAA@8r<RDI}AUDA8.DA8tʃDAHHH	HHH	HH	HLM11#I}AU!A8sO!A8st!A8rT$HSI9uH[]A\A]A^A_fT$HSI9ufDHRLM11&|$HKL9 uI}HAU|$SL9uH~[t_AT1I1UI,	SL˅uI<$HAT$ƒSH9tHKH9u[]A\@HL]fAWI@IAVAUATUHSH(LD$HD$H~j
iII1M@L$A\HH;\$t?ALLLL$^cI)HDMH([]A\A]A^A_H~HD$L|H([]A\A]A^A_ÐAWAVAUATIUSHxMHT$ML$HL$XLD$uHHu1Hx[]A\A]A^A_IH<LU`IHE11MLH|$LD$XI4H~JH&HfHnKHHHHH9uHHI	H9tIIHH9uHH|$H?HIHHD$0H9H|$HH\$@HHLt$ 1HD$8KHD$HHHHH|$`HHD$hHD$XHHD$(HELMHD$PE1Mt}H$LL$H\$H\$PHLL)J`JtLHDHH0JLIM9uLH\$IHL$HHLHHHHDH9uH|$H9|$0|7H|$8H\$H|$ H;\$@UL
WHx1[]A\A]A^A_@H|$HtHt$XHT$ HFH9HGHHL$h1foofHH9uHD$`H|$H9cHHTHD$(HH+HHLHH?HHHD$0H9D$=IL+d$HL$ Ht$1H|$X@HH+HHH9uf.@AWAVAUATUSHHxMHT$MHt$0LD$ ;H2HIHH?HL)HHHD$@HL9HIMLHD$8LL$HMHHHD$H$HD$PHEHHD$`HHHHD$XIHD$(HAH|$hHD$Lt$8ME1H|$Ld$0LMIIL;l$teK4LHI)L[I)JMHT$ MH9T$@|VDHL$H\$PHL$HD$H;D$HqHx[]A\A]A^A_fMHD$LtHL$ H9L$@}H|$tIGH9ظtdH|$v\HT$X@AoofHH9uHL$hH9L$`dHD$H$HHHD$(HH+H=HL$IH+HHH9wfDAWAVAUL,ATMUHSHHXHT$HHL$@H	~
IEH9I?HD$@MIMII)L9LNL9Hu8;IHL\L9II)M9MtMLL)M9LDL)L9t$@LNHXL[]A\A]A^A_ÐI)IfHfI*fI9LOH9fLLNHML)I*II*^f(YX
9L$fH*IUYYfH*^YfH*^Xf.f(Qf(IVfIYfL$ M)X]D$fH*IWH*YfI*^[L,L"WLL)D$Wt$LL)Xt$VXD$K|%Ld$0D$VL$ M9LY
t$INeXD$HXt$8fH*f(fTf.t$(D|$(]|$(@H;SH;D$S\YD$fL$^XD$f/wf/D$(sZML,LM)VLL)D$ Ud$ LXd$ UHD$0XD$ J< D$ UXD$ T$8L$\e\Y\f/s=f(T$\Yf/ݕf(&TT$Xf/H;l$HMOL)L9t$@LOH,f%fUH*f(fT\fVf(Zf(df.H}HDfHH*f(T$lST$
f(Yf(^Y^
6\XYX
bHY\XHH while calling a Python objectNULL result without error in PyObject_Callbase class '%.200s' is not a heap typeextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base type__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)%.200s does not export expected C variable %.200sC variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)%.200s does not export expected C function %.200sC function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)Interpreter change detected - this module can only be loaded into one interpreter per process.too many values to unpack (expected %zd)%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectUnexpected format string character: '%c'Acquisition count is %d (line %d)%.200s() keywords must be strings%s() got an unexpected keyword argument '%U'invalid vtable found for imported typemultiple bases have vtable conflict: '%.200s' and '%.200s'join() result is too long for a Python stringCannot convert %.200s to %.200sinstance exception may not have a separate valuecalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionBuffer dtype mismatch, expected %s%s%s but got %sBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'Expected a dimension of size %zu, got %zuExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..Buffer dtype mismatch; next field is at offset %zd but %zd expectedBig-endian buffer not supported on little-endian compilerBuffer acquisition: Expected '{' after 'T'Cannot handle repeated arrays in format stringDoes not understand character buffer dtype format string ('%c')Expected a dimension of size %zu, got %dExpected a comma in format string, got '%c'Expected %d dimension(s), got %dUnexpected end of format string, expected ')'can't convert negative value to size_t'%.200s' object is unsliceablevalue too large to convert to int%s() got multiple values for keyword argument '%U'cannot fit '%.200s' into an index-sized integerUnable to initialize pickling for %.200snumpy/random/_generator.cpython-312-x86_64-linux-gnu.so.p/numpy/random/_generator.pyx.c'NoneType' object is not subscriptablehasattr(): attribute name must be stringView.MemoryView.__pyx_unpickle_Enum__set_stateView.MemoryView.memoryview.size.__get__View.MemoryView.memoryview.nbytes.__get__View.MemoryView.memoryview.itemsize.__get__View.MemoryView.memoryview.ndim.__get__View.MemoryView.memoryview.suboffsets.__get__View.MemoryView.memoryview.strides.__get__View.MemoryView.memoryview.shape.__get__View.MemoryView.memoryview.base.__get__View.MemoryView.transpose_memsliceView.MemoryView.memoryview_cwrapperView.MemoryView._err_no_memoryView.MemoryView.copy_data_to_tempView.MemoryView.memoryview_copy_contentsView.MemoryView.get_slice_from_memviewView.MemoryView.memoryview.is_f_contig%.200s() takes %.8s %zd positional argument%.1s (%zd given)View.MemoryView.memoryview.is_c_contigPyObject_GetBuffer: view==NULL argument is obsoleteView.MemoryView.memoryview.__getbuffer__View.MemoryView.memoryview.__str__'NoneType' object is not iterableView.MemoryView.memoryview.__repr__View.MemoryView.memoryview.setitem_indexedView.MemoryView.assert_direct_dimensionsView.MemoryView.memoryview.setitem_slice_assign_scalarView.MemoryView.memoryview.is_sliceinteger division or modulo by zerovalue too large to perform divisionView.MemoryView.pybuffer_indexView.MemoryView.memoryview.get_item_pointerView.MemoryView.Enum.__setstate_cython__View.MemoryView.Enum.__reduce_cython__View.MemoryView.array.memview.__get__View.MemoryView.array.__getattr__View.MemoryView.array.__getbuffer__View.MemoryView.array.__setitem__Subscript deletion not supported by %.200sView.MemoryView.array.get_memviewnumpy.random._generator.Generator.__init__numpy.random._generator.Generator.logseriesnumpy.random._generator.Generator.geometricnumpy.random._generator.Generator.zipfnumpy.random._generator.Generator.waldnumpy.random._generator.Generator.powernumpy.random._generator.Generator.weibullnumpy.random._generator.Generator.paretonumpy.random._generator.Generator.vonmisesnumpy.random._generator.Generator.standard_tnumpy.random._generator.Generator.standard_cauchynumpy.random._generator.Generator.noncentral_chisquarenumpy.random._generator.Generator.chisquarenumpy.random._generator.Generator.fnumpy.random._generator.Generator.standard_gammanumpy.random._generator.Generator.standard_normalnumpy.random._generator.Generator.uniformnumpy.random._generator.Generator.betanumpy.random._generator.Generator.randomnumpy.random._generator.Generator.__setstate__numpy.random._generator.Generator.__getstate__numpy.random._generator.Generator.__str__numpy.random._generator.Generator.__repr___ARRAY_API is not PyCapsule objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule compiled against API version 0x%x but this version of numpy is 0x%x . Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem .FATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtimenumpy.random._generator.default_rngnumpy.random._generator._check_bit_generatorView.MemoryView._memoryviewslice.__setstate_cython__View.MemoryView._memoryviewslice.__reduce_cython__View.MemoryView.memoryview.__setstate_cython__View.MemoryView.memoryview.__reduce_cython__View.MemoryView.memoryview.__cinit__View.MemoryView.memoryview_fromsliceView.MemoryView.memoryview_copy_from_sliceView.MemoryView.memoryview_copyView.MemoryView.memoryview.T.__get__View.MemoryView.array.__setstate_cython__View.MemoryView.array.__reduce_cython__need more than %zd value%.1s to unpacknumpy.random._generator.Generator.__reduce__View.MemoryView.slice_memviewslicelocal variable '%s' referenced before assignmentView.MemoryView.memoryview.__getitem__numpy.random._generator.Generator.bytesView.MemoryView.memoryview.setitem_slice_assignmentnumpy.random._generator.Generator.normalnumpy.random._generator.Generator.logisticnumpy.random._generator.Generator.gumbelnumpy.random._generator.Generator.lognormalnumpy.random._generator.Generator.laplacenumpy.random._generator.Generator.spawnnumpy.random._generator.Generator.gammanumpy.random._generator.Generator.standard_exponentialnumpy.random._generator.Generator.poissonnumpy.random._generator.Generator.rayleighnumpy.random._generator.Generator.exponential'%.200s' object is not subscriptablenumpy.random._generator.Generator.permutationView.MemoryView.array.__getitem__View.MemoryView.memoryview.__setitem__View.MemoryView.memoryview.convert_item_to_objectView.MemoryView._memoryviewslice.convert_item_to_objectView.MemoryView.__pyx_unpickle_Enumnumpy.random._generator.Generator.noncentral_fView.MemoryView.array.__cinit__Argument '%.200s' has incorrect type (expected %.200s, got %.200s)Argument '%.200s' must not be Noneobject of type 'NoneType' has no len()expected bytes, NoneType foundView.MemoryView._allocate_bufferCannot copy memoryview slice with indirect dimensions (axis %d)View.MemoryView.array_cwrapperView.MemoryView.memoryview.copy_fortranView.MemoryView.memoryview.copynumpy.random._generator.Generator.permutednumpy.random._generator.Generator.integersView.MemoryView.memoryview.assign_item_from_objectView.MemoryView._memoryviewslice.assign_item_from_objectnumpy.random._generator.Generator.dirichletnumpy.random._generator.Generator.negative_binomialnumpy.random._generator.Generator.hypergeometricnumpy.random._generator.Generator.multivariate_hypergeometricnumpy.random._generator.Generator.shufflenumpy.random._generator.Generator.triangularnumpy.random._generator.Generator.multivariate_normalnumpy.random._generator.Generator.binomialnumpy.random._generator.Generator.choiceexception causes must derive from BaseException'%.200s' object does not support slice %.10sBuffer has wrong number of dimensions (expected %d, got %d)Item size of buffer (%zu byte%s) does not match size of '%s' (%zu byte%s)Buffer exposes suboffsets but no stridesBuffer and memoryview are not contiguous in the same dimension.Buffer not compatible with direct access in dimension %d.Module '_generator' has already been imported. Re-initialisation is not supported.compile time Python version %d.%d of module '%.100s' %s runtime version %d.%dnumpy.random._bounded_integersPyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)int (double, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)int (PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)PyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *)PyObject *(PyObject *, PyArrayObject *)PyObject *(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)PyObject *(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)PyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)PyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)numpy.random._generator.Generator.multinomialnumpy.random._generator._memoryviewsliceInternal class for passing memoryview slices to Pythonnumpy.random._generator.memoryviewnumpy.random._generator.Generator
    Generator(bit_generator)

    Container for the BitGenerators.

    ``Generator`` exposes a number of methods for generating random
    numbers drawn from a variety of probability distributions. In addition to
    the distribution-specific arguments, each method takes a keyword argument
    `size` that defaults to ``None``. If `size` is ``None``, then a single
    value is generated and returned. If `size` is an integer, then a 1-D
    array filled with generated values is returned. If `size` is a tuple,
    then an array with that shape is filled and returned.

    The function :func:`numpy.random.default_rng` will instantiate
    a `Generator` with numpy's default `BitGenerator`.

    **No Compatibility Guarantee**

    ``Generator`` does not provide a version compatibility guarantee. In
    particular, as better algorithms evolve the bit stream may change.

    Parameters
    ----------
    bit_generator : BitGenerator
        BitGenerator to use as the core generator.

    Notes
    -----
    The Python stdlib module `random` contains pseudo-random number generator
    with a number of methods that are similar to the ones available in
    ``Generator``. It uses Mersenne Twister, and this bit generator can
    be accessed using ``MT19937``. ``Generator``, besides being
    NumPy-aware, has the advantage that it provides a much larger number
    of probability distributions to choose from.

    Examples
    --------
    >>> from numpy.random import Generator, PCG64
    >>> rng = Generator(PCG64())
    >>> rng.standard_normal()
    -0.203  # random

    See Also
    --------
    default_rng : Recommended constructor for `Generator`.
    
        Gets the bit generator instance used by the generator

        Returns
        -------
        bit_generator : BitGenerator
            The bit generator instance used by the generator
        __pyx_capi__name__loader__loader__file__origin__package__parent__path__submodule_search_locationsMissing type objectendunparsable format string'complex double''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''double''complex long double''bool''char''complex float''float'a structPython objecta pointera string'long double'an integer is requiredcannot import name %Sname '%U' is not defined%s (%s:%d)<stringsource>View.MemoryView._errView.MemoryView._err_dimView.MemoryView._err_extentsexactlyis_f_contigis_c_contigView.MemoryView._unellipsifyView.MemoryView.Enum.__init____setstate_cython__tupleExpected %s, got %.200s__reduce_cython__BitGeneratornumpy/random/_generator.pyxat leastat mostlogserieszipfwaldpowerweibullparetovonmisesstandard_tstandard_cauchynoncentral_chisquarestandard_gammastandard_normaluniformbetarandom__setstate____getstate__numpy.core._multiarray_umath_ARRAY_API_ARRAY_API is NULL pointernumpy/__init__.cython-30.pxdnumpy.import_arraydefault_rng__cinit____reduce__View.MemoryView.memview_slicememviewsliceobjlogisticgumbellognormallaplacespawnstandard_exponentialpoissonrayleighpermutation__pyx_unpickle_Enumnoncentral_fformatcopy_fortrancopypermutedoutintegers'NoneType' is not iterabledirichletnegative_binomialmultivariate_hypergeometricshuffletriangularmultivariate_normalvhunumpy.PyArray_MultiIterNew2numpy.PyArray_MultiIterNew3assignmentbuffer dtypeBuffer not C contiguous.choicebuiltinscython_runtime__builtins__does not match4294967296__debug__complexnumpyflatiterbroadcastndarraygenericnumberunsignedintegerinexactcomplexfloatingflexiblecharacterufuncnumpy.random.bit_generatorSeedSequenceSeedlessSequencenumpy.random._commondoubleLEGACY_POISSON_LAM_MAXuint64_tMAXSIZE_rand_uint64_rand_uint32_rand_uint16_rand_uint8_rand_bool_rand_int64_rand_int32_rand_int16_rand_int8check_constraintcheck_array_constraintdouble (double *, npy_intp)kahan_sumdouble_fillfloat_fillvalidate_output_shapecontdisccont_fcont_broadcast_3discrete_broadcast_iiiView.MemoryViewinit numpy.random._generatormultinomialTbasestridessuboffsetsndimitemsizenbytes__repr__numpy.random._generator.Enumnumpy.random._generator.arraymemview__getattr___bit_generatorp`````pp``


t







&
@
Z



																																																														
		
					

		
		f
r
~
		
													

	&
@
Z

		
				
		








J7





I
I

I
I
I
I
I


I
I

I
I



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I


I




I
I

I
I
I


I

td
d
td
d
d
d
d


d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
tt9
d
L
&


d
d
d
d
d
td
t


































;
















5
(



















R



























w







7<<
776KK^DUDLDxK`KKKKT<|`#Sx,"'!!!!"?"o"""-H(((p((@(jaXHH>>>h_____h_`dd4+";	Jl			\	__pyx_fatalerror00010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899default_rng(seed=None)
Construct a new Generator with the default BitGenerator (PCG64).

    Parameters
    ----------
    seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
        A seed to initialize the `BitGenerator`. If None, then fresh,
        unpredictable entropy will be pulled from the OS. If an ``int`` or
        ``array_like[ints]`` is passed, then it will be passed to
        `SeedSequence` to derive the initial `BitGenerator` state. One may also
        pass in a `SeedSequence` instance.
        Additionally, when passed a `BitGenerator`, it will be wrapped by
        `Generator`. If passed a `Generator`, it will be returned unaltered.

    Returns
    -------
    Generator
        The initialized generator object.

    Notes
    -----
    If ``seed`` is not a `BitGenerator` or a `Generator`, a new `BitGenerator`
    is instantiated. This function does not manage a default global instance.

    See :ref:`seeding_and_entropy` for more information about seeding.
    
    Examples
    --------
    ``default_rng`` is the recommended constructor for the random number class
    ``Generator``. Here are several ways we can construct a random 
    number generator using ``default_rng`` and the ``Generator`` class. 
    
    Here we use ``default_rng`` to generate a random float:
 
    >>> import numpy as np
    >>> rng = np.random.default_rng(12345)
    >>> print(rng)
    Generator(PCG64)
    >>> rfloat = rng.random()
    >>> rfloat
    0.22733602246716966
    >>> type(rfloat)
    <class 'float'>
     
    Here we use ``default_rng`` to generate 3 random integers between 0 
    (inclusive) and 10 (exclusive):
        
    >>> import numpy as np
    >>> rng = np.random.default_rng(12345)
    >>> rints = rng.integers(low=0, high=10, size=3)
    >>> rints
    array([6, 2, 7])
    >>> type(rints[0])
    <class 'numpy.int64'>
    
    Here we specify a seed so that we have reproducible results:
    
    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=42)
    >>> print(rng)
    Generator(PCG64)
    >>> arr1 = rng.random((3, 3))
    >>> arr1
    array([[0.77395605, 0.43887844, 0.85859792],
           [0.69736803, 0.09417735, 0.97562235],
           [0.7611397 , 0.78606431, 0.12811363]])

    If we exit and restart our Python interpreter, we'll see that we
    generate the same random numbers again:

    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=42)
    >>> arr2 = rng.random((3, 3))
    >>> arr2
    array([[0.77395605, 0.43887844, 0.85859792],
           [0.69736803, 0.09417735, 0.97562235],
           [0.7611397 , 0.78606431, 0.12811363]])

    
        permutation(x, axis=0)

        Randomly permute a sequence, or return a permuted range.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> rng.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        >>> rng.permutation("abc")
        Traceback (most recent call last):
            ...
        numpy.exceptions.AxisError: axis 0 is out of bounds for array of dimension 0

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr, axis=1)
        array([[0, 2, 1], # random
               [3, 5, 4],
               [6, 8, 7]])

        
        shuffle(x, axis=0)

        Modify an array or sequence in-place by shuffling its contents.

        The order of sub-arrays is changed but their contents remains the same.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.
            It is only supported on `ndarray` objects.

        Returns
        -------
        None

        See Also
        --------
        permuted
        permutation

        Notes
        -----
        An important distinction between methods ``shuffle``  and ``permuted`` is 
        how they both treat the ``axis`` parameter which can be found at 
        :ref:`generator-handling-axis-parameter`.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> arr = np.arange(10)
        >>> arr
        array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
        >>> rng.shuffle(arr)
        >>> arr
        array([2, 0, 7, 5, 1, 4, 8, 9, 3, 6]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> arr
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])
        >>> rng.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        >>> arr = np.arange(9).reshape((3, 3))
        >>> arr
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])
        >>> rng.shuffle(arr, axis=1)
        >>> arr
        array([[2, 0, 1], # random
               [5, 3, 4],
               [8, 6, 7]])
        
        permuted(x, axis=None, out=None)

        Randomly permute `x` along axis `axis`.

        Unlike `shuffle`, each slice along the given axis is shuffled
        independently of the others.

        Parameters
        ----------
        x : array_like, at least one-dimensional
            Array to be shuffled.
        axis : int, optional
            Slices of `x` in this axis are shuffled. Each slice
            is shuffled independently of the others.  If `axis` is
            None, the flattened array is shuffled.
        out : ndarray, optional
            If given, this is the destination of the shuffled array.
            If `out` is None, a shuffled copy of the array is returned.

        Returns
        -------
        ndarray
            If `out` is None, a shuffled copy of `x` is returned.
            Otherwise, the shuffled array is stored in `out`,
            and `out` is returned

        See Also
        --------
        shuffle
        permutation
        
        Notes
        -----
        An important distinction between methods ``shuffle``  and ``permuted`` is 
        how they both treat the ``axis`` parameter which can be found at 
        :ref:`generator-handling-axis-parameter`.

        Examples
        --------
        Create a `numpy.random.Generator` instance:

        >>> rng = np.random.default_rng()

        Create a test array:

        >>> x = np.arange(24).reshape(3, 8)
        >>> x
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15],
               [16, 17, 18, 19, 20, 21, 22, 23]])

        Shuffle the rows of `x`:

        >>> y = rng.permuted(x, axis=1)
        >>> y
        array([[ 4,  3,  6,  7,  1,  2,  5,  0],  # random
               [15, 10, 14,  9, 12, 11,  8, 13],
               [17, 16, 20, 21, 18, 22, 23, 19]])

        `x` has not been modified:

        >>> x
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15],
               [16, 17, 18, 19, 20, 21, 22, 23]])

        To shuffle the rows of `x` in-place, pass `x` as the `out`
        parameter:

        >>> y = rng.permuted(x, axis=1, out=x)
        >>> x
        array([[ 3,  0,  4,  7,  1,  6,  2,  5],  # random
               [ 8, 14, 13,  9, 12, 11, 15, 10],
               [17, 18, 16, 22, 19, 23, 20, 21]])

        Note that when the ``out`` parameter is given, the return
        value is ``out``:

        >>> y is x
        True
        
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than zero

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        
        multivariate_hypergeometric(colors, nsample, size=None,
                                    method='marginals')

        Generate variates from a multivariate hypergeometric distribution.

        The multivariate hypergeometric distribution is a generalization
        of the hypergeometric distribution.

        Choose ``nsample`` items at random without replacement from a
        collection with ``N`` distinct types.  ``N`` is the length of
        ``colors``, and the values in ``colors`` are the number of occurrences
        of that type in the collection.  The total number of items in the
        collection is ``sum(colors)``.  Each random variate generated by this
        function is a vector of length ``N`` holding the counts of the
        different types that occurred in the ``nsample`` items.

        The name ``colors`` comes from a common description of the
        distribution: it is the probability distribution of the number of
        marbles of each color selected without replacement from an urn
        containing marbles of different colors; ``colors[i]`` is the number
        of marbles in the urn with color ``i``.

        Parameters
        ----------
        colors : sequence of integers
            The number of each type of item in the collection from which
            a sample is drawn.  The values in ``colors`` must be nonnegative.
            To avoid loss of precision in the algorithm, ``sum(colors)``
            must be less than ``10**9`` when `method` is "marginals".
        nsample : int
            The number of items selected.  ``nsample`` must not be greater
            than ``sum(colors)``.
        size : int or tuple of ints, optional
            The number of variates to generate, either an integer or a tuple
            holding the shape of the array of variates.  If the given size is,
            e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one
            variate is a vector of length ``len(colors)``, and the return value
            has shape ``(k, m, len(colors))``.  If `size` is an integer, the
            output has shape ``(size, len(colors))``.  Default is None, in
            which case a single variate is returned as an array with shape
            ``(len(colors),)``.
        method : string, optional
            Specify the algorithm that is used to generate the variates.
            Must be 'count' or 'marginals' (the default).  See the Notes
            for a description of the methods.

        Returns
        -------
        variates : ndarray
            Array of variates drawn from the multivariate hypergeometric
            distribution.

        See Also
        --------
        hypergeometric : Draw samples from the (univariate) hypergeometric
            distribution.

        Notes
        -----
        The two methods do not return the same sequence of variates.

        The "count" algorithm is roughly equivalent to the following numpy
        code::

            choices = np.repeat(np.arange(len(colors)), colors)
            selection = np.random.choice(choices, nsample, replace=False)
            variate = np.bincount(selection, minlength=len(colors))

        The "count" algorithm uses a temporary array of integers with length
        ``sum(colors)``.

        The "marginals" algorithm generates a variate by using repeated
        calls to the univariate hypergeometric sampler.  It is roughly
        equivalent to::

            variate = np.zeros(len(colors), dtype=np.int64)
            # `remaining` is the cumulative sum of `colors` from the last
            # element to the first; e.g. if `colors` is [3, 1, 5], then
            # `remaining` is [9, 6, 5].
            remaining = np.cumsum(colors[::-1])[::-1]
            for i in range(len(colors)-1):
                if nsample < 1:
                    break
                variate[i] = hypergeometric(colors[i], remaining[i+1],
                                           nsample)
                nsample -= variate[i]
            variate[-1] = nsample

        The default method is "marginals".  For some cases (e.g. when
        `colors` contains relatively small integers), the "count" method
        can be significantly faster than the "marginals" method.  If
        performance of the algorithm is important, test the two methods
        with typical inputs to decide which works best.

        .. versionadded:: 1.18.0

        Examples
        --------
        >>> colors = [16, 8, 4]
        >>> seed = 4861946401452
        >>> gen = np.random.Generator(np.random.PCG64(seed))
        >>> gen.multivariate_hypergeometric(colors, 6)
        array([5, 0, 1])
        >>> gen.multivariate_hypergeometric(colors, 6, size=3)
        array([[5, 0, 1],
               [2, 2, 2],
               [3, 3, 0]])
        >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2))
        array([[[3, 2, 1],
                [3, 2, 1]],
               [[4, 1, 1],
                [3, 2, 1]]])
        
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        Parameters
        ----------
        n : int or array-like of ints
            Number of experiments.
        pvals : array-like of floats
            Probabilities of each of the ``p`` different outcomes with shape
            ``(k0, k1, ..., kn, p)``. Each element ``pvals[i,j,...,:]`` must
            sum to 1 (however, the last element is always assumed to account
            for the remaining probability, as long as
            ``sum(pvals[..., :-1], axis=-1) <= 1.0``. Must have at least 1
            dimension where pvals.shape[-1] > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn each with ``p`` elements. Default
            is None where the output size is determined by the broadcast shape
            of ``n`` and all by the final dimension of ``pvals``, which is
            denoted as ``b=(b0, b1, ..., bq)``. If size is not None, then it
            must be compatible with the broadcast shape ``b``. Specifically,
            size must have ``q`` or more elements and size[-(q-j):] must equal
            ``bj``.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape size, if provided. When size is
            provided, the output shape is size + (p,)  If not specified,
            the shape is determined by the broadcast shape of ``n`` and
            ``pvals``, ``(b0, b1, ..., bq)`` augmented with the dimension of
            the multinomial, ``p``, so that that output shape is
            ``(b0, b1, ..., bq, p)``.

            Each entry ``out[i,j,...,:]`` is a ``p``-dimensional value drawn
            from the distribution.

            .. versionchanged:: 1.22.0
                Added support for broadcasting `pvals` against `n`

        Examples
        --------
        Throw a dice 20 times:

        >>> rng = np.random.default_rng()
        >>> rng.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]])  # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> rng.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3],
               [2, 4, 3, 4, 0, 7]])  # random

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        Now, do one experiment throwing the dice 10 time, and 10 times again,
        and another throwing the dice 20 times, and 20 times again:

        >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2))
        array([[[2, 4, 0, 1, 2, 1],
                [1, 3, 0, 3, 1, 2]],
               [[1, 4, 4, 4, 4, 3],
                [3, 3, 2, 5, 5, 2]]])  # random

        The first array shows the outcomes of throwing the dice 10 times, and
        the second shows the outcomes from throwing the dice 20 times.

        A loaded die is more likely to land on number 6:

        >>> rng.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26])  # random

        Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die

        >>> rng.multinomial([10, 20],[[1/4]*4 + [0]*2, [1/6]*6])
        array([[2, 1, 4, 3, 0, 0],
               [3, 3, 3, 6, 1, 4]], dtype=int64)  # random

        Generate categorical random variates from two categories where the
        first has 3 outcomes and the second has 2.

        >>> rng.multinomial(1, [[.1, .5, .4 ], [.3, .7, .0]])
        array([[0, 0, 1],
               [0, 1, 0]], dtype=int64)  # random

        ``argmax(axis=-1)`` is then used to return the categories.

        >>> pvals = [[.1, .5, .4 ], [.3, .7, .0]]
        >>> rvs = rng.multinomial(1, pvals, size=(4,2))
        >>> rvs.argmax(axis=-1)
        array([[0, 1],
               [2, 0],
               [2, 1],
               [2, 0]], dtype=int64)  # random

        The same output dimension can be produced using broadcasting.

        >>> rvs = rng.multinomial([[1]] * 4, pvals)
        >>> rvs.argmax(axis=-1)
        array([[0, 1],
               [2, 0],
               [2, 1],
               [2, 0]], dtype=int64)  # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62])  # random

        not like:

        >>> rng.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs
        
        multivariate_normal(mean, cov, size=None, check_valid='warn',
                            tol=1e-8, *, method='svd')

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (the squared standard deviation,
        or "width") of the one-dimensional normal distribution.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.
        method : { 'svd', 'eigh', 'cholesky'}, optional
            The cov input is used to compute a factor matrix A such that
            ``A @ A.T = cov``. This argument is used to select the method
            used to compute the factor matrix A. The default method 'svd' is
            the slowest, while 'cholesky' is the fastest but less robust than
            the slowest method. The method `eigh` uses eigen decomposition to
            compute A and is faster than svd but slower than cholesky.

            .. versionadded:: 1.18.0

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        This function internally uses linear algebra routines, and thus results
        may not be identical (even up to precision) across architectures, OSes,
        or even builds. For example, this is likely if ``cov`` has multiple equal
        singular values and ``method`` is ``'svd'`` (default). In this case,
        ``method='cholesky'`` may be more robust.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> rng = np.random.default_rng()
        >>> x = rng.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        We can use a different method other than the default to factorize cov:

        >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky')
        >>> y.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = rng.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.default_rng().logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a) * count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative and
            less than 10**9.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative and
            less than 10**9.
        nsample : int or array_like of ints
            Number of items sampled.  Must be nonnegative and less than
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        multivariate_hypergeometric : Draw samples from the multivariate
            hypergeometric distribution.
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        The arguments `ngood` and `nbad` each must be less than `10**9`. For
        extremely large arguments, the algorithm that is used to compute the
        samples [4]_ breaks down because of loss of precision in floating point
        calculations.  For such large values, if `nsample` is not also large,
        the distribution can be approximated with the binomial distribution,
        `binomial(n=nsample, p=ngood/(ngood + nbad))`.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution
        .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating
               discrete random variates", Journal of Computational and Applied
               Mathematics, 31, pp. 181-189 (1990).

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = rng.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.default_rng().geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 # random

        
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.default_rng().zipf(a, size=n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> rng = np.random.default_rng()
        >>> s = rng.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = rng.poisson(lam=(100., 500.), size=(100, 2))

        
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval (0, 1].

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution. Must satisfy 0 < p <= 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        Because this method internally calls ``Generator.poisson`` with an
        intermediate random value, a ValueError is raised when the choice of 
        :math:`n` and :math:`p` would result in the mean + 10 sigma of the sampled
        intermediate distribution exceeding the max acceptable value of the 
        ``Generator.poisson`` method. This happens when :math:`p` is too low 
        (a lot of failures happen for every success) and :math:`n` is too big (
        a lot of successes are allowed).
        Therefore, the :math:`n` and :math:`p` values must satisfy the constraint:

        .. math:: n\frac{1-p}{p}+10n\sqrt{n}\frac{1-p}{p}<2^{63}-1-10\sqrt{2^{63}-1},

        Where the left side of the equation is the derived mean + 10 sigma of
        a sample from the gamma distribution internally used as the :math:`lam`
        parameter of a poisson sample, and the right side of the equation is
        the constraint for maximum value of :math:`lam` in ``Generator.poisson``.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = rng.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 39%.

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> rng = np.random.default_rng()
        >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = rng.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = rng.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> rng = rng
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + rng.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.default_rng().logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = rng.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = rng.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.default_rng().laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = rng.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats  # doctest: +SKIP
        >>> rvs = rng.power(5, 1000000)
        >>> rvsp = rng.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + Generator.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> s = rng.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.


        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.default_rng().vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.default_rng().standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.default_rng().standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> rng = np.random.default_rng()
        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(rng.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.default_rng().chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> rng = np.random.default_rng()
        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = rng.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.default_rng().f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.default_rng().gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_gamma(shape, size=None, dtype=np.float64, out=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is
            not None, it must have the same shape as the provided size and
            must match the type of the output values.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.default_rng().standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        :meth:`normal` is more likely to return samples lying close to the
        mean, rather than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.default_rng().normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.0  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.default_rng().normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_normal(size=None, dtype=np.float64, out=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * rng.standard_normal(size=...)
            rng.normal(mu, sigma, size=...)

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.standard_normal()
        2.1923875335537315 # random

        >>> s = rng.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = rng.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * rng.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than high.  The high limit may be included in the returned array of 
            floats due to floating-point rounding in the equation 
            ``low + (high-low) * random_sample()``.  high - low must be 
            non-negative.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        integers : Discrete uniform distribution, yielding integers.
        random : Floats uniformly distributed over ``[0, 1)``.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.

        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.default_rng().uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        
        choice(a, size=None, replace=True, p=None, axis=0, shuffle=True)

        Generates a random sample from a given array

        Parameters
        ----------
        a : {array_like, int}
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated from np.arange(a).
        size : {int, tuple[int]}, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more
            than one dimension, the `size` shape will be inserted into the
            `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 +
            len(size)``. Default is None, in which case a single value is
            returned.
        replace : bool, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array_like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.
        axis : int, optional
            The axis along which the selection is performed. The default, 0,
            selects by row.
        shuffle : bool, optional
            Whether the sample is shuffled when sampling without replacement.
            Default is True, False provides a speedup.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if p is not 1-dimensional, if
            a is array-like with a size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size.

        See Also
        --------
        integers, shuffle, permutation

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> rng = np.random.default_rng()
        >>> rng.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to rng.integers(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> rng.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to rng.permutation(np.arange(5))[:3]

        Generate a uniform random sample from a 2-D array along the first
        axis (the default), without replacement:

        >>> rng.choice([[0, 1, 2], [3, 4, 5], [6, 7, 8]], 2, replace=False)
        array([[3, 4, 5], # random
               [0, 1, 2]])

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        
        bytes(length)

        Return random bytes.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        Examples
        --------
        >>> np.random.default_rng().bytes(10)
        b'\xfeC\x9b\x86\x17\xf2\xa1\xafcp' # random

        
        integers(low, high=None, size=None, dtype=np.int64, endpoint=False)

        Return random integers from `low` (inclusive) to `high` (exclusive), or
        if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces
        `RandomState.randint` (with endpoint=False) and
        `RandomState.random_integers` (with endpoint=True)

        Return random integers from the "discrete uniform" distribution of
        the specified dtype. If `high` is None (the default), then results are
        from 0 to `low`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is 0 and this value is
            used for `high`).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is np.int64.
        endpoint : bool, optional
            If true, sample from the interval [low, high] instead of the
            default [low, high)
            Defaults to False

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        Notes
        -----
        When using broadcasting with uint64 dtypes, the maximum value (2**64)
        cannot be represented as a standard integer type. The high array (or
        low if high is None) must have object dtype, e.g., array([2**64]).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.integers(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])  # random
        >>> rng.integers(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> rng.integers(5, size=(2, 4))
        array([[4, 0, 2, 1],
               [3, 2, 2, 0]])  # random

        Generate a 1 x 3 array with 3 different upper bounds

        >>> rng.integers(1, [3, 5, 10])
        array([2, 2, 9])  # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> rng.integers([1, 5, 7], 10)
        array([9, 8, 7])  # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7],
               [ 1, 16,  9, 12]], dtype=uint8)  # random

        References
        ----------
        .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval",
               ACM Transactions on Modeling and Computer Simulation 29 (1), 2019,
               http://arxiv.org/abs/1805.10941.

        
        standard_exponential(size=None, dtype=np.float64, method='zig', out=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        method : str, optional
            Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method.
            'zig' uses the much faster Ziggurat method of Marsaglia and Tsang.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.default_rng().standard_exponential((3, 8000))

        
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution.  It has the probability
        distribution function

        .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                         (1 - x)^{\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                                     (1 - t)^{\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        
        random(size=None, dtype=np.float64, out=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` use `uniform`
        or multiply the output of `random` by ``(b - a)`` and add ``a``::

            (b - a) * random() + a

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        uniform : Draw samples from the parameterized uniform distribution.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.random()
        0.47108547995356098 # random
        >>> type(rng.random())
        <class 'float'>
        >>> rng.random((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * rng.random((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        
        spawn(n_children)

        Create new independent child generators.

        See :ref:`seedsequence-spawn` for additional notes on spawning
        children.

        .. versionadded:: 1.25.0

        Parameters
        ----------
        n_children : int

        Returns
        -------
        child_generators : list of Generators

        Raises
        ------
        TypeError
            When the underlying SeedSequence does not implement spawning.

        See Also
        --------
        random.BitGenerator.spawn, random.SeedSequence.spawn :
            Equivalent method on the bit generator and seed sequence.
        bit_generator :
            The bit generator instance used by the generator.

        Examples
        --------
        Starting from a seeded default generator:

        >>> # High quality entropy created with: f"0x{secrets.randbits(128):x}"
        >>> entropy = 0x3034c61a9ae04ff8cb62ab8ec2c4b501
        >>> rng = np.random.default_rng(entropy)

        Create two new generators for example for parallel execution:

        >>> child_rng1, child_rng2 = rng.spawn(2)

        Drawn numbers from each are independent but derived from the initial
        seeding entropy:

        >>> rng.uniform(), child_rng1.uniform(), child_rng2.uniform()
        (0.19029263503854454, 0.9475673279178444, 0.4702687338396767)

        It is safe to spawn additional children from the original ``rng`` or
        the children:

        >>> more_child_rngs = rng.spawn(20)
        >>> nested_spawn = child_rng1.spawn(20)

        Unsupported dtype %r for standard_gammaUnsupported dtype %r for standard_normalunable to allocate shape and strides.sum(colors) must not exceed the maximum value of a 64 bit signed integer (%d)pvals must have at least 1 dimension and the last dimension of pvals must be greater than 0.probabilities are not non-negativenumpy.core.umath failed to importno default __reduce__ due to non-trivial __cinit__negative dimensions are not allowedn too large or p too small, see Generator.negative_binomial Notesmethod must be one of {'eigh', 'svd', 'cholesky'}method must be "count" or "marginals".memory allocation failed in permutedmean and cov must not be complexmean and cov must have same lengthhigh - low range exceeds valid boundsgot differing extents in dimension covariance is not symmetric positive-semidefinite.cov must be 2 dimensional and squarecolors must be a one-dimensional sequence of nonnegative integers not exceeding %d.check_valid must equal 'warn', 'raise', or 'ignore'both ngood and nbad must be less than %da must be a sequence or an integer, not a must be a positive integer unless no samples are takena cannot be empty unless no samples are takenWhen method is "marginals", sum(colors) must be less than 1000000000.Unsupported dtype %r for standard_exponentialUnsupported dtype %r for integersUnable to convert item to objectProviding a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.Out of bounds on buffer access (axis Invalid mode, expected 'c' or 'fortran', got Invalid bit generator. The bit generator must be instantiated.Insufficient memory for multivariate_hypergeometric with method='count' and sum(colors)=%dIndirect dimensions not supportedIncompatible checksums (0x%x vs (0x82a3537, 0x6ae9995, 0xb068931) = (name))Generator.standard_normal (line 1051)Generator.standard_gamma (line 1226)Generator.standard_exponential (line 473)Generator.standard_cauchy (line 1709)Generator.noncentral_f (line 1483)Generator.noncentral_chisquare (line 1629)Generator.negative_binomial (line 3038)Generator.multivariate_normal (line 3598)Generator.multivariate_hypergeometric (line 4084)Generator.hypergeometric (line 3374)Fewer non-zero entries in p than sizeEmpty shape tuple for cython.arrayConstruct a new Generator with the default BitGenerator (PCG64).

    Parameters
    ----------
    seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
        A seed to initialize the `BitGenerator`. If None, then fresh,
        unpredictable entropy will be pulled from the OS. If an ``int`` or
        ``array_like[ints]`` is passed, then it will be passed to
        `SeedSequence` to derive the initial `BitGenerator` state. One may also
        pass in a `SeedSequence` instance.
        Additionally, when passed a `BitGenerator`, it will be wrapped by
        `Generator`. If passed a `Generator`, it will be returned unaltered.

    Returns
    -------
    Generator
        The initialized generator object.

    Notes
    -----
    If ``seed`` is not a `BitGenerator` or a `Generator`, a new `BitGenerator`
    is instantiated. This function does not manage a default global instance.

    See :ref:`seeding_and_entropy` for more information about seeding.
    
    Examples
    --------
    ``default_rng`` is the recommended constructor for the random number class
    ``Generator``. Here are several ways we can construct a random 
    number generator using ``default_rng`` and the ``Generator`` class. 
    
    Here we use ``default_rng`` to generate a random float:
 
    >>> import numpy as np
    >>> rng = np.random.default_rng(12345)
    >>> print(rng)
    Generator(PCG64)
    >>> rfloat = rng.random()
    >>> rfloat
    0.22733602246716966
    >>> type(rfloat)
    <class 'float'>
     
    Here we use ``default_rng`` to generate 3 random integers between 0 
    (inclusive) and 10 (exclusive):
        
    >>> import numpy as np
    >>> rng = np.random.default_rng(12345)
    >>> rints = rng.integers(low=0, high=10, size=3)
    >>> rints
    array([6, 2, 7])
    >>> type(rints[0])
    <class 'numpy.int64'>
    
    Here we specify a seed so that we have reproducible results:
    
    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=42)
    >>> print(rng)
    Generator(PCG64)
    >>> arr1 = rng.random((3, 3))
    >>> arr1
    array([[0.77395605, 0.43887844, 0.85859792],
           [0.69736803, 0.09417735, 0.97562235],
           [0.7611397 , 0.78606431, 0.12811363]])

    If we exit and restart our Python interpreter, we'll see that we
    generate the same random numbers again:

    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=42)
    >>> arr2 = rng.random((3, 3))
    >>> arr2
    array([[0.77395605, 0.43887844, 0.85859792],
           [0.69736803, 0.09417735, 0.97562235],
           [0.7611397 , 0.78606431, 0.12811363]])

    Cannot transpose memoryview with indirect dimensionsCannot take a larger sample than population when replace is FalseCannot create writable memory view from read-only memoryviewCannot assign to read-only memoryviewCan only create a buffer that is contiguous in memory.Buffer view does not expose stridesAll dimensions preceding dimension %d must be indexed and not sliced
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.default_rng().zipf(a, size=n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> s = rng.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.default_rng().vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than high.  The high limit may be included in the returned array of 
            floats due to floating-point rounding in the equation 
            ``low + (high-low) * random_sample()``.  high - low must be 
            non-negative.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        integers : Discrete uniform distribution, yielding integers.
        random : Floats uniformly distributed over ``[0, 1)``.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.

        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.default_rng().uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.default_rng().standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        
        standard_normal(size=None, dtype=np.float64, out=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * rng.standard_normal(size=...)
            rng.normal(mu, sigma, size=...)

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.standard_normal()
        2.1923875335537315 # random

        >>> s = rng.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = rng.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * rng.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        spawn(n_children)

        Create new independent child generators.

        See :ref:`seedsequence-spawn` for additional notes on spawning
        children.

        .. versionadded:: 1.25.0

        Parameters
        ----------
        n_children : int

        Returns
        -------
        child_generators : list of Generators

        Raises
        ------
        TypeError
            When the underlying SeedSequence does not implement spawning.

        See Also
        --------
        random.BitGenerator.spawn, random.SeedSequence.spawn :
            Equivalent method on the bit generator and seed sequence.
        bit_generator :
            The bit generator instance used by the generator.

        Examples
        --------
        Starting from a seeded default generator:

        >>> # High quality entropy created with: f"0x{secrets.randbits(128):x}"
        >>> entropy = 0x3034c61a9ae04ff8cb62ab8ec2c4b501
        >>> rng = np.random.default_rng(entropy)

        Create two new generators for example for parallel execution:

        >>> child_rng1, child_rng2 = rng.spawn(2)

        Drawn numbers from each are independent but derived from the initial
        seeding entropy:

        >>> rng.uniform(), child_rng1.uniform(), child_rng2.uniform()
        (0.19029263503854454, 0.9475673279178444, 0.4702687338396767)

        It is safe to spawn additional children from the original ``rng`` or
        the children:

        >>> more_child_rngs = rng.spawn(20)
        >>> nested_spawn = child_rng1.spawn(20)

        
        shuffle(x, axis=0)

        Modify an array or sequence in-place by shuffling its contents.

        The order of sub-arrays is changed but their contents remains the same.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.
            It is only supported on `ndarray` objects.

        Returns
        -------
        None

        See Also
        --------
        permuted
        permutation

        Notes
        -----
        An important distinction between methods ``shuffle``  and ``permuted`` is 
        how they both treat the ``axis`` parameter which can be found at 
        :ref:`generator-handling-axis-parameter`.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> arr = np.arange(10)
        >>> arr
        array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
        >>> rng.shuffle(arr)
        >>> arr
        array([2, 0, 7, 5, 1, 4, 8, 9, 3, 6]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> arr
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])
        >>> rng.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        >>> arr = np.arange(9).reshape((3, 3))
        >>> arr
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])
        >>> rng.shuffle(arr, axis=1)
        >>> arr
        array([[2, 0, 1], # random
               [5, 3, 4],
               [8, 6, 7]])
        
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> rng = np.random.default_rng()
        >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = rng.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        
        random(size=None, dtype=np.float64, out=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` use `uniform`
        or multiply the output of `random` by ``(b - a)`` and add ``a``::

            (b - a) * random() + a

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        uniform : Draw samples from the parameterized uniform distribution.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.random()
        0.47108547995356098 # random
        >>> type(rng.random())
        <class 'float'>
        >>> rng.random((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * rng.random((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = rng.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats  # doctest: +SKIP
        >>> rvs = rng.power(5, 1000000)
        >>> rvsp = rng.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + Generator.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        
        permuted(x, axis=None, out=None)

        Randomly permute `x` along axis `axis`.

        Unlike `shuffle`, each slice along the given axis is shuffled
        independently of the others.

        Parameters
        ----------
        x : array_like, at least one-dimensional
            Array to be shuffled.
        axis : int, optional
            Slices of `x` in this axis are shuffled. Each slice
            is shuffled independently of the others.  If `axis` is
            None, the flattened array is shuffled.
        out : ndarray, optional
            If given, this is the destination of the shuffled array.
            If `out` is None, a shuffled copy of the array is returned.

        Returns
        -------
        ndarray
            If `out` is None, a shuffled copy of `x` is returned.
            Otherwise, the shuffled array is stored in `out`,
            and `out` is returned

        See Also
        --------
        shuffle
        permutation
        
        Notes
        -----
        An important distinction between methods ``shuffle``  and ``permuted`` is 
        how they both treat the ``axis`` parameter which can be found at 
        :ref:`generator-handling-axis-parameter`.

        Examples
        --------
        Create a `numpy.random.Generator` instance:

        >>> rng = np.random.default_rng()

        Create a test array:

        >>> x = np.arange(24).reshape(3, 8)
        >>> x
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15],
               [16, 17, 18, 19, 20, 21, 22, 23]])

        Shuffle the rows of `x`:

        >>> y = rng.permuted(x, axis=1)
        >>> y
        array([[ 4,  3,  6,  7,  1,  2,  5,  0],  # random
               [15, 10, 14,  9, 12, 11,  8, 13],
               [17, 16, 20, 21, 18, 22, 23, 19]])

        `x` has not been modified:

        >>> x
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15],
               [16, 17, 18, 19, 20, 21, 22, 23]])

        To shuffle the rows of `x` in-place, pass `x` as the `out`
        parameter:

        >>> y = rng.permuted(x, axis=1, out=x)
        >>> x
        array([[ 3,  0,  4,  7,  1,  6,  2,  5],  # random
               [ 8, 14, 13,  9, 12, 11, 15, 10],
               [17, 18, 16, 22, 19, 23, 20, 21]])

        Note that when the ``out`` parameter is given, the return
        value is ``out``:

        >>> y is x
        True
        
        permutation(x, axis=0)

        Randomly permute a sequence, or return a permuted range.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> rng.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        >>> rng.permutation("abc")
        Traceback (most recent call last):
            ...
        numpy.exceptions.AxisError: axis 0 is out of bounds for array of dimension 0

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr, axis=1)
        array([[0, 2, 1], # random
               [3, 5, 4],
               [6, 8, 7]])

        
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.


        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        out must have the same shape as xnumpy.core.multiarray failed to import
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        :meth:`normal` is more likely to return samples lying close to the
        mean, rather than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.default_rng().normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.0  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.default_rng().normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> rng = np.random.default_rng()
        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = rng.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> rng = np.random.default_rng()
        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(rng.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval (0, 1].

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution. Must satisfy 0 < p <= 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        Because this method internally calls ``Generator.poisson`` with an
        intermediate random value, a ValueError is raised when the choice of 
        :math:`n` and :math:`p` would result in the mean + 10 sigma of the sampled
        intermediate distribution exceeding the max acceptable value of the 
        ``Generator.poisson`` method. This happens when :math:`p` is too low 
        (a lot of failures happen for every success) and :math:`n` is too big (
        a lot of successes are allowed).
        Therefore, the :math:`n` and :math:`p` values must satisfy the constraint:

        .. math:: n\frac{1-p}{p}+10n\sqrt{n}\frac{1-p}{p}<2^{63}-1-10\sqrt{2^{63}-1},

        Where the left side of the equation is the derived mean + 10 sigma of
        a sample from the gamma distribution internally used as the :math:`lam`
        parameter of a poisson sample, and the right side of the equation is
        the constraint for maximum value of :math:`lam` in ``Generator.poisson``.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        
        multivariate_normal(mean, cov, size=None, check_valid='warn',
                            tol=1e-8, *, method='svd')

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (the squared standard deviation,
        or "width") of the one-dimensional normal distribution.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.
        method : { 'svd', 'eigh', 'cholesky'}, optional
            The cov input is used to compute a factor matrix A such that
            ``A @ A.T = cov``. This argument is used to select the method
            used to compute the factor matrix A. The default method 'svd' is
            the slowest, while 'cholesky' is the fastest but less robust than
            the slowest method. The method `eigh` uses eigen decomposition to
            compute A and is faster than svd but slower than cholesky.

            .. versionadded:: 1.18.0

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        This function internally uses linear algebra routines, and thus results
        may not be identical (even up to precision) across architectures, OSes,
        or even builds. For example, this is likely if ``cov`` has multiple equal
        singular values and ``method`` is ``'svd'`` (default). In this case,
        ``method='cholesky'`` may be more robust.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> rng = np.random.default_rng()
        >>> x = rng.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        We can use a different method other than the default to factorize cov:

        >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky')
        >>> y.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = rng.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        
        multivariate_hypergeometric(colors, nsample, size=None,
                                    method='marginals')

        Generate variates from a multivariate hypergeometric distribution.

        The multivariate hypergeometric distribution is a generalization
        of the hypergeometric distribution.

        Choose ``nsample`` items at random without replacement from a
        collection with ``N`` distinct types.  ``N`` is the length of
        ``colors``, and the values in ``colors`` are the number of occurrences
        of that type in the collection.  The total number of items in the
        collection is ``sum(colors)``.  Each random variate generated by this
        function is a vector of length ``N`` holding the counts of the
        different types that occurred in the ``nsample`` items.

        The name ``colors`` comes from a common description of the
        distribution: it is the probability distribution of the number of
        marbles of each color selected without replacement from an urn
        containing marbles of different colors; ``colors[i]`` is the number
        of marbles in the urn with color ``i``.

        Parameters
        ----------
        colors : sequence of integers
            The number of each type of item in the collection from which
            a sample is drawn.  The values in ``colors`` must be nonnegative.
            To avoid loss of precision in the algorithm, ``sum(colors)``
            must be less than ``10**9`` when `method` is "marginals".
        nsample : int
            The number of items selected.  ``nsample`` must not be greater
            than ``sum(colors)``.
        size : int or tuple of ints, optional
            The number of variates to generate, either an integer or a tuple
            holding the shape of the array of variates.  If the given size is,
            e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one
            variate is a vector of length ``len(colors)``, and the return value
            has shape ``(k, m, len(colors))``.  If `size` is an integer, the
            output has shape ``(size, len(colors))``.  Default is None, in
            which case a single variate is returned as an array with shape
            ``(len(colors),)``.
        method : string, optional
            Specify the algorithm that is used to generate the variates.
            Must be 'count' or 'marginals' (the default).  See the Notes
            for a description of the methods.

        Returns
        -------
        variates : ndarray
            Array of variates drawn from the multivariate hypergeometric
            distribution.

        See Also
        --------
        hypergeometric : Draw samples from the (univariate) hypergeometric
            distribution.

        Notes
        -----
        The two methods do not return the same sequence of variates.

        The "count" algorithm is roughly equivalent to the following numpy
        code::

            choices = np.repeat(np.arange(len(colors)), colors)
            selection = np.random.choice(choices, nsample, replace=False)
            variate = np.bincount(selection, minlength=len(colors))

        The "count" algorithm uses a temporary array of integers with length
        ``sum(colors)``.

        The "marginals" algorithm generates a variate by using repeated
        calls to the univariate hypergeometric sampler.  It is roughly
        equivalent to::

            variate = np.zeros(len(colors), dtype=np.int64)
            # `remaining` is the cumulative sum of `colors` from the last
            # element to the first; e.g. if `colors` is [3, 1, 5], then
            # `remaining` is [9, 6, 5].
            remaining = np.cumsum(colors[::-1])[::-1]
            for i in range(len(colors)-1):
                if nsample < 1:
                    break
                variate[i] = hypergeometric(colors[i], remaining[i+1],
                                           nsample)
                nsample -= variate[i]
            variate[-1] = nsample

        The default method is "marginals".  For some cases (e.g. when
        `colors` contains relatively small integers), the "count" method
        can be significantly faster than the "marginals" method.  If
        performance of the algorithm is important, test the two methods
        with typical inputs to decide which works best.

        .. versionadded:: 1.18.0

        Examples
        --------
        >>> colors = [16, 8, 4]
        >>> seed = 4861946401452
        >>> gen = np.random.Generator(np.random.PCG64(seed))
        >>> gen.multivariate_hypergeometric(colors, 6)
        array([5, 0, 1])
        >>> gen.multivariate_hypergeometric(colors, 6, size=3)
        array([[5, 0, 1],
               [2, 2, 2],
               [3, 3, 0]])
        >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2))
        array([[[3, 2, 1],
                [3, 2, 1]],
               [[4, 1, 1],
                [3, 2, 1]]])
        
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        Parameters
        ----------
        n : int or array-like of ints
            Number of experiments.
        pvals : array-like of floats
            Probabilities of each of the ``p`` different outcomes with shape
            ``(k0, k1, ..., kn, p)``. Each element ``pvals[i,j,...,:]`` must
            sum to 1 (however, the last element is always assumed to account
            for the remaining probability, as long as
            ``sum(pvals[..., :-1], axis=-1) <= 1.0``. Must have at least 1
            dimension where pvals.shape[-1] > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn each with ``p`` elements. Default
            is None where the output size is determined by the broadcast shape
            of ``n`` and all by the final dimension of ``pvals``, which is
            denoted as ``b=(b0, b1, ..., bq)``. If size is not None, then it
            must be compatible with the broadcast shape ``b``. Specifically,
            size must have ``q`` or more elements and size[-(q-j):] must equal
            ``bj``.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape size, if provided. When size is
            provided, the output shape is size + (p,)  If not specified,
            the shape is determined by the broadcast shape of ``n`` and
            ``pvals``, ``(b0, b1, ..., bq)`` augmented with the dimension of
            the multinomial, ``p``, so that that output shape is
            ``(b0, b1, ..., bq, p)``.

            Each entry ``out[i,j,...,:]`` is a ``p``-dimensional value drawn
            from the distribution.

            .. versionchanged:: 1.22.0
                Added support for broadcasting `pvals` against `n`

        Examples
        --------
        Throw a dice 20 times:

        >>> rng = np.random.default_rng()
        >>> rng.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]])  # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> rng.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3],
               [2, 4, 3, 4, 0, 7]])  # random

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        Now, do one experiment throwing the dice 10 time, and 10 times again,
        and another throwing the dice 20 times, and 20 times again:

        >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2))
        array([[[2, 4, 0, 1, 2, 1],
                [1, 3, 0, 3, 1, 2]],
               [[1, 4, 4, 4, 4, 3],
                [3, 3, 2, 5, 5, 2]]])  # random

        The first array shows the outcomes of throwing the dice 10 times, and
        the second shows the outcomes from throwing the dice 20 times.

        A loaded die is more likely to land on number 6:

        >>> rng.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26])  # random

        Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die

        >>> rng.multinomial([10, 20],[[1/4]*4 + [0]*2, [1/6]*6])
        array([[2, 1, 4, 3, 0, 0],
               [3, 3, 3, 6, 1, 4]], dtype=int64)  # random

        Generate categorical random variates from two categories where the
        first has 3 outcomes and the second has 2.

        >>> rng.multinomial(1, [[.1, .5, .4 ], [.3, .7, .0]])
        array([[0, 0, 1],
               [0, 1, 0]], dtype=int64)  # random

        ``argmax(axis=-1)`` is then used to return the categories.

        >>> pvals = [[.1, .5, .4 ], [.3, .7, .0]]
        >>> rvs = rng.multinomial(1, pvals, size=(4,2))
        >>> rvs.argmax(axis=-1)
        array([[0, 1],
               [2, 0],
               [2, 1],
               [2, 0]], dtype=int64)  # random

        The same output dimension can be produced using broadcasting.

        >>> rvs = rng.multinomial([[1]] * 4, pvals)
        >>> rvs.argmax(axis=-1)
        array([[0, 1],
               [2, 0],
               [2, 1],
               [2, 0]], dtype=int64)  # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62])  # random

        not like:

        >>> rng.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs
        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.default_rng().logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a) * count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = rng.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> rng = rng
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + rng.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.default_rng().logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

         is not compatible with broadcast dimensions of inputs 
        integers(low, high=None, size=None, dtype=np.int64, endpoint=False)

        Return random integers from `low` (inclusive) to `high` (exclusive), or
        if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces
        `RandomState.randint` (with endpoint=False) and
        `RandomState.random_integers` (with endpoint=True)

        Return random integers from the "discrete uniform" distribution of
        the specified dtype. If `high` is None (the default), then results are
        from 0 to `low`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is 0 and this value is
            used for `high`).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is np.int64.
        endpoint : bool, optional
            If true, sample from the interval [low, high] instead of the
            default [low, high)
            Defaults to False

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        Notes
        -----
        When using broadcasting with uint64 dtypes, the maximum value (2**64)
        cannot be represented as a standard integer type. The high array (or
        low if high is None) must have object dtype, e.g., array([2**64]).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.integers(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])  # random
        >>> rng.integers(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> rng.integers(5, size=(2, 4))
        array([[4, 0, 2, 1],
               [3, 2, 2, 0]])  # random

        Generate a 1 x 3 array with 3 different upper bounds

        >>> rng.integers(1, [3, 5, 10])
        array([2, 2, 9])  # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> rng.integers([1, 5, 7], 10)
        array([9, 8, 7])  # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7],
               [ 1, 16,  9, 12]], dtype=uint8)  # random

        References
        ----------
        .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval",
               ACM Transactions on Modeling and Computer Simulation 29 (1), 2019,
               http://arxiv.org/abs/1805.10941.

        
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative and
            less than 10**9.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative and
            less than 10**9.
        nsample : int or array_like of ints
            Number of items sampled.  Must be nonnegative and less than
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        multivariate_hypergeometric : Draw samples from the multivariate
            hypergeometric distribution.
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        The arguments `ngood` and `nbad` each must be less than `10**9`. For
        extremely large arguments, the algorithm that is used to compute the
        samples [4]_ breaks down because of loss of precision in floating point
        calculations.  For such large values, if `nsample` is not also large,
        the distribution can be approximated with the binomial distribution,
        `binomial(n=nsample, p=ngood/(ngood + nbad))`.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution
        .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating
               discrete random variates", Journal of Computational and Applied
               Mathematics, 31, pp. 181-189 (1990).

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = rng.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = rng.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = rng.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.default_rng().geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 # random

        
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.default_rng().gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.default_rng().f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        choice(a, size=None, replace=True, p=None, axis=0, shuffle=True)

        Generates a random sample from a given array

        Parameters
        ----------
        a : {array_like, int}
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated from np.arange(a).
        size : {int, tuple[int]}, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more
            than one dimension, the `size` shape will be inserted into the
            `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 +
            len(size)``. Default is None, in which case a single value is
            returned.
        replace : bool, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array_like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.
        axis : int, optional
            The axis along which the selection is performed. The default, 0,
            selects by row.
        shuffle : bool, optional
            Whether the sample is shuffled when sampling without replacement.
            Default is True, False provides a speedup.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if p is not 1-dimensional, if
            a is array-like with a size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size.

        See Also
        --------
        integers, shuffle, permutation

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> rng = np.random.default_rng()
        >>> rng.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to rng.integers(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> rng.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to rng.permutation(np.arange(5))[:3]

        Generate a uniform random sample from a 2-D array along the first
        axis (the default), without replacement:

        >>> rng.choice([[0, 1, 2], [3, 4, 5], [6, 7, 8]], 2, replace=False)
        array([[3, 4, 5], # random
               [0, 1, 2]])

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.default_rng().chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random

        
        bytes(length)

        Return random bytes.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        Examples
        --------
        >>> np.random.default_rng().bytes(10)
        b'\xfeC\x9b\x86\x17\xf2\xa1\xafcp' # random

        
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = rng.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 39%.

        .astype(np.float64)) > 1.0. The pvals array is cast to 64-bit floating point prior to checking the sum. Precision changes when casting may cause problems even if the sum of the original pvals is valid.When method is 'count', sum(colors) must not exceed %dGenerator.permutation (line 4797)Generator.multinomial (line 3838)Axis argument is only supported on ndarray objects
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        <strided and direct or indirect>
        standard_gamma(shape, size=None, dtype=np.float64, out=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is
            not None, it must have the same shape as the provided size and
            must match the type of the output values.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.default_rng().standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_exponential(size=None, dtype=np.float64, method='zig', out=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        method : str, optional
            Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method.
            'zig' uses the much faster Ziggurat method of Marsaglia and Tsang.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.default_rng().standard_exponential((3, 8000))

        
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.default_rng().standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> rng = np.random.default_rng()
        >>> s = rng.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = rng.poisson(lam=(100., 500.), size=(100, 2))

        ' object which is not a subclass of 'Sequence'; `shuffle` is not guaranteed to behave correctly. E.g., non-numpy array/tensor objects with view semantics may contain duplicates after shuffling.
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.default_rng().laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than zero

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        Unsupported dtype %r for randomGenerator.triangular (line 2794)Generator.standard_t (line 1774)Generator.exponential (line 405)unable to allocate array data.probabilities do not sum to 1Generator.logseries (line 3517)Generator.lognormal (line 2545)Generator.geometric (line 3323)Generator.dirichlet (line 4300)Generator.chisquare (line 1561)Generator.vonmises (line 1880)Generator.rayleigh (line 2657)Generator.permuted (line 4505)Generator.logistic (line 2465)Generator.binomial (line 2894)numpy/random/_generator.pyxnsample must be nonnegative.itemsize <= 0 for cython.arraya and p must have same sizeStep may not be zero (axis %d)Generator.weibull (line 2061)Generator.shuffle (line 4665)Generator.poisson (line 3162)Generator.laplace (line 2261)Generator.integers (line 526)nsample must be an integermean must be 1 dimensionalRange exceeds valid boundsIndex out of bounds (axis %d)Generator.uniform (line 945)Generator.pareto (line 1963)Generator.normal (line 1123)Generator.gumbel (line 2346)probabilities contain NaNout must be a numpy arraynsample must not exceed %dGenerator.random (line 299)Generator.power (line 2160)Generator.gamma (line 1317)Generator.choice (line 681)Dimension %d is not directGenerator.zipf (line 3235)Generator.wald (line 2726)Generator.spawn (line 241)Generator.bytes (line 653)p must be 1-dimensionalnumpy.random._generator<contiguous and indirect><MemoryView of %r at 0x%x><MemoryView of %r object>Cannot index with type 'numpy.core.multiarraydefault_rng (line 4869)<contiguous and direct>Invalid shape in axis Generator.f (line 1395)<strided and indirect>normalize_axis_indexyou are shuffling a 'NotImplementedError<strided and direct>nsample > sum(colors)ngood + nbad < nsamplecline_in_tracebackarray is read-only__pyx_unpickle_Enumascontiguousarraymay_share_memorystandard_normal__setstate_cython____pyx_PickleError_poisson_lam_maxdtype_is_objectcollections.abcallocate_bufferView.MemoryView__generator_ctorRuntimeWarningAssertionError__reduce_cython__count_nonzero__class_getitem__bit_generatorOverflowErrorversion_info<stringsource>searchsortedreturn_index__pyx_checksumnumpy.linalg_initializingdefault_rngcollectionscheck_validUserWarningPickleErrorOutput size MemoryErrorImportErrorstacklevel__pyx_vtable____pyx_resultn_childrenmode > rightlogical_orleft == rightissubdtypeempty_likeValueErrorIndexErrorwriteablesum(pvals__reduce_ex____pyx_statemarginalsleft > modeisenabledhasobjectenumerateTypeErrorGeneratorwarningsswapaxessubtract__setstate__reversedregisterreduce__pyx_type_pickleoperatoritemsizeisscalarisnativeisfiniteintegershigh - low__getstate__endpointcholeskyallcloseSequenceEllipsistobytesstridesshuffle__rmatmul__reshapereplacensamplememview__imatmul__greaterfortranfloat64float32disablecastingcapsule at 0x{:X}asarrayalpha < 0updateunpackuniqueuint64uint32uint16struct__reduce__randompickle__name__method__matmul__length__import__ignoreformatencodeenabledoublecumsumcopytocolorsastypearangezerosuint8statestartspawnsigmashapescalerightravelrangeraisepvals_pcg64ordernumpyngoodkappaisnanint64int32int16indexflagsfinfoerrorequal__enter__emptydtypedfnumdfdencount__class__arrayalphaPCG64ASCIIwarn__test__takestopstepsqrt__spec__sortsizesideseedsafertolprodpacknoncndimnbadnamemodemean__main__locklessleftitemintpint8highfull__exit__eigh__dict__copybool_baseaxisatolNonezigtolsyssvdsum__str__outobj__new__maxlowloclam (got epsdotcovany and alladdabc?([...,:-1]) > 1.0<u4npmuidgcdf)'*.xpncbaTOKA[:-1]: @?$@eA333333?C?:0yE>qh???/*p?3f?(_?xY?յS?N?J?F?DB?Qt??u+<?
9?6??3?n0?-?d+?(?6&?XS$?"?Y??m????i+?q\?V??(
?s~?>	?A?Į?"?ʝ?G??i>l>7>>*J>>>^>>F>>7P>>K{>>>u>;->>>|>eO>4(>8>L>N>ȿ>>>>·>ε>߳>>>0>U>~>|>ަ>Y>IP>w>ҟ>B>e>)>~>_>>C>{>>J>﷍>X(>'>N>Í>x>b>x>>!>^}>;z>Хw>@t>wr>b<o>yl>i>g>Sd>3a>^>]\>&Y>z)W>T>P	R>O>L>5~J>3H>E>nC>@>VK>>;>9>07>4>2>>0>p->+>s)>7'>%>"> >s>L>*>=>T>T>4>>y
>ϣ>	>>L>>l>=+==0
=C==8==hp==0==
=n==|===;=ں=Z=o,=ް=ߗ=.W===%==r=W=	C=4=M,=4*=D.=y8=H=~=x=<s=rm=g=Ub=\=MW=
Q=TvL=G=AA=<=X7=/2=-=(=Y"===9=e=
==5='<t<<<7<8S<C<<\<I<
<<Oޑ<+<"<t<ɵe<V<SH<9<t+<ƅ<O<w<;O;$;ԟ;9;b;H6;];]:X}:9e'52V227222f23ن33H3(&3o.3z63oN>3E3lM3FT3/[3b3i34p3fw3&~3[3B3ψ3g37!3>3T3d3n3r3Fq3j3_31P3r<3$3k	33ȸ3q3|{3P3#3C333dY3"3+3®3r35333x37333p3-33731b33l44(44h4C44
4`4M47 44?4nB44L4i4a4T044542`44p. 4!4"4i$4%4@'4t(4>*4+4,4j.4/4'P1424):4454&)7484c:4;4$=4+>4@4A4KC4vD4B(F4G4:I4J4rTL4M4GuO4Q4R44T4U4EiW4Y4 Z4G\4]4_4:a4b4d4Bf4\g4ji4bk4m4n4p4\r4}"t4Yu4Hw4[y4X{46.}4 4q4a4]S4F4N<434,4+(4{%4$4o&4,*4'04m84
C4P4_4q474{4w4>ԕ44s4<4d444$4(4a44lߢ4$4l44x
4_444{4 4EP4±4{:4귴4);4nķ4S444<*4տ44A4.44ע44f4RW4R4*Y4Fk44δ444444g44k4<444y44u4_45555@5ó
55]5^555q5v
5!5%5V*5s/5;S55:<5D5NO5^5Nv5QHqoMֻanjDotTrotou$w'xx,jyy7\z׻z{W{S{{.|3|]|ȃ|||I||}C0}F}Z}m}}S}(}}-}}"}}|}M}~i
~~~B(~o0~C8~?~F~M~T~Z~a~f~l~r~]w~v|~`~ ~~$~m~~~w~:~ަ~f~ѭ~#~Z~y~~q~K~~~^~~a~~~`~~~~~~~~f~*~~~-~~J~~=~~~\~~~$~U~}~~~~~pH`		i
	6H

A!B+m5XttW3	`wK\
L
s


G	{V~~~d~~x~~K~~~~~~~~~)~~~a~~~{~;~~A~~~m~~z~~~"~k~]~~~ԃ~|~s~j~Ua~W~K~?~2~$~~~
}}}	}}i}A}}|Q|D|{3N{zeyww7ms?7E?P?'{{?*!?bv?mU?9U1T?/v?x]?&1$-?~	n?cK[!?I?\Omg?f?uLi=?sڂl?x?Qf?ij?%ᨯC?+?Dܻ?z?cE#;?^E#?$O?2m?P"K?>?{s?%;?omo?3;?J9?++?*T[?};1s?HeC?$`?vE!=?ſ-r?MBц?K=?Q}6Ei?7u?!?z}k?~?@?`x?*?8?Qi?oTC?_(4?ָ?@je?!u v?7Zi?{	?I?]T?9]??}?8aD:?Yζi?Ɲҷ?r^sSw?ꍰ07?d>[?%۹?
Ə{?'HB>?vX#?l1&?:l?磽!O?ލ?&?ڋ?タ+	j?A1?N0Z?0H?}G?(V?5$1!?pB9 ?b"FS?)vEW(?vG}rO?~/?	{^?Z??ބS?i"?lR?3Sn?>N?Ґ]b?,|y2?jG>?TLҫ?~>\O??@YH?/֎@?9O"H?>?1 7?8?Ox?]4?5D9g?r|?>ܸ$8?[B/?I<Kܒ?\*A??#>䠟?O?y%d?bPޱ?c?PR?j?F}?9(Q1?c?(ڦ^w?0U^Q?1j?T	ξ?x.BTv?Imb.?<X?0?-ɰY?j8?w?Ք&?BE?n}g?4
?@`r*{?x{8?e=?f1 o?xyt?/q 3? ?/T{i?Pu?nz6?˦?fu?<Ã?̹F?az??M?Wk[?..?&qW?He5TF?eTeCӺ?8=]a?(FM?pk3G?t刯?;SZ?;,`4?׀sǷ?<W[?H? 0܍?\?>?6YJ?)ِ?\C}?%d?w?SN?эv?pa?,Q&?@oű?SuFe?PV?;?I?viׯ?4D?.g?X1Iα?Jy?!dJ?پz?j»?8G;?L|{ʎ?mwn?k9:9??Ry?A&E?U?Ŗ<?k&_?G??~#?V#?_?S?Q|z?
Y&?$?htQz?3Tݜ?pXP?N梚?H*g?gS(u?1c?w@rT?Q=I?QA?]1%<?2:;?__rTE>?	RD?lj?W'n?-BU؊?h?t4?n?boQ?qvi?_)N?]tQW}?6H#z? 67w?"Ηs?C@Wi=q?ḰXl?f?$ka?%>T+Y?
O?K2=?]d<A]X`<+M[Ij<[5q<s*J"u<zPx<̷y8{<m}<<\I;<p$p<3&ڐ<n=<!ń<Jͅ<+@φ<ɇ<o`TY<7"U<R]ȗ<ģݥ}<?{_<6|M=<Zsxf<O_<	2h]ď<XujvK<GH<I<K<I>&<.8eG<h#ឪ<K&<mm<b!SΓ<Hgp(.<5_\<k<Mox)J<=<.ǘ<hm-a<DbS<yy<sy#nt<r~|oϗ<S*<+/w<*Pޘ<DS8<8Bޑ<u,<JBD<aҖS%<$D<Ly_N<?<Y<pW<Z+<<k^<WBju<1|<Dσe<bA<<W+Fl<eß<<
<b
]9<vre<rK㐠<7q<f/z |<9R<}po0@<wl<#=	<R=ġ<ĩ<'<)³MH<;t<͋tɠ<];d!͢<!<v|
&<R<F<L<m3أ<	O<lF2<lq_<ă<<k<E<ف<,gC<'o1Aq<Nk=<5[ͥ<&V<.s*<\X<E<<~ <Y$<PS<aC<0w1s<
$v䢧<}kҧ<wr<*ߺ3<aYc<T.<`HŨ<<s\'<5X<@9<]}<Qܨ<-YЊ!<V5S<2<ze<ʝ(<n <B%T<O2{<&x<-@<-BNS'<ꂲ\<##_<l\Ȭ<q탫<0AM5<Cl<
S<5J7ۭ<P&7<R|K<#O<xvJk<h[<n0<^Qk<ƥ<	
<z7<94,<$kJ<&h<:ω<3s<oŰ<P<f<Jj$<+:oD<ąEe<o< x
<Z*xaȱ<p3<<POR3.<;@P<as<+SB<QE<p-|޲<eY&Y<Ч*'<e;L<Vr<CQ4<zD<ޭ</<B3<,[<2Ә<L]<'{0״<O<q+<Z1W<aDL<8a<dܵ<y
<.{$U8<2`Og<HJ<{/eǶ<%<\}*<q<]<qkҐ<v}Gŷ<n<þ,0<Bsh9h<[i΅<6;ٸ<DuZ<*4O<Ќ<$:ʹ<xI>V
<;LC%K<ꆭh<E؂3Ѻ<
<P]<^vґ<wKT<A><B<޼<8'k1<;o<NP<`	n;<*<JPg<nb<C˿<.b<V<N<H]x1<C<*DugxV<³<|ɠ<Y+=<I<D<^'T<aN<bf7<QG׹<s<J<sz<rKmg</P<染<{H
<qQ<~)<Ɨ$'R~1[}<?n2|D'er9\-k[~p,4ȝ	6xq{3|Zlo	B{>
NVeΙVn6nvKzicp%E tQ)2U1WQ9Lin?23F:L"3\LQ	V	f[_rWDdx	h+*k2=Ko:qr	Mu\x?A{FS~8;b=ZV`bBtu9=JE>XدGwdO 8cxAFẙi&zqVYםΡag6	X83:뇡koɣj_ۤ|	Mg^ݧt|Ψ_ΓXp2X^ttH蟿W;ޭl~$\z[߁İPp:J+N!Xɦ֬ᆴX7(.
Ɉ?5}h.G{tr&oya=cA/˺DH0⤮<)9O@ᣩTrVj֋@?˷dsI^i@(0߾ta&⊂l1EA1T[n&mi#d)B}QJwt}B <
EOvpc/F<Ң"Ae
އ0~Rfq(*QtH3D@M`P}hwx%ƿ8*JG+[EliPIw+	E>ҙ02yΩ4A(Nt.Ȱ--̕^&܌z#;ޖu~g6X .pmF3n
bH<Y>޵LaEZvpR(-x_b˿ӰdyQӶVg<7܆ut7$MH𯋉ld"rqտH)݄
/0wپ}2}K	D5z&R cM,}uc?Ѡp5.bJ3ʸT[vv+\[U@ضBi"7oLeiFγ>SR(D2Z> B0$y1gWr-ެ
@樫(afoe<P&{œƢ}
k3y+īD/x[Ux?ЫÕΩsG*E6&9xB|*Xw$ q*54jfcOfZrNrPo\fDY6
4P4&{>W-|&aY+M?V#z?u?q?}n?k?Lh?e?Rc?`?Zw^?*+\?Y?RW?U?_S?XQ?߱O?M?3K?J?GH?F?jD?`C?(`A?j??>?x<?:?0O9?7?:6?4?993?1?%I0?C.?Mi-?!+?*?5)?''?y&?!%?C#?x"?(!???J??$??G?c
?Q??!l?:???@?
?d?)@?i
????4??s?]?I?6?K>,>N>>q>>>j>>k>>Π>>F>>>'>\>#>u>J>*>_F>d>+>$>w>>>JK>y>|>iݿ>>I>;>ʾ>t>5<>	~>>>O>>>~3>T>ե>(>g~>ՠ>G/>>>F>J>	>:n>bԓ>Q<>>x>~>>>^>Ј>D>l>1>>%>\D>@|>?y>Bv>Hs>Qp>#^m>mj>|g>md>a>^>$[>
Y>=3V>[S>P>M>J>~H>UE>B>?>=>S:>7>"4>=22>T/>d,>m+*>m'>c$>N?">,>>m>t>F>>1*>
>>Y>>ʗ>>I=_={==^==&=_=g=='0===P6=˙=\=	s==d=
=yo=/=6=.=fЍ=x=i'=܀=a1y=p=xIh=_==W=TO=G=>=N6=.=&===-H==<א<̀<<<.<X<i<H<Rx<i$]< B<\'<,
<;G;P;*;.0:I4_h2z3+3@3aQ3i`3{am3Ay3i3*353=3r333|ϡ3ڍ3+333^33׶3iż3-¿3c3%3uY3<3L3gv3;3k3-3$3!333P3P33<3p~3չ3^3J3I3<o33m33j4r4Uw4z45|4{4y4Bv4q48j	4a
4FX49M4@
4834]$4U4,444S44۝4Æ4n4V4w<4$"44V44ޱ454u4,W 47!4"4"4#4ҵ$4@%4Mr&4P'4_-(4p
)47)4*4+4|,4W-43.4/4~/40414|24W34244
545464"74@y84sT94/:4*;4;4n<4R=4hz>4V?4=3@4A4A4qB4C4D4udE4-CF4K"G4H4H41I4J4vK4\fL4HM4+N4aO4O4bP4ٽQ4R4ԊS4crT4ZU4CV4-W4ZX4Y4UY4Z4[4(\4_]4^4_4C`4va4alb40cc47[d4~Te4Of4Jg42Hh4Fi4Fj4Hk4Kl4MPm4Vn4^o48hp4sq4r4s4
t4u4v4Cw4x4 z42{40S|4u}4~44v4@
4L4>4ق4v444lV44R4F44p4
I44"4_44Ќ4l4L4`4ԏ4坐4<j4-:4
44v444np4g_4S4 N4N4U4c4>y4ݖ4%44r&4k44(4444.4Q4N4t44\۶4H94̻4p44~X4w4p_4~444wE`mru\zw8xky5zz/
{ԃ{{7|3}|&|H|}C}g}ۇ}}a}g}]}~~4%~5~C~Q~g^~ij~u~>~2~~r~դ~Ƭ~N~u~C~~~~k~~~~~~t~~~6
< :#%](*.-z/13579;=?EABD:FGNIJ8LMNLPQR
T=UdVWXYZ[\]^~__`;abbcod.eefLggh<iipjkkll!mmnnnhoo5pppLqqq?rrrsPssss'tSt|tttttu$u3u?uFuJuKuGu?u4u$uuttttrtEttssfs#srr:rqq#qpMpo_onXnm7mlkOkjiiThgfedcba`]_!^\[ZXWuUSQ"P/N"LIGSEB(@Z=d:A73e0,(_$	F~>~~7~~/~7~~
~
~w~G]~>~Y~,}6}b}|O|06{x?yjD?l[T?w'??o?Wp?xI?-3?x^j??N?R:e?4:>?l?*?%z?PՋt?4?e;?$"?zaWF}?Gz‘B?Oq1?
OU?ߺH?7a?nV,? K?Xhw?հ<?Vp\?m?)?zP?ZcX?*;Q^?#*'g?U7?e&$	?jJo?\Ȭ)?L&?FS?leZ&?g ?NIO??xRr!?P_hy?y6IJO?_5%?[X~?1>?bU?+À?PX?5:pɗ0?8d?;U?J?͓?)m?ېZ]G?/|!? ?iT??Wq?P<p?9h?^C?81H?Y2?BA?p?]v?6<}n?.?K?*1)?ʸ?{w??z/)B?~q?T n?Nj#z?_88?	:vG?V2?3&dt?64?m[?HsU?t?,o5?ja|?mq֤?xz?1b<?RN?Z_:)?ؤJS?M H?>F9?ߓ^??ۮY?3???i?Z8o?
O5?ٸ?P?R9?igP?La;?L?!ވ?%o?{7=8?Ҁt?DvC?6?=p\?;So&?mj?W?j?$O?z5Ѽ?Ҏ?C|P?yh|?%H?/ZM?f!w;??>ǭ?MAz?G?y?.?P9կ?TT}?g4K?#$O?	Y?BM?6C;?B"_U?~t$?œ߉?52?Ҙl'?DɤT?<(i?qE8
?
Uī?OQM?o^?Sq͒?Gط5?zx?1zd}?:R!?Wg?~&~k?=~-2?ZҿҶ?'|j_]?it?[?8R?uqb?#h?z|J?G~`?\!>?GF?vJ?l󈬚?5hȩmE?㭍?-l?uG?1i%?調?M?e*|?zè?^V?4<%F?B}u?c-@c?n?	R=?Kr?*}T#?,"k>?R)?K{o?vaӽ?命8?
t;I_?h?3xk?3Ӻ?b3<?[?u0?R({?>?vZ9S?LJisk?M$a.?ftW?+?"@|?&#?p>_?1fҲ?
DE?}?/?%,?0?5nl+,&?QG?b.	?,*(>?p_8?cU)?h*?'wާ?dИۦ?ԭ<ڥ?]']ۤ?ݣ?=|?j?.?ĥׁ?u?	̓0?"NR?
y?ڥ?d֔?^8
?0`4I?IrO*?O'?x
A?B?/)?7h`|?]٨v?p?gC_e?T?yx;I<<[,<P<a;D8|</<L.#<a8/M<trtZ/<L-H2<'2M<C];<w6A<z'<c8.<W?<</<U9<=6<tbu%<<~1<=|ak<pҦ<F6<w*<CFE<w
CSU<v{d<N.<,Gc<F8ɹ<,<Ywmgb<0n<lm<)zBU<:R6<2*<NYp><a;2<&rԬ<H<)g<ø#ί<Sv:<ҵ=<oz3郮<΂:ɮ<&b
<TQ<ׇm<.}Sد<4BV
<9@.<N<r[Vo<q<a}<Kf=ϰ<kK<2 <1G-<A>L< Ŀk<4x<mQ<*fƱ<.<@<re <}><k[<f*y<ǁ<.b<Sbв<<Hn
<0'<^&pDD<Rʺ`<jXj}<doݙ<=;<Vҳ<Zr޾<tq
<]t-&<0<C<]s^<6fz</H2<]A<Iδ<8<bU^<Z
M!<Ofj<<ȲNwX<x_Ut<Ɓ<Y$#<=s}rƵ<ӌ/{<8^O<`<4<&O<rWj<71B<P)<C<R(abض<Ta1<h'<iQ*<pE<s5ea<I|<M<	<ʳ<"LϷ<s<ꆤg<v"<΢=<NY<~zou<-G_Ð<C<eȸ<'jDQI<s):<G(8<
F8<ybT<pp<1*.ˌ<?<,ՌyŹ<to+<J&r<69<[Ȣ!7<T<JrZq<=1dL<>V<ZxȺ<6<O<[| <
><=A[<'?}y<<d<n%k<.kӻ<<lH<-z.<
nM<fl<f<6<;ɼ<7h0^<n2	< 7(<G3H<#i<s<pn 	<Iʽ<7.R<I
<Ft.<P<%/r<
*K!<o<:v#پ<a<!SŠ2<mMB<h _f<f<"q</`ӿ<Y<uG<Gɏ!<4<>NG<~;[<h&#n<.c<T<quͪ<H=<0=4<e<<Ap n<5]!)<m	i?<;.`HdU<;k<at߂<NV</w<q<9<Ÿ<<ozG-<$EG<XvǼa<.Y|<xw.<R
*S7<ۖ1<x
<V<h^{*<I<@3zi<
AV<pu<'<u`<幜<^T=<:Dd<Cub<'Zks<
%<AS<B~:R@<Jq<ٍq<:$<Li<j{S<埾@<2	k<4z_('<s	Vy<-<4)9<|<Do.<W@<Zwx܏<x8<3	;<j%=BT
~Q~U~KD
Ga7\%aFOaSuzpD(|Wc%WM$	t`K[oT`gtSwf#Wl`0H7[z1z(zK^2#9MM0MFPrOxS왎2ȩn{TH,ҭ^p .]M[\}r;/4d6dcNQp.t@e$oX%L(<Y?1څAJU3[*Й4wFg\	LӺ$ҮxNYȥ>xo6xu{fUY>9>{ppCBwS(:5^dܓAN}8)	YfHqն&|s	f2,2Ztզޗ <ex/vJ*5b1Vv _|I>.nZR'ӯB)[l@uPҍ'TȈt(5wI'L/$;nXMØT`OArW,+jtȳRfARnqӊ<KZW$eKs)
4<=>)G'QA@Y.(5bXjz>lq{2Xx{~JH҄Cc`Qz%~ )Q\HsrUb'Bkq-hnק
Ψ;3Kd)P^٨Tv$Hx"$ 5..&$ŗ:
<GuU@z6={7t^l~Rd(E[WNQJGP,S<*0b$Z<^G*	I'l!v~"9,d8ܦ7r68+iS"A</j#D/s
4n0x
y1WbɆf55Lo)BoBK-YW"&㎍xs?ٍL;V/G;(GG?v]zY@3HjuL*ث}~08B8srpX6ԋ75]/WUx<ghq+~Ň;	u)F.uHeIǴv^ب"-n"/+:e4Tt(*X@EH,0fJ3KZ3N@Si@?>Aޓ=?~)@ lѿ3	;
@UUUUUU?"@m{??@@5gG8?SˆB?AAz?<ٰj_?$+K?88C?J?llf?UUUUUU?dg?̶e*=
ףp=@n?[	m?h|?5?333333@r?$~?B>٬@r鷯?Q?Q?9v?(\@ffffff@0C.@4@x&?@?UUUUUU?a@X@`@|@@MA>@@-DT!	@h㈵>.A-DT!	-DT!@3?r?q?0@9B.? *?,|l	@yD<d&@:'Q@0-!@
5%@!)@Mu5.@t:?1@C3@2;Z6@B*09@F?6;@>@:5/?@@R2B@96SC@wz*E@r4dF@OO<H@EjI@NrdK@e"vM@g|qN@O~#P@@3P@1rSsQ@Y R@@ZS@ cT@J:c|CU@HG,%V@XW@XgyW@=$(X@WRY@nZ@+p\[@0\@>fq]@Ob^@+NT_@ݭC#`@~{`@kbba@YSȐa@nb@1Ib@5ca
c@c@ͦ3
d@\>d@nz
e@s9Je@FGGʪf@yyuf@IJC g@Y&g@oFh@·h@aQL i@ai@	F~x*j@&Pj@7k@!+k@VFl@l@tVm@pZNm@k9ihn@HQOUn@a,~|o@b4nʼnp@+e	Ip@cp@)Vp@*q@6Gaq@q@>m#FJq@FK.5r@b)C|r@Wrr@V]
s@rRs@GIqs@
>6qs@jB*t@A=rt@fIw|t@d'-u@X+{
Mu@#
u@ZGDu@;#(v@b%rv@iv{Իv@w@Ow@\&әw@}6-#w@h͙.x@k?7yx@–'x@_*y@Yy@1*y@^TTy@,{L<z@:I$z@|*&nz@
dY{@룴hk{@
a{@f|@&"eP|@
4|@0h|@^6}@™}@)}@L~@v@dg?;@k	w
x,xTtynzh{ 
|
}aPx	U	l5QRbDdS0E@	@ET	`Eh	E	E	`G	G
H$
0H8
PHL
I
`II$J\JKK`L`O\
O
@P
PQL`RdRSTDUd@V`VVV(V<VXX[\^0_@`Taapbcc@pddkl@mTn0o0p0rlPt@w|`p<DtD0D0pTP`@@t`04T@P<t@ 
   !P!!@!!D"p""@&#P&#`&(#'`#,#4$@=d$?$C4%J%@K%pL%RD&S&U&Z@'_'e(pk,)r)`x*0~D++ ,\--К.l/<0@0Pl1 $2@2P3`4`44D5X5 55T666@7`!7P"7p*48+8294\989::PH\:pI:_;b@<p< {=`><??@ pA A BBC,DD(E<EPEEHF
FFF'G10HLH`VI\J@]HJcJdJ$K$LtLLL	M,hNoNpXO,P0FPm QtQ~R`xSSSSPTphTTT@8UtU0UV<VV VW\WtWWWWWXX@4X`LXdXXXX0XPY Y8YdYY@Y`YYPZ`tZZPZ0[`d[[[[0\0<\T\Pl\p\\\]P]]`^^P^p
_`_`@``paaa bzRx$ bFJw?;*3$"D;X;4l;EBDD d
GBIAAB<4<\AA ABDF l=PDn
F=`D}
G(=<=\P=BED D(D0|
(D ABBHQ
(D DBBCD
(A ABBE4L>[BBA A(H0F(A ABB(lBAA ABH>%4(d>hADD m
CAFM
CAG `>A@
Gs
E4?mBGD x
DBEL
DBF@?AB
Mw ?Ai
NK,\@AG0
AE
AA$0Wl`ACI PAA8XlBEH A(A0m(D BBBDlBEL E(A0A8E@8A0A(B BBBDmBEL E(A0A8E@8A0A(B BBB8$@nzBBE A(A0d(D BBB4`AeBDD E
GBHAAB4BcBQD t
HPoBHE A(D0JGfAV0D(A BBB0BbI PADP H` PlCDbHhCBBE D(D0h
(J BBBGO
(D BBBG8DAGHDBBD A(G@Z
(A ABBHU(F ABB(nz}AOG^}CAHTEkAw
HjhE'BBB B(D0D8Dp^xM_xApK
8A0A(B BBBD|
8A0A(B BBBBN8K0A(B BBBLFXFdF,pF@|F$T	nBDA cABH|O:BBB B(D0A8F`8A0A(B BBB@FBAD D0
 AABG`
 DABIG` GNBSB B(A0A8G`
8D0A(B BBBE`
8A0A(B BBBEHxIBBB H(A0C8I`
8D0A(B BBBF8JBDD0
ABHu
ABH4	LmBGD x
DBEL
DBFD	L(X	MAG0
DI~
AI	OCtN4	POuBDD `
ABCAAB4	OBDG M
ABCD
DBF4
OAAG a
CABi
CAC D
hPDE
G\
DLh
QQBEE B(A0A8G
8A0A(B BBBE@
XBED G0^
 ABBKD
 DBBLX
XBED A(F0~
(D ABBGL
(D ABBKD(D DBB4XX:AAG 
CAGa
CACY\ZBBD D(D@n
(A ABBD^
(A ABBDD
(A ABBFh([BEA A
BBK
EBLz
BBJA
EBHY
EBH\
BBH(p\AAG (
CAK^daQBB B(A0D8DP`HPt
8D0A(B BBBGH
fBBB B(H0D8GP 
8D0A(B BBBAXd
HkKKAD D0
 AABKM
 CABED
 DABMh|
<lfBBB B(A0A8DPz
8A0A(B BBBF
8C0A(B BBBKy
8A0A(B BBBED@,nBAG ~
DBBL
DBFj
DBHloBBB A(D0D@r
0A(A BBBGy
0D(A BBBD`
0D(D BBBJLqBBB B(A0A8G
8A0A(B BBBJ,HxAG0
AE
AA x$z6D Q
AA@@{BAD 
DBI_
DBK`
DBJd|BEE F(D0A8D+
8F0A(B BBBKI
8A0A(B BBBALH4'BED D(GP1
(C ABBA
(F ABBKLuBAG0D
DBLG
ABFJ
ABKZ
HBD\DBBD A(G@
(A ABBIg
(G ABBEh
(A ABBJ(HtkAG 
ADV
AAt4BGE D(G0q
(D BBBDi
(L BBBED
(L BBBJi
(D EBBA_(I BBBHFBBB E(A0D8D@^
8D0A(B BBBA@XbBB A(A0D@S
0D(A BBBF$iLBDA AABHBBB E(A0A8DP8D0A(B BBB@̍BBE A(A0D@z
0D(A BBBD0TYBDG g
DBFNDB ԏCAZ
E
AdBBB B(D0A8F`-
8A0A(B BBBFq
8A0A(B BBBE`(BBB B(A0A8D`2
8A0A(B BBBFo
8C0A(B BBBEHxĝBBB B(D0A8DPu
8D0A(B BBBEP|BBD D0~
 DBBFL
 DBBDt
 DBBDĠLD R
Jk8LD R
JkLX$BBA A(G@
(A ABBGC
(C ABBE85BBA A(D@
(A ABBA8BBA A(I@
(A ABBD ,DD P
Dk4@\BIA GBCH `xtEBBB G(C0
(D BBBCi
(D BBBEA
(D BBBE<`rBBE B(D0
(G BBBF>BBB B(A0C8Ie
8A0A(B BBBD,EZBnDNB^
BzDB}AyB{A((D y
CE
KS
E0AJ5
AGU
ABnA,$X|AQ
NDR `AC
F0TAJe
AGU
ABnA,4|AQ
NDR `AC
F8BAA 
ABBW
FBAPBBA D0
 ABBHv
 ABBEe
 CBBDHHhBEB B(D0A8D`
8D0A(B BBBAlBBB A(A0GPq
0A(A BBBH
0C(A BBBC
0A(A BBBB844,0BDG G
ABIq
CBJLdBBE B(D0A8M
8A0A(B BBBGdXBBE E(A0A8D
8A0A(B BBBHv
8A0A(B BBBHHJBBE B(D0A8D`
8D0A(B BBBGXhBIA A(GP
(C ABBDDXW`_XFP\
(F ABBIp8BIB E(A0A8G
8A0A(B BBBGDV_F^
8A0A(B BBBIX8(BBB B(A0A8DP
8D0A(B BBBJ,XN`gXAPX%DD O
Ek(%!BEA T
BBHd&NBBB B(A0A8DP
8A0A(B BBBJ
8F0A(B BBBG8Ht,BBA [
BBD|
GBC`8-BBA A(L0
(D ABBCl
(D ABBKD
(D ABBCX.0BIA A(GPm
(D ABBFDXW`_XFPb
(D ABBED2BIB B(D0A8GORF^
8A0A(B BBBAmNIABBDEFBPw
8A0A(B BBBE7BIB B(D0A8GORF^
8A0A(B BBBAmNIABBDEFBPw
8A0A(B BBBE=BIB B(D0A8GORF^
8A0A(B BBBAmNIABBDEFBPw
8A0A(B BBBE0 <BBMG P(D0A8D6PHFFBFAEFJc
8A0A(B BBBDWRF\
8C0A(B BBBH|
8A0A(B BBBBZW_A!HBIB B(D0A8GORF^
8A0A(B BBBAmLTAABADBFJw
8A0A(B BBBG!MBIB B(D0A8GORF^
8A0A(B BBBAmLTAABADBFJw
8A0A(B BBBGH"RBIB B(D0A8GORF^
8A0A(B BBBAmLTAABADBFJw
8A0A(B BBBG"XBMG R(D0A8D4PHFFBFAEFJc
8A0A(B BBBDWRF\
8C0A(B BBBH|
8A0A(B BBBBZW_A#`^BIB B(D0A8GORF^
8A0A(B BBBAmLTAABADBFJw
8A0A(B BBBG`$cBIB B(A0D8GpjxZBHBBABBAJpy
8A0A(B BBBHLxHYxFp^
8A0A(B BBBE$eBMG R(D0A8D4PHFFBFAEFJc
8A0A(B BBBDWRF\
8C0A(B BBBH|
8A0A(B BBBBZW_A%lBIB B(D0A8GORF^
8A0A(B BBBAmLTAABADBFJw
8A0A(B BBBGp&,qBMG O(D0A8D7PHFFBFAEFJc
8A0A(B BBBDWRF\
8C0A(B BBBH|
8A0A(B BBBBZW_A@'|wrBIB B(D0A8G^XOEABADBFJN
8A0A(B BBBILUA&WKF'\	
BIG B(D0A8Z
8A0A(B BBBDWRF\
8C0A(B BBBH
8A0A(B BBBHp(ܑBIG B(A0Q8PFSAFBFBBAOVRF_
8D0A(B BBBEFORFBFBGAT()BMG R(D0A8D4PHFFBFAEFJc
8A0A(B BBBDWRF\
8C0A(B BBBH|
8A0A(B BBBBZW_A)D	
BIG B(D0A8Z
8A0A(B BBBDWRF\
8C0A(B BBBH
8A0A(B BBBH*ľBIB B(D0A8G
8A0A(B BBBHDV_F^
8A0A(B BBBI
8C0A(B BBBAH+DAD |
AFV
AAu
AJD(R0`(A F
AB`d+BBB D(D0
(D BBBF
(D BBBJe
(D BBBA|+DBBB B(A0A8G`
8A0A(B BBBK^
8A0A(B BBBH
8C0A(B BBBAH,\,0p,HBAA DP; AABT,xBIB B(A0A8G`hHpYhF`_
8D0A(B BBBAX,BIB B(A0A8GzV_F\
8C0A(B BBBKDX-BBA 
DBDL(R0`(C A
BBBX-BIB B(A0A8GzV_F\
8C0A(B BBBKD-BBA 
DBDL(R0`(C A
BBBhD.8BMS A(Gp
(A ABBDxWRxFp\
(F ABBIRxW_xFp8.BEA 
BBEf
EBCH.`BBB B(A0A8D`
8D0A(B BBBF|8/4\D d(Q0F8F@FHFPFXF`FhFpCxCCCCCCCCCCCCCCBO I
HcT/BAG
DBES
DBGO
DBK
DBAL0*BEA D(D0
(D ABBBf
(D DBBFX`0BIB B(A0A8GzV_F\
8C0A(B BBBKD0@BBA 
DBDL(R0`(C A
BBBX1
BBB B(A0A8Dp*
8D0A(B BBBKxMgxAp@`1
BDD0j
ABIV
ABG
CBD(1<BIE B(A0D8GGGGGGGGGGGGGGGGGGGGGGGGGGSH
8D0A(B BBBEGGGGGGGGGGGGGGGGGGGGGGGGGSp2#IBB A(D0
(D BBBBp
(A BBBIq
(D BBBEc
(D BBBC\D38&"BIB E(D0A8DW_F_
8D0A(B BBBD 34m
BBB E(D0D8GTGGGGGGGGGGGGGGGGGGGGGGGGGGGG	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
G
G
G
G
G
G
L\
8A0A(B BBBE4T=:BIG B(D0O8P^NKAFBFABAMc
8A0A(B BBBEVRF\
8C0A(B BBBIf
8A0A(B BBBH5C*BIG B(O0F8KZMOFFBFABFJc
8A0A(B BBBBVRF\
8C0A(B BBBIf
8A0A(B BBBH@6LJ*BIG B(O0F8KZMOFFBFABFJc
8A0A(B BBBBVRF\
8C0A(B BBBIf
8A0A(B BBBH6P*BIG B(O0F8KZMOFFBFABFJc
8A0A(B BBBBVRF\
8C0A(B BBBIf
8A0A(B BBBH74W*BIG B(O0F8KZMOFFBFABFJc
8A0A(B BBBBVRF\
8C0A(B BBBIf
8A0A(B BBBH\t8]BIB B(A0A8GV_F_
8D0A(B BBBE8HlBIG B(D0L8PMOFFBFABFJc
8A0A(B BBBBVKF\
8C0A(B BBBA
8A0A(B BBBH\9rBIB B(D0A8G2
8A0A(B BBBIM`F9BIB B(D0A8GL`F^
8A0A(B BBBJ~LNABBGEFAJy
8A0A(B BBBC:<BIB B(D0A8GL`F^
8A0A(B BBBD~NOAABADBFJy
8A0A(B BBBG0;|BIB B(D0A8GL`F^
8A0A(B BBBD~NOAABADBFJy
8A0A(B BBBGX;$BBB A(A0DP
0D(A BBBAU
0D(A BBBI,<=X@<F BIB E(D0A8DPRF_
8D0A(B BBBD`<BBB D(D@f
(A BBBEV
(A BBBCW
(C BBBHH=gBBB E(A0A8DP
8D0A(B BBBG@L=0BEB A(A0D@
0D(A BBBDL=q
BBB B(D0A8G
8D0A(B BBBA=,dDZ
BC>|BMG B(D0L8DW_F_
8D0A(B BBBDCW_AV`G>,
BIB E(A0A8JSBFAEFAEFJf
8A0A(B BBBIvVRFW_A9V`G|4?xBBB B(D0D8GVWRFv
8D0A(B BBBAW_FVaG ?	BLE B(D0A8G\
8A0A(B BBBA#GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGDDDDDDDDDDDDDDDCS@@WAJvLKA
AFd
CA,A|AQ
NDR `AC
FHLAIBAJvLKA
ABHl
CBA,A|AQ
NDR `AC
F\AD.BIG B(A0A8]iY_Fb
8D0A(B BBBG(BG&BIQ T(N0A8JIXA
8D0A(B BBBEJUDiORFIVBqJYBJWA=J[AIYDdJYBdJWAL(CmM	BEB B(D0A8G
8D0A(B BBBG xCvDo
EK
EXCw,BIB B(A0D8GORFb
8D0A(B BBBFC^BMG B(D0Q8GWRF_
8D0A(B BBBDLVFBFBBFAONW_FDH"BIB B(A0A8JVRFb
8D0A(B BBBIHSEBFBBFBY3W_AV`GPVFFBFABTlEBBIE B(A0A8G	WRFb
8D0A(B BBBExW_FGnBGkBXF TABIB B(D0A8JORFb
8D0A(B BBBH\Fa BIB B(A0A8JS	VFBBBABTVRFb
8D0A(B BBBIwMBMMGABBAWW_AV`G0G;uBMG B(A0A8Qf
VRFb
8D0A(B BBBBIRAV`GlGxP'BMG E(A0A8T0	WRFb
8D0A(B BBBA
V`G$HX/BEB E(D0A8G[
8D0A(B BBBFY1GaAw-HPB|p^SBlH#K	BIJ B(A0Q8qHJIAG
8A0A(B BBBIEORFI5ABBB B(A0A8GGiHHK
PKBBBBBABBBIPNBBBBBABBBI08A0A(B BBBI+RPBMG B(A0A8WVRFm
8A0A(B BBBJH^ABW`GhJ|Jz%G]Jz	8JzIGED D(F0a(A ABBG8J{YGED D(F0t(A ABBDH K,{BEH H(KP
(E ABBK[(A AFB8lK|IGED D(F0b(A ABBFTK|-BBE H(H0K@
0D(A BBBEm0A(A FBB8L|IGED D(F0b(A ABBF8<L}aGED D(F0v(A ABBJ<xL4}yGED D(G0O(A ABBHHLt}BBE I(H0K8K`
8E0A(B BBBE8M~IGED D(F0b(A ABBFH@M~BBE B(H0H8KP
8F0A(B BBBD8M@IGED D(F0b(A ABBFHMTAG@
AIt
AK1
AFJ
EIJ
AEHNAG0
ACq
AFB
AEJ
EAJ
AE`NGJxN$GJN,GJN4	0N0vAD@O
EAH`N̆$D _OD U O(D c8OD UPOD U0hOAG@
AOt
EAAODQOSAG }AO(/AG ]AO8D UP@B\ ]$PxCD z(<PAG V
AIXA$hPiBFG0IAKP\NAG DAPDIP3D g
A PAG _
AElQDBFB A(A0Gpg
0D(A BBBKV
0D(A BBBG/
0D(A BBBAxQ&IXLQ
BFG E(D0A8J
8A0A(E BBBFLQhRBED A(G`e
(A ABBBt
(C ABBA04Rxka
LnJHA
GL<hR&AG 
ALl
AKL
ACO
DERWAG AA R$IO0
EA,RCAGP#
AD_
AH SAG@
DD@S_D ZXS4D pSܡ(SVBAG@CFB S	L@
Mr
E0SMGG T
ABFhHTZBBB B(D0A8D@}
8D0A(B BBBEHTTBBB B(D0A8DPm
8D0A(B BBBExTBDB B(A0A8DP
8A0A(B BBBDC
8A0A(B BBBCa
8A0A(B BBBExU@BDB B(A0A8DP
8A0A(B BBBCB
8A0A(B BBBD`
8A0A(B BBBF(UdIACD g
AAGHUBBB B(D0D8D`b
8A0A(B BBBHV\BBB B(D0D8DP
8A0A(B BBBE
8A0A(B BBBCd
8A0A(B BBBBm
8A0A(B BBBAdV{BBB B(A0A8GP
8A0A(B BBBFI
8A0A(B BBBExW̮`BBE B(A0A8DPR
8K0A(B BBBI_
8A0A(B BBBGL
8A0A(B BBBJ,WwKHE }ABH\WBIB B(A0D8D`n
8A0A(B BBBAS8A0A(B BBBdXP2BBB B(D0A8Du
8A0A(B BBBH
8C0A(B BBBELX(:BBB B(A0A8Gb
8A0A(B BBBCLXBBB F(D0D8G
8D0A(B BBBB$Y` jJI{
p
!{
{
o` 
%
W07p 	o6oo4o
{
6pFpVpfpvpppppppppqq&q6qFqVqfqvqqqqqqqqqrr&r6rFrVrfrvrrrrrrrrrss&s6sFsVsfsvssssssssstt&t6tFtVtftvtttttttttuu&u6uFuVufuvuuuuuuuuuvv&v6vFvVvfvvvvvvvvvvvww&w6wFwVwfwvwwwwwwwwwxx&x6xFxVxfxvxxxxxxxxxyy&y6yFyVyfyvyyyyyyyyyzz&z6zFzVzfzvzzzzzzzzz{{&{6{F{V{f{v{{{{{{{{{||&|6|F|V|f|v|||l

H1[d D\fw
7ffP\@Q + 


D@T r 

@&  Jd Jcl0l0Pl`l l`lll@l l0+D`fTf`%iphiaffmO [DJf
 B@Ll[DfHfCmp 

 P
 

6PQJ0WJpO;mOCm0MHf<f8x\pP
D\@Jg

ZLj[(cOmp]pNl
Dg@g0]h?h
g y
gt
h k
he
7iЗX
l`g@W
(jy@H
g0`>
g @5
g`&
g
g`
i@
i`,	}g	rg 	bgЕ 	Wg	Ng	Gg	?g@}	9gpw	hМ 	hpu	h@`j	h`Y	h@P	4gPpE	iP<	niK`.	ei` 	h 	/gj@
	id	i@%g^@ilwi`1 [i*ih ish@Ghxh`]kUGCC: (GNU) 10.2.1 20210130 (Red Hat 10.2.1-11)8` 4607W	p
 p|!
0


{
{
{
{
}

`
`
J& J?@JEwJJ@LP
L`LM50MIM[z|@N%pNhNpOmO.pPe@Q

@k}`}T~N!Hz4`
J 
R@TeoTc UQUV@W@W]
whXǂz}
%


ص


|

E
5
]3]

$
`
7
 
&

=
 

BI
@
5r

Q


	

#
`
& 

2
`W
 x
 

 
!

+
`M
 s

 
%

	
@,	
` R	
@ x	
\"	

2	

*	
`
(

 
+D


#m



`

\"

 
`$
@F
 h

@


&
`
*$
 
%M

&v
!
@!
@


-

 Q

r

X


L



 

@
"

[7

?`
`
.
`

H


c
-
7
 
&`
8
t
h
v
(




	 
D
N

`
@
!

"
  

.

)-

(X
l


@\7
`
F
Ե
ӵ
	

!
,
ѵ8
B
f
 
.

9

)
͵
ɵ
ŵ
	
.
p<

L
X
d
s
j




`[


^
Y'
1
T>
@Mf
X|
N
`
)
K




 
4A
Ci
4
б	
`

@




|

TE
@c

I
u
Z
(


%
@
3!
n0
D
 b
m
T{
N
@	
$


g
H

9
B)
<
`K
YZ
	k
8
y



.
(
0	
@+R	
 

"
,
<
xL
R[
pk
$x
	

Э
K




$0
h@
`)h

z



&


K
X
@"
0
خE
S

a
o
|
	


8
x

	


p	,
`	=
دP
]
P	n



 

h
ȯ
3
!
-
:
M
 du
 
 


	
X

(

$
1

#Z
@
!


%
P
!

'

2@
M

`
k

`
qI

 
 
B) 
6 
	E 
R 
޴_ 
`' 

$ 
 
 
` 

3!
ٴ!
V
C!
I=k!
:!
!
!
H!
!
"
4"
@O"
]"
{"
:'"
`
""
Ȯ
"
`#
%#
1#
@X#
@	i#
w#
#
#
`:"#

#
@#
Դ$
`+,$
߳:$
 &"b$
`	$

$
8$
@$
p$
%
 
#:%
\%
%
ϴ%
ٳ%

]%
P%
%

&
H&
()&
C&
xV&
ӳd&
s&
&
ͳ&
dz&

	&
&
!&
'
8''
	8'
@H'
8X'

m'
	~'
'
('
ʴ'
Ŵ'
'

'
'

'
0(
(
 -(

U(
b(
p(
}(
(
(

(
	(
(
h(
@y)
st;)
gb)
 z)

	)
`
O)
)
)
)
*
*
 '*
g!N*
k*
{*
*
*
	*
x*
`
N*
(
*
t+
ذ	+
p +
-+
	:+
J+
lV+

Y	~+
+
+
޲+
ײ+
+
+
 
&,
 
	;,
вJ,
ɲY,
²h,
x
},
 
,
@]D
,
,
Ȱ	,
 
-

$-
.-
J-
X-
hd-
@

-Yk-Y'. [-@[-`[.[2.[u.An.:.[.p]/]N1/
w@/_U/al/cm/d/d/fC/fu0Pg"0gW0hf0PiQ0p0q0 r:0`s0t1u41wT10yo1 |11K1f1P2,2W2n26222`'2u22k!3<3S3{3F33L3533Y4@C404
A4 `4 4@|4L4L4` 5 5G5
`5`50D5B5E5 r5>6(:66`|66|
7 %7>7hK7`
b7
z7P'7
7 +70+8@+"8+O80i89J8X
8 B8C8H(9OD?9 P!W9PQNm9W9X9Z09^:P
=:dy:j:Pp:X
;pwD;@}~;;;/<Еq<<<(=ri=H
= 	
=p
=h
)>0c>(
o>
>> 	
>09?@w???
?
8@HT@P
n@@@A5AbA`A
A
A@&A
A0'B
/BP/\WB0xB7*B8B<B?
%C0M=CPN<QCdnC`g"Cum
C:	D@*DDp*}D*DМ*D+EcEEEF]Fp$yF=FF F0FgG`-Gpq
UGdG`G`,,
G6H
H
6HQ	WH@[WHa|H bIIph|Ih.VIЗ&I
I
I
6J
lJ
J
Jذ
Kа
KKȰ
KM	KK,L`^XL
L
L
L"2M8
iM`1BMsTAMx
Np
-NP jN@
N;uNKP'O`
RO`r/Ox
O
hOyK		P1A%P
BPh
[P0
zP(
P 
b*
P
P
P`
P
P@
P 
Q@
@.Q@
JQ
@hQ@
Q
Q
Q
@Q
 ,R
 `RRPR
hR
 R
0R
`R 
PS
0S
NS 
gS
S
S 
PS
S
S
S
P	T
 =T
xqT

T
y
T
t
@U
 k
R	[U
e
tU
X
U
@W
V
@H
RV
`>
	V
@5
	V
`&

W

LW
`
	W
@

W
	=W
	7X
 	
X
 	X
	OY
	<Y
	vY
	Y
	Y
 	%Z
u	)_Z
`j	dZ
`Y	Z
@P		[
E	D
L[
<	Y	[
`.	[
 	'\
 	F\
@
	
~\
	K\
@\
@
:]
I]
]
 ^
$L^
 	^
^
@"_
xh
4_?_PIA_IT_Ij_`
v_{
_J_{
__
_
_
_
_
`
`
`
%`
/`
8`
A`
J`^`v```

4_`g
`
`{
`{
`
aH
a
-aBaVahayaaaaaaaIapb)bCb0BRb`bSib bbbbbbbbcP25cJc`clcwc@&c/ccccc
dd(d?dQddd~dIddddd	ep
e*e=eLe\eueeeee@3e0ee(ff0(f!.fBfYf0tffffff@{fgFg+g<gUghgxggggggNgggh)h7hYVhmhpZhhhhh	hii#i4iGiYi{iCi`i:jiipWiiyj&j9jKj[jojjj@
j jjjjkk k3kQk`]kmk |kkkkkkkkl#l6lIlYl flwlll@%lllBIll
mm7mKmamym@mPVmmmmmm-nn#n;nLn\nknn`nn_nnnoCoP.oGo]op	uooo$o`ooooopp*p<pQpPIrpppp@&ppppqq a6qKq`qlq }qqqqqqr"r4rCr	Or`rur`irIrrrrIr;	ss&s7sHsUs wnssssss0Rs tt*t;tTt:tttt0ttttuu*u"Fu	pLu^uIzuuuuuuuuvv_generator.pyx.c__pyx_array___len____pyx_memoryview___len____pyx_tp_traverse_5numpy_6random_10_generator_Generator__pyx_tp_traverse_Enum__pyx_typeinfo_cmp__pyx_tp_new_Enum__pyx_mstate_global_static__pyx_tp_new_5numpy_6random_10_generator_Generator__Pyx_PyObject_SetAttrStr__Pyx_PyObject_GetAttrStr__Pyx_PyObject_Call__pyx_f_5numpy_6random_10_generator__shuffle_int__Pyx_PyType_ReadyPy_XDECREF__pyx_setprop_5numpy_6random_10_generator_9Generator__bit_generator__Pyx_PyNumber_IntOrLongWrongResultType__pyx_sq_item_array__pyx_tp_dealloc_Enum__pyx_tp_dealloc_5numpy_6random_10_generator_Generator__pyx_tp_dealloc_memoryview__pyx_memoryview_thread_locks_used__pyx_memoryview_thread_locks__Pyx_SetVtable__Pyx_copy_spec_to_module__Pyx_ImportVoidPtr_3_0_8__Pyx_ImportFunction_3_0_8__pyx_pymod_createmain_interpreter_id.0__pyx_m__pyx_tp_traverse_memoryview__Pyx_IsSubtype__Pyx_IternextUnpackEndCheck.part.0__Pyx_ImportType_3_0_8.constprop.0__Pyx_PyInt_BoolNeObjC.constprop.0__Pyx_BufFmt_TypeCharToAlignment.constprop.0__Pyx__PyObject_LookupSpecial.constprop.0__pyx_fatalerror.constprop.0__func__.1__Pyx_CheckKeywordStrings.constprop.0__Pyx_CreateStringTabAndInitStrings__pyx_k___pyx_k_1__pyx_k_1_0__pyx_k_1_2__pyx_k_A__pyx_k_ASCII__pyx_k_All_dimensions_preceding_dimensi__pyx_k_AssertionError__pyx_k_Axis_argument_is_only_supported__pyx_k_Buffer_view_does_not_expose_stri__pyx_k_Can_only_create_a_buffer_that_is__pyx_k_Cannot_assign_to_read_only_memor__pyx_k_Cannot_create_writable_memory_vi__pyx_k_Cannot_index_with_type__pyx_k_Cannot_take_a_larger_sample_than__pyx_k_Cannot_transpose_memoryview_with__pyx_k_Construct_a_new_Generator_with_t__pyx_k_Dimension_d_is_not_direct__pyx_k_Ellipsis__pyx_k_Empty_shape_tuple_for_cython_arr__pyx_k_Fewer_non_zero_entries_in_p_than__pyx_k_Generator__pyx_k_Generator_binomial_line_2894__pyx_k_Generator_bytes_line_653__pyx_k_Generator_chisquare_line_1561__pyx_k_Generator_choice_line_681__pyx_k_Generator_dirichlet_line_4300__pyx_k_Generator_exponential_line_405__pyx_k_Generator_f_line_1395__pyx_k_Generator_gamma_line_1317__pyx_k_Generator_geometric_line_3323__pyx_k_Generator_gumbel_line_2346__pyx_k_Generator_hypergeometric_line_33__pyx_k_Generator_integers_line_526__pyx_k_Generator_laplace_line_2261__pyx_k_Generator_logistic_line_2465__pyx_k_Generator_lognormal_line_2545__pyx_k_Generator_logseries_line_3517__pyx_k_Generator_multinomial_line_3838__pyx_k_Generator_multivariate_hypergeom__pyx_k_Generator_multivariate_normal_li__pyx_k_Generator_negative_binomial_line__pyx_k_Generator_noncentral_chisquare_l__pyx_k_Generator_noncentral_f_line_1483__pyx_k_Generator_normal_line_1123__pyx_k_Generator_pareto_line_1963__pyx_k_Generator_permutation_line_4797__pyx_k_Generator_permuted_line_4505__pyx_k_Generator_poisson_line_3162__pyx_k_Generator_power_line_2160__pyx_k_Generator_random_line_299__pyx_k_Generator_rayleigh_line_2657__pyx_k_Generator_shuffle_line_4665__pyx_k_Generator_spawn_line_241__pyx_k_Generator_standard_cauchy_line_1__pyx_k_Generator_standard_exponential_l__pyx_k_Generator_standard_gamma_line_12__pyx_k_Generator_standard_normal_line_1__pyx_k_Generator_standard_t_line_1774__pyx_k_Generator_triangular_line_2794__pyx_k_Generator_uniform_line_945__pyx_k_Generator_vonmises_line_1880__pyx_k_Generator_wald_line_2726__pyx_k_Generator_weibull_line_2061__pyx_k_Generator_zipf_line_3235__pyx_k_ImportError__pyx_k_Incompatible_checksums_0x_x_vs_0__pyx_k_IndexError__pyx_k_Index_out_of_bounds_axis_d__pyx_k_Indirect_dimensions_not_supporte__pyx_k_Insufficient_memory_for_multivar__pyx_k_Invalid_bit_generator_The_bit_ge__pyx_k_Invalid_mode_expected_c_or_fortr__pyx_k_Invalid_shape_in_axis__pyx_k_K__pyx_k_MemoryError__pyx_k_MemoryView_of_r_at_0x_x__pyx_k_MemoryView_of_r_object__pyx_k_None__pyx_k_NotImplementedError__pyx_k_O__pyx_k_Out_of_bounds_on_buffer_access_a__pyx_k_Output_size__pyx_k_OverflowError__pyx_k_PCG64__pyx_k_PickleError__pyx_k_Providing_a_dtype_with_a_non_nat__pyx_k_Range_exceeds_valid_bounds__pyx_k_RuntimeWarning__pyx_k_Sequence__pyx_k_Step_may_not_be_zero_axis_d__pyx_k_T__pyx_k_TypeError__pyx_k_Unable_to_convert_item_to_object__pyx_k_Unsupported_dtype_r_for_integers__pyx_k_Unsupported_dtype_r_for_random__pyx_k_Unsupported_dtype_r_for_standard__pyx_k_Unsupported_dtype_r_for_standard_2__pyx_k_Unsupported_dtype_r_for_standard_3__pyx_k_UserWarning__pyx_k_ValueError__pyx_k_View_MemoryView__pyx_k_When_method_is_count_sum_colors__pyx_k_When_method_is_marginals_sum_col__pyx_k__12__pyx_k__14__pyx_k__2__pyx_k__3__pyx_k__6__pyx_k__7__pyx_k__74__pyx_k_a__pyx_k_a_and_p_must_have_same_size__pyx_k_a_cannot_be_empty_unless_no_samp__pyx_k_a_must_be_a_positive_integer_unl__pyx_k_a_must_be_a_sequence_or_an_integ__pyx_k_abc__pyx_k_add__pyx_k_all__pyx_k_allclose__pyx_k_allocate_buffer__pyx_k_alpha__pyx_k_alpha_0__pyx_k_and__pyx_k_any__pyx_k_arange__pyx_k_array__pyx_k_array_is_read_only__pyx_k_asarray__pyx_k_ascontiguousarray__pyx_k_astype__pyx_k_astype_np_float64_1_0_The_pvals__pyx_k_at_0x_X__pyx_k_atol__pyx_k_axis__pyx_k_b__pyx_k_base__pyx_k_binomial_n_p_size_None_Draw_sam__pyx_k_bit_generator__pyx_k_bool__pyx_k_both_ngood_and_nbad_must_be_less__pyx_k_bytes_length_Return_random_byte__pyx_k_c__pyx_k_capsule__pyx_k_casting__pyx_k_check_valid__pyx_k_check_valid_must_equal_warn_rais__pyx_k_chisquare_df_size_None_Draw_sam__pyx_k_choice_a_size_None_replace_True__pyx_k_cholesky__pyx_k_class__pyx_k_class_getitem__pyx_k_cline_in_traceback__pyx_k_collections__pyx_k_collections_abc__pyx_k_colors__pyx_k_colors_must_be_a_one_dimensional__pyx_k_contiguous_and_direct__pyx_k_contiguous_and_indirect__pyx_k_copy__pyx_k_copyto__pyx_k_count__pyx_k_count_nonzero__pyx_k_cov__pyx_k_cov_must_be_2_dimensional_and_sq__pyx_k_covariance_is_not_symmetric_posi__pyx_k_cumsum__pyx_k_default_rng__pyx_k_default_rng_line_4869__pyx_k_df__pyx_k_dfden__pyx_k_dfnum__pyx_k_dict__pyx_k_dirichlet_alpha_size_None_Draw__pyx_k_disable__pyx_k_dot__pyx_k_double__pyx_k_dtype__pyx_k_dtype_is_object__pyx_k_eigh__pyx_k_empty__pyx_k_empty_like__pyx_k_enable__pyx_k_encode__pyx_k_endpoint__pyx_k_enter__pyx_k_enumerate__pyx_k_eps__pyx_k_equal__pyx_k_error__pyx_k_exit__pyx_k_exponential_scale_1_0_size_None__pyx_k_f_dfnum_dfden_size_None_Draw_sa__pyx_k_finfo__pyx_k_flags__pyx_k_float32__pyx_k_float64__pyx_k_format__pyx_k_fortran__pyx_k_full__pyx_k_gamma_shape_scale_1_0_size_None__pyx_k_gc__pyx_k_generator_ctor__pyx_k_geometric_p_size_None_Draw_samp__pyx_k_getstate__pyx_k_got__pyx_k_got_differing_extents_in_dimensi__pyx_k_greater__pyx_k_gumbel_loc_0_0_scale_1_0_size_N__pyx_k_hasobject__pyx_k_high__pyx_k_high_low__pyx_k_high_low_range_exceeds_valid_bou__pyx_k_hypergeometric_ngood_nbad_nsamp__pyx_k_id__pyx_k_ignore__pyx_k_imatmul__pyx_k_import__pyx_k_index__pyx_k_initializing__pyx_k_int16__pyx_k_int32__pyx_k_int64__pyx_k_int8__pyx_k_integers__pyx_k_integers_low_high_None_size_Non__pyx_k_intp__pyx_k_is_not_compatible_with_broadcas__pyx_k_isenabled__pyx_k_isfinite__pyx_k_isnan__pyx_k_isnative__pyx_k_isscalar__pyx_k_issubdtype__pyx_k_item__pyx_k_itemsize__pyx_k_itemsize_0_for_cython_array__pyx_k_kappa__pyx_k_lam__pyx_k_laplace_loc_0_0_scale_1_0_size__pyx_k_left__pyx_k_left_mode__pyx_k_left_right__pyx_k_length__pyx_k_less__pyx_k_loc__pyx_k_lock__pyx_k_logical_or__pyx_k_logistic_loc_0_0_scale_1_0_size__pyx_k_lognormal_mean_0_0_sigma_1_0_si__pyx_k_logseries_p_size_None_Draw_samp__pyx_k_low__pyx_k_main__pyx_k_marginals__pyx_k_matmul__pyx_k_max__pyx_k_may_share_memory__pyx_k_mean__pyx_k_mean_and_cov_must_have_same_leng__pyx_k_mean_and_cov_must_not_be_complex__pyx_k_mean_must_be_1_dimensional__pyx_k_memory_allocation_failed_in_perm__pyx_k_memview__pyx_k_method__pyx_k_method_must_be_count_or_marginal__pyx_k_method_must_be_one_of_eigh_svd_c__pyx_k_mode__pyx_k_mode_right__pyx_k_mu__pyx_k_multinomial_n_pvals_size_None_D__pyx_k_multivariate_hypergeometric_col__pyx_k_multivariate_normal_mean_cov_si__pyx_k_n__pyx_k_n_children__pyx_k_n_too_large_or_p_too_small_see_G__pyx_k_name__pyx_k_name_2__pyx_k_nbad__pyx_k_ndim__pyx_k_negative_binomial_n_p_size_None__pyx_k_negative_dimensions_are_not_allo__pyx_k_new__pyx_k_ngood__pyx_k_ngood_nbad_nsample__pyx_k_no_default___reduce___due_to_non__pyx_k_nonc__pyx_k_noncentral_chisquare_df_nonc_si__pyx_k_noncentral_f_dfnum_dfden_nonc_s__pyx_k_normal_loc_0_0_scale_1_0_size_N__pyx_k_normalize_axis_index__pyx_k_np__pyx_k_nsample__pyx_k_nsample_must_be_an_integer__pyx_k_nsample_must_be_nonnegative__pyx_k_nsample_must_not_exceed_d__pyx_k_nsample_sum_colors__pyx_k_numpy__pyx_k_numpy_core_multiarray__pyx_k_numpy_core_multiarray_failed_to__pyx_k_numpy_core_umath_failed_to_impor__pyx_k_numpy_linalg__pyx_k_numpy_random__generator__pyx_k_numpy_random__generator_pyx__pyx_k_obj__pyx_k_object_which_is_not_a_subclass__pyx_k_operator__pyx_k_order__pyx_k_out__pyx_k_out_must_be_a_numpy_array__pyx_k_out_must_have_the_same_shape_as__pyx_k_p__pyx_k_p_must_be_1_dimensional__pyx_k_pack__pyx_k_pareto_a_size_None_Draw_samples__pyx_k_pcg64__pyx_k_permutation_x_axis_0_Randomly_p__pyx_k_permuted_x_axis_None_out_None_R__pyx_k_pickle__pyx_k_pickle_2__pyx_k_poisson_lam_1_0_size_None_Draw__pyx_k_poisson_lam_max__pyx_k_power_a_size_None_Draws_samples__pyx_k_probabilities_are_not_non_negati__pyx_k_probabilities_contain_NaN__pyx_k_probabilities_do_not_sum_to_1__pyx_k_prod__pyx_k_pvals__pyx_k_pvals_must_have_at_least_1_dimen__pyx_k_pyx_PickleError__pyx_k_pyx_checksum__pyx_k_pyx_result__pyx_k_pyx_state__pyx_k_pyx_type__pyx_k_pyx_unpickle_Enum__pyx_k_pyx_vtable__pyx_k_raise__pyx_k_random__pyx_k_random_size_None_dtype_np_float__pyx_k_range__pyx_k_ravel__pyx_k_rayleigh_scale_1_0_size_None_Dr__pyx_k_reduce__pyx_k_reduce_2__pyx_k_reduce_cython__pyx_k_reduce_ex__pyx_k_register__pyx_k_replace__pyx_k_reshape__pyx_k_return_index__pyx_k_reversed__pyx_k_right__pyx_k_rmatmul__pyx_k_rtol__pyx_k_safe__pyx_k_scale__pyx_k_searchsorted__pyx_k_seed__pyx_k_setstate__pyx_k_setstate_cython__pyx_k_shape__pyx_k_shuffle__pyx_k_shuffle_x_axis_0_Modify_an_arra__pyx_k_side__pyx_k_sigma__pyx_k_size__pyx_k_sort__pyx_k_spawn__pyx_k_spawn_n_children_Create_new_ind__pyx_k_spec__pyx_k_sqrt__pyx_k_stacklevel__pyx_k_standard_cauchy_size_None_Draw__pyx_k_standard_exponential_size_None__pyx_k_standard_gamma_shape_size_None__pyx_k_standard_normal__pyx_k_standard_normal_size_None_dtype__pyx_k_standard_t_df_size_None_Draw_sa__pyx_k_start__pyx_k_state__pyx_k_step__pyx_k_stop__pyx_k_str__pyx_k_strided_and_direct__pyx_k_strided_and_direct_or_indirect__pyx_k_strided_and_indirect__pyx_k_strides__pyx_k_stringsource__pyx_k_struct__pyx_k_subtract__pyx_k_sum__pyx_k_sum_colors_must_not_exceed_the_m__pyx_k_sum_pvals__pyx_k_svd__pyx_k_swapaxes__pyx_k_sys__pyx_k_take__pyx_k_test__pyx_k_tobytes__pyx_k_tol__pyx_k_triangular_left_mode_right_size__pyx_k_u4__pyx_k_uint16__pyx_k_uint32__pyx_k_uint64__pyx_k_uint8__pyx_k_unable_to_allocate_array_data__pyx_k_unable_to_allocate_shape_and_str__pyx_k_uniform_low_0_0_high_1_0_size_N__pyx_k_unique__pyx_k_unpack__pyx_k_update__pyx_k_version_info__pyx_k_vonmises_mu_kappa_size_None_Dra__pyx_k_wald_mean_scale_size_None_Draw__pyx_k_warn__pyx_k_warnings__pyx_k_weibull_a_size_None_Draw_sample__pyx_k_writeable__pyx_k_x__pyx_k_you_are_shuffling_a__pyx_k_zeros__pyx_k_zig__pyx_k_zipf_a_size_None_Draw_samples_f__Pyx__ExceptionSave.isra.0_copy_strided_to_strided.isra.0__pyx_memoryview__get_base__pyx_memoryviewslice__get_base__pyx_specialmethod___pyx_MemviewEnum___repr____pyx_getprop_5numpy_6random_10_generator_9Generator_bit_generator__Pyx_GetVtable.isra.0__Pyx_MergeVtables__Pyx_GetItemInt_Fast.constprop.0__pyx_getprop_5numpy_6random_10_generator_9Generator__bit_generator__Pyx_PyUnicode_From_Py_ssize_t.constprop.0DIGIT_PAIRS_10__Pyx_PyUnicode_Join__Pyx_PyUnicode_Equals__pyx_sq_item_memoryview__Pyx_PyErr_GivenExceptionMatchesTuple__pyx_tp_dealloc__memoryviewslice__pyx_tp_clear_Enum__pyx_tp_traverse__memoryviewslice__Pyx__ExceptionReset.isra.0__pyx_tp_clear_5numpy_6random_10_generator_Generator__Pyx_TypeTest__pyx_memoryview__slice_assign_scalar__Pyx_ErrRestoreInState__Pyx_Import__pyx_tp_clear_memoryview__Pyx_PyErr_GivenExceptionMatches.part.0__Pyx_PyObject_FastCallDict.constprop.0__Pyx_Raise.constprop.0__pyx_tp_clear__memoryviewslice__Pyx_BufFmt_RaiseExpected__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx_PyErr_ExceptionMatchesInState.isra.0__Pyx_GetKwValue_FASTCALL__Pyx_PyInt_As_size_t.part.0__Pyx_PyObject_GetSlice.constprop.0__pyx_memoryview_refcount_objects_in_slice__pyx_tp_dealloc_array__Pyx_PyInt_As_long__Pyx_PyInt_As_int__Pyx_ParseOptionalKeywords.constprop.0__Pyx__GetException__Pyx_PyInt_As_size_t__Pyx_PyObject_GetIndex__Pyx_PyInt_As_Py_intptr_t.part.0__Pyx_PyInt_As_Py_intptr_t__Pyx_PyInt_As_int64_t__Pyx_PyObject_FastCallDict.constprop.1__Pyx_ImportFrom__Pyx_PyObject_GetAttrStrNoError__Pyx_setup_reduce_is_named__Pyx_setup_reduce__Pyx_GetBuiltinName__Pyx__GetModuleGlobalName__Pyx_IterFinish__Pyx_AddTraceback__pyx_code_cache__pyx_unpickle_Enum__set_state__pyx_getprop___pyx_memoryview_size__pyx_getprop___pyx_memoryview_nbytes__pyx_getprop___pyx_memoryview_itemsize__pyx_getprop___pyx_memoryview_ndim__pyx_getprop___pyx_memoryview_suboffsets__pyx_getprop___pyx_memoryview_strides__pyx_builtin_ValueError__pyx_getprop___pyx_memoryview_shape__pyx_getprop___pyx_memoryview_base__pyx_memslice_transpose__pyx_memoryview_new__pyx_memoryview_err_dim__pyx_memoryview_copy_contents__pyx_memoryview_get_slice_from_memoryview__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig__pyx_memoryview_is_f_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig__pyx_memoryview_is_c_contig__pyx_memoryview_getbuffer__pyx_memoryview___str___unellipsify__pyx_builtin_Ellipsis__pyx_builtin_TypeError__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr____pyx_builtin_id__pyx_specialmethod___pyx_memoryview___repr____pyx_memoryview_setitem_indexed__pyx_memoryview_setitem_slice_assign_scalar__pyx_memoryview_is_slice__pyx_memoryview_get_item_pointer__pyx_builtin_IndexError__pyx_MemviewEnum___init____pyx_pw___pyx_MemviewEnum_3__setstate_cython____pyx_pw___pyx_MemviewEnum_1__reduce_cython____pyx_getprop___pyx_array_memview__pyx_tp_getattro_array__pyx_array_getbuffer__pyx_mp_ass_subscript_array__pyx_array_get_memview__pyx_pw_5numpy_6random_10_generator_9Generator_1__init____pyx_pw_5numpy_6random_10_generator_9Generator_85logseries__pyx_f_5numpy_6random_7_common_disc__pyx_pw_5numpy_6random_10_generator_9Generator_81geometric__pyx_pw_5numpy_6random_10_generator_9Generator_79zipf__pyx_pw_5numpy_6random_10_generator_9Generator_69wald__pyx_f_5numpy_6random_7_common_cont__pyx_pw_5numpy_6random_10_generator_9Generator_57power__pyx_pw_5numpy_6random_10_generator_9Generator_55weibull__pyx_pw_5numpy_6random_10_generator_9Generator_53pareto__pyx_pw_5numpy_6random_10_generator_9Generator_51vonmises__pyx_pw_5numpy_6random_10_generator_9Generator_49standard_t__pyx_pw_5numpy_6random_10_generator_9Generator_47standard_cauchy__pyx_pw_5numpy_6random_10_generator_9Generator_45noncentral_chisquare__pyx_pw_5numpy_6random_10_generator_9Generator_43chisquare__pyx_pw_5numpy_6random_10_generator_9Generator_39f__pyx_pw_5numpy_6random_10_generator_9Generator_35standard_gamma__pyx_f_5numpy_6random_7_common_cont_f__pyx_pw_5numpy_6random_10_generator_9Generator_31standard_normal__pyx_f_5numpy_6random_7_common_double_fill__pyx_f_5numpy_6random_7_common_float_fill__pyx_pw_5numpy_6random_10_generator_9Generator_29uniformPyArray_API__pyx_builtin_OverflowError__pyx_pw_5numpy_6random_10_generator_9Generator_17beta__pyx_pw_5numpy_6random_10_generator_9Generator_15random__pyx_pw_5numpy_6random_10_generator_9Generator_9__setstate____pyx_pw_5numpy_6random_10_generator_9Generator_7__getstate____pyx_pw_5numpy_6random_10_generator_9Generator_5__str____pyx_pf_5numpy_6random_10_generator_9Generator_2__repr____pyx_specialmethod___pyx_pw_5numpy_6random_10_generator_9Generator_3__repr____pyx_f_5numpy_import_array__pyx_builtin_ImportError__pyx_pw_5numpy_6random_10_generator_1default_rng__pyx_pw___pyx_memoryviewslice_3__setstate_cython____pyx_pw___pyx_memoryviewslice_1__reduce_cython____pyx_pw___pyx_memoryview_3__setstate_cython____pyx_pw___pyx_memoryview_1__reduce_cython____pyx_memoryview___cinit__.constprop.0__pyx_assertions_enabled_flag__pyx_builtin_AssertionError__pyx_tp_new_memoryview__pyx_vtabptr_memoryview__pyx_memoryview_fromslice__pyx_vtabptr__memoryviewslice__pyx_memoryview_copy_object_from_slice__pyx_getprop___pyx_memoryview_T__pyx_tp_new__memoryviewslice__pyx_pw___pyx_array_3__setstate_cython____pyx_pw___pyx_array_1__reduce_cython____pyx_pw_5numpy_6random_10_generator_9Generator_11__reduce____pyx_array___getattr____pyx_memview_slice__pyx_memoryview___getitem____pyx_pw_5numpy_6random_10_generator_9Generator_25bytes__pyx_memoryview_setitem_slice_assignment__pyx_pw_5numpy_6random_10_generator_9Generator_33normal__pyx_pw_5numpy_6random_10_generator_9Generator_63logistic__pyx_pw_5numpy_6random_10_generator_9Generator_61gumbel__pyx_pw_5numpy_6random_10_generator_9Generator_65lognormal__pyx_pw_5numpy_6random_10_generator_9Generator_59laplace__pyx_pw_5numpy_6random_10_generator_9Generator_13spawn__pyx_pw_5numpy_6random_10_generator_9Generator_37gamma__pyx_pw_5numpy_6random_10_generator_9Generator_21standard_exponential__pyx_pw_5numpy_6random_10_generator_9Generator_77poisson__pyx_pw_5numpy_6random_10_generator_9Generator_67rayleigh__pyx_pw_5numpy_6random_10_generator_9Generator_19exponential__Pyx_PyObject_GetItem_Slow__Pyx_PyObject_GetItem__pyx_pw_5numpy_6random_10_generator_9Generator_99permutation__pyx_array___getitem____pyx_mp_ass_subscript_memoryview__Pyx_ImportDottedModule.constprop.0__pyx_memoryview_convert_item_to_object__pyx_memoryviewslice_convert_item_to_object__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_pw_5numpy_6random_10_generator_9Generator_41noncentral_f__pyx_tp_new_array__pyx_vtabptr_array__pyx_builtin_MemoryError__pyx_memoryview_copy_new_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran__pyx_memoryview_copy_fortran__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy__pyx_memoryview_copy__pyx_pw_5numpy_6random_10_generator_9Generator_95permuted__pyx_pw_5numpy_6random_10_generator_9Generator_23integers__pyx_f_5numpy_6random_17_bounded_integers__rand_int32__pyx_f_5numpy_6random_17_bounded_integers__rand_int64__pyx_f_5numpy_6random_17_bounded_integers__rand_int16__pyx_f_5numpy_6random_17_bounded_integers__rand_int8__pyx_f_5numpy_6random_17_bounded_integers__rand_uint64__pyx_f_5numpy_6random_17_bounded_integers__rand_uint32__pyx_f_5numpy_6random_17_bounded_integers__rand_uint16__pyx_f_5numpy_6random_17_bounded_integers__rand_uint8__pyx_f_5numpy_6random_17_bounded_integers__rand_bool__pyx_memoryview_assign_item_from_object__pyx_memoryviewslice_assign_item_from_object__pyx_pw_5numpy_6random_10_generator_9Generator_93dirichlet__pyx_pw_5numpy_6random_10_generator_9Generator_75negative_binomial__pyx_f_5numpy_6random_7_common_check_array_constraint__pyx_vp_5numpy_6random_7_common_POISSON_LAM_MAX__pyx_f_5numpy_6random_7_common_check_constraint__pyx_pw_5numpy_6random_10_generator_9Generator_83hypergeometric__pyx_f_5numpy_6random_7_common_discrete_broadcast_iii__pyx_pw_5numpy_6random_10_generator_9Generator_91multivariate_hypergeometric__pyx_pw_5numpy_6random_10_generator_9Generator_97shuffle__pyx_builtin_UserWarning__pyx_builtin_NotImplementedError__pyx_pw_5numpy_6random_10_generator_9Generator_71triangular__pyx_f_5numpy_6random_7_common_cont_broadcast_3__pyx_pw_5numpy_6random_10_generator_9Generator_87multivariate_normal__pyx_pw_5numpy_6random_10_generator_9Generator_73binomial__pyx_f_5numpy_6random_7_common_validate_output_shape__pyx_pf_5numpy_6random_10_generator_9Generator_26choice__pyx_f_5numpy_6random_7_common_kahan_sum__Pyx_TypeInfo_nn_uint64_t__pyx_pw_5numpy_6random_10_generator_9Generator_27choice__pyx_pymod_exec__generator__pyx_builtin_RuntimeWarning__pyx_builtin___import____pyx_collections_abc_Sequencegenericstridedindirect_contiguous__pyx_type_5numpy_6random_10_generator_Generator__pyx_vtable_array__pyx_type___pyx_array__pyx_type___pyx_MemviewEnum__pyx_vtable_memoryview__pyx_type___pyx_memoryview__pyx_vtable__memoryviewslice__pyx_type___pyx_memoryviewslice__pyx_vp_5numpy_6random_7_common_LEGACY_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_MAXSIZE__pyx_t_8.2__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_mdef_5numpy_6random_10_generator_1default_rng__pyx_pw_5numpy_6random_10_generator_9Generator_89multinomial__pyx_moduledef__pyx_methods__pyx_moduledef_slots__pyx_methods__memoryviewslice__pyx_tp_as_sequence_memoryview__pyx_tp_as_mapping_memoryview__pyx_tp_as_buffer_memoryview__pyx_methods_memoryview__pyx_getsets_memoryview__pyx_methods_Enum__pyx_tp_as_sequence_array__pyx_tp_as_mapping_array__pyx_tp_as_buffer_array__pyx_methods_array__pyx_getsets_array__pyx_methods_5numpy_6random_10_generator_Generator__pyx_getsets_5numpy_6random_10_generator_Generator__pyx_doc_5numpy_6random_10_generator_9Generator_12spawn__pyx_doc_5numpy_6random_10_generator_9Generator_14random__pyx_doc_5numpy_6random_10_generator_9Generator_16beta__pyx_doc_5numpy_6random_10_generator_9Generator_18exponential__pyx_doc_5numpy_6random_10_generator_9Generator_20standard_exponential__pyx_doc_5numpy_6random_10_generator_9Generator_22integers__pyx_doc_5numpy_6random_10_generator_9Generator_24bytes__pyx_doc_5numpy_6random_10_generator_9Generator_26choice__pyx_doc_5numpy_6random_10_generator_9Generator_28uniform__pyx_doc_5numpy_6random_10_generator_9Generator_30standard_normal__pyx_doc_5numpy_6random_10_generator_9Generator_32normal__pyx_doc_5numpy_6random_10_generator_9Generator_34standard_gamma__pyx_doc_5numpy_6random_10_generator_9Generator_36gamma__pyx_doc_5numpy_6random_10_generator_9Generator_38f__pyx_doc_5numpy_6random_10_generator_9Generator_40noncentral_f__pyx_doc_5numpy_6random_10_generator_9Generator_42chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_44noncentral_chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_46standard_cauchy__pyx_doc_5numpy_6random_10_generator_9Generator_48standard_t__pyx_doc_5numpy_6random_10_generator_9Generator_50vonmises__pyx_doc_5numpy_6random_10_generator_9Generator_52pareto__pyx_doc_5numpy_6random_10_generator_9Generator_54weibull__pyx_doc_5numpy_6random_10_generator_9Generator_56power__pyx_doc_5numpy_6random_10_generator_9Generator_58laplace__pyx_doc_5numpy_6random_10_generator_9Generator_60gumbel__pyx_doc_5numpy_6random_10_generator_9Generator_62logistic__pyx_doc_5numpy_6random_10_generator_9Generator_64lognormal__pyx_doc_5numpy_6random_10_generator_9Generator_66rayleigh__pyx_doc_5numpy_6random_10_generator_9Generator_68wald__pyx_doc_5numpy_6random_10_generator_9Generator_70triangular__pyx_doc_5numpy_6random_10_generator_9Generator_72binomial__pyx_doc_5numpy_6random_10_generator_9Generator_74negative_binomial__pyx_doc_5numpy_6random_10_generator_9Generator_76poisson__pyx_doc_5numpy_6random_10_generator_9Generator_78zipf__pyx_doc_5numpy_6random_10_generator_9Generator_80geometric__pyx_doc_5numpy_6random_10_generator_9Generator_82hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_84logseries__pyx_doc_5numpy_6random_10_generator_9Generator_86multivariate_normal__pyx_doc_5numpy_6random_10_generator_9Generator_88multinomial__pyx_doc_5numpy_6random_10_generator_9Generator_90multivariate_hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_92dirichlet__pyx_doc_5numpy_6random_10_generator_9Generator_94permuted__pyx_doc_5numpy_6random_10_generator_9Generator_96shuffle__pyx_doc_5numpy_6random_10_generator_9Generator_98permutation__pyx_doc_5numpy_6random_10_generator_default_rngcrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entrydistributions.cfe_doublewe_doubleke_doublefe_floatwe_floatke_floatwi_doubleki_doublefi_doublewi_floatki_floatfi_floatrandom_mvhg_count.crandom_mvhg_marginals.crandom_hypergeometric.clogfactorial.clogfact__FRAME_END____pyx_module_is_main_numpy__random___generator__dso_handle_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_PyUnicode_FromFormatlog1pf@@GLIBC_2.2.5PyNumber_NegativePyObject_SetItemPyList_Newrandom_laplacePyExc_SystemErrorPyDict_SetItemStringfree@@GLIBC_2.2.5PyDict_Sizerandom_buffered_bounded_boolrandom_geometric_inversionPyException_SetTracebackPyExc_NotImplementedErrorrandom_weibullPyMethod_Typerandom_f_ITM_deregisterTMCloneTablePyGILState_ReleasePyFloat_TypePyTuple_TypePyObject_FormatPyErr_RestorePyList_AsTuple_PyThreadState_UncheckedGetPyModuleDef_Initrandom_multivariate_hypergeometric_countPyEval_RestoreThreadPy_EnterRecursiveCallPyFrame_NewPyMem_Freerandom_negative_binomialrandom_standard_cauchy__isnan@@GLIBC_2.2.5PyCapsule_GetNamePyNumber_InPlaceAddPyBuffer_Releasevsnprintf@@GLIBC_2.2.5exp@@GLIBC_2.2.5PyNumber_AddPyObject_GetAttrStringPyExc_BufferErrorPyImport_AddModulePyBytes_FromStringAndSizerandom_standard_exponential_fill_f_PyObject_GenericGetAttrWithDictPyBytes_TypePyObject_SetAttrStringPyErr_WarnExrandom_standard_gammarandom_binomial_btpe_Py_DeallocPyModule_NewObjectPyErr_NoMemoryPyErr_SetObjectPyErr_NormalizeExceptionPyNumber_Absoluterandom_logseriesPyNumber_MultiplyPyLong_FromSize_trandom_rayleighrandom_standard_exponentialPyObject_RichComparerandom_uniformPyGC_Disablerandom_poisson_finistrlen@@GLIBC_2.2.5PyImport_GetModuleDictrandom_bounded_uint64_fillPyObject_GC_TrackPyExc_RuntimeErrorPyCMethod_NewPyErr_GivenExceptionMatchesPyErr_SetStringrandom_bounded_uint16_fillPyObject_IsInstancePyException_GetTracebackPyExc_ExceptionPyExc_ValueErrorPyExc_DeprecationWarningrandom_multinomialPyObject_MallocPyExc_TypeErrorPySlice_TypePyIndex_CheckPyGILState_EnsurePyInterpreterState_GetIDrandom_logisticPySequence_Contains_PyLong_Copymemset@@GLIBC_2.2.5PyVectorcall_FunctionPyMem_Reallocrandom_standard_uniform_fill_fPyErr_ExceptionMatchesrandom_bounded_uint64pow@@GLIBC_2.2.5random_positive_intlog@@GLIBC_2.2.5random_standard_gamma_frandom_triangularrandom_buffered_bounded_uint32PyOS_snprintf_Py_FatalErrorFuncPyTraceBack_Herelog1p@@GLIBC_2.2.5fmod@@GLIBC_2.2.5PyObject_CallFinalizerFromDeallocrandom_powerrandom_bounded_uint8_fillPyObject_NotPyObject_Freerandom_noncentral_fPyNumber_InPlaceTrueDividerandom_standard_exponential_inv_fill_fPyLong_FromSsize_tPyFloat_FromDoubleacos@@GLIBC_2.2.5PyLong_FromLongmemcmp@@GLIBC_2.2.5PyLong_AsSsize_tPyObject_RichCompareBoolrandom_buffered_bounded_uint8logfactorialPyModule_GetNamePyErr_ClearPyEval_GetBuiltinsPyList_AppendPyCapsule_IsValidPyNumber_OrPyImport_GetModule_PyUnicode_FastCopyCharactersrandom_beta_Py_FalseStruct__gmon_start__random_exponentialexpf@@GLIBC_2.2.5PyTuple_NewPyObject_GenericGetAttrPyThreadState_GetPyExc_OverflowErrorPyDict_DelItemrandom_hypergeometricmemcpy@@GLIBC_2.14expm1@@GLIBC_2.2.5PyNumber_RemainderPyType_Modifiedrandom_gammaPyObject_SetAttrPyBytes_FromStringPyErr_Occurredrandom_standard_uniform_f_Py_EllipsisObjectrandom_loggamPyInit__generatorPyLong_AsLongPyImport_ImportModulesqrtf@@GLIBC_2.2.5_PyDict_GetItem_KnownHashPyObject_CallObjectPy_LeaveRecursiveCallPyObject_VectorcallDictrandom_gamma_frandom_zipfPyDict_GetItemStringPy_Versionpowf@@GLIBC_2.2.5PyObject_Sizemalloc@@GLIBC_2.2.5random_standard_exponential_frandom_pareto_Py_NoneStructPyExc_ZeroDivisionErrorPyFloat_AsDoublePyObject_IsTrue_PyType_LookupPyImport_ImportModuleLevelObjectrandom_positive_int64PyThread_allocate_lockrandom_geometric_searchPyObject_Hashrandom_standard_tPyUnicode_Comparerandom_vonmisesrandom_bounded_uint32_fillrandom_standard_normal_frandom_positive_int32random_standard_uniform_Py_TrueStructlogf@@GLIBC_2.2.5random_normalrandom_chisquarePyDict_NewPyExc_IndexErrorPyObject_GC_IsFinalizedPyBool_TypePyObject_GetBufferPyLong_AsUnsignedLongPyDict_NextPyBaseObject_Typememmove@@GLIBC_2.2.5random_standard_exponential_fillrandom_intervalrandom_waldPyLong_FromUnsignedLongrandom_noncentral_chisquarePyUnicode_AsUTF8PyLong_Typerandom_standard_normalPyCapsule_TypePyGC_Enablerandom_standard_exponential_inv_fill_PyObject_GetDictPtrPyException_SetCausePyErr_Fetchrandom_lognormalPyUnicode_FromStringrandom_buffered_bounded_uint16PyObject_GetIterPyEval_SaveThreadPyUnicode_InternFromStringPyUnstable_Code_NewWithPosOnlyArgsrandom_binomialPyExc_ImportErrorPyDict_SetItemrandom_uintPySequence_TuplePyExc_AttributeErrorrandom_gumbelrandom_standard_uniform_fillPyObject_IsSubclassPyExc_StopIterationPySequence_Listrandom_standard_normal_fill_ffloor@@GLIBC_2.2.5PyUnicode_TypePyCapsule_NewPyType_IsSubtypePyUnicode_DecodePyErr_Formatrandom_bounded_bool_fillPyCapsule_GetPointerPySlice_NewPyExc_NameErrorPyUnicode_FromStringAndSizePyModule_GetDictrandom_binomial_inversion_ITM_registerTMCloneTablePyLong_FromLongLongPyUnicode_FromOrdinalPyUnicode_ConcatPyNumber_InPlaceMultiplyrandom_multivariate_hypergeometric_marginalsPyNumber_IndexPyObject_GetAttrsqrt@@GLIBC_2.2.5random_geometricPyCFunction_Type_PyDict_NewPresizedPyUnicode_FormatPyLong_FromStringPyMem_MallocPyErr_WarnFormat__cxa_finalize@@GLIBC_2.2.5_initPyNumber_Subtractrandom_standard_normal_fillPyNumber_MatrixMultiplyPyUnicode_NewPyThread_free_lockPyTuple_PackPyCode_NewEmptyPyNumber_TrueDividePyObject_GC_UnTrackPyExc_UnboundLocalErrorPyList_TypePyNumber_FloorDivide.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.comment88$.o``8@  %Ho446Uo66Pd0707p nBWWxpps p p~||!!	00 





<Y{
k
{
k
{
k
{
k
}
m
`
p
P`
`v
 `
H
 0H
/x
h<	
1vj