import networkx as nx def test_wiener_index_of_disconnected_graph(): assert nx.wiener_index(nx.empty_graph(2)) == float("inf") def test_wiener_index_of_directed_graph(): G = nx.complete_graph(3) H = nx.DiGraph(G) assert (2 * nx.wiener_index(G)) == nx.wiener_index(H) def test_wiener_index_of_complete_graph(): n = 10 G = nx.complete_graph(n) assert nx.wiener_index(G) == (n * (n - 1) / 2) def test_wiener_index_of_path_graph(): # In P_n, there are n - 1 pairs of vertices at distance one, n - # 2 pairs at distance two, n - 3 at distance three, ..., 1 at # distance n - 1, so the Wiener index should be # # 1 * (n - 1) + 2 * (n - 2) + ... + (n - 2) * 2 + (n - 1) * 1 # # For example, in P_5, # # 1 * 4 + 2 * 3 + 3 * 2 + 4 * 1 = 2 (1 * 4 + 2 * 3) # # and in P_6, # # 1 * 5 + 2 * 4 + 3 * 3 + 4 * 2 + 5 * 1 = 2 (1 * 5 + 2 * 4) + 3 * 3 # # assuming n is *odd*, this gives the formula # # 2 \sum_{i = 1}^{(n - 1) / 2} [i * (n - i)] # # assuming n is *even*, this gives the formula # # 2 \sum_{i = 1}^{n / 2} [i * (n - i)] - (n / 2) ** 2 # n = 9 G = nx.path_graph(n) expected = 2 * sum(i * (n - i) for i in range(1, (n // 2) + 1)) actual = nx.wiener_index(G) assert expected == actual def test_schultz_and_gutman_index_of_disconnected_graph(): n = 4 G = nx.Graph() G.add_nodes_from(list(range(1, n + 1))) expected = float("inf") G.add_edge(1, 2) G.add_edge(3, 4) actual_1 = nx.schultz_index(G) actual_2 = nx.gutman_index(G) assert expected == actual_1 assert expected == actual_2 def test_schultz_and_gutman_index_of_complete_bipartite_graph_1(): n = 3 m = 3 cbg = nx.complete_bipartite_graph(n, m) expected_1 = n * m * (n + m) + 2 * n * (n - 1) * m + 2 * m * (m - 1) * n actual_1 = nx.schultz_index(cbg) expected_2 = n * m * (n * m) + n * (n - 1) * m * m + m * (m - 1) * n * n actual_2 = nx.gutman_index(cbg) assert expected_1 == actual_1 assert expected_2 == actual_2 def test_schultz_and_gutman_index_of_complete_bipartite_graph_2(): n = 2 m = 5 cbg = nx.complete_bipartite_graph(n, m) expected_1 = n * m * (n + m) + 2 * n * (n - 1) * m + 2 * m * (m - 1) * n actual_1 = nx.schultz_index(cbg) expected_2 = n * m * (n * m) + n * (n - 1) * m * m + m * (m - 1) * n * n actual_2 = nx.gutman_index(cbg) assert expected_1 == actual_1 assert expected_2 == actual_2 def test_schultz_and_gutman_index_of_complete_graph(): n = 5 cg = nx.complete_graph(n) expected_1 = n * (n - 1) * (n - 1) actual_1 = nx.schultz_index(cg) assert expected_1 == actual_1 expected_2 = n * (n - 1) * (n - 1) * (n - 1) / 2 actual_2 = nx.gutman_index(cg) assert expected_2 == actual_2 def test_schultz_and_gutman_index_of_odd_cycle_graph(): k = 5 n = 2 * k + 1 ocg = nx.cycle_graph(n) expected_1 = 2 * n * k * (k + 1) actual_1 = nx.schultz_index(ocg) expected_2 = 2 * n * k * (k + 1) actual_2 = nx.gutman_index(ocg) assert expected_1 == actual_1 assert expected_2 == actual_2