import math
from random import Random
import pytest
import networkx as nx
from networkx import convert_node_labels_to_integers as cnlti
from networkx.algorithms.distance_measures import _extrema_bounding
def test__extrema_bounding_invalid_compute_kwarg():
G = nx.path_graph(3)
with pytest.raises(ValueError, match="compute must be one of"):
_extrema_bounding(G, compute="spam")
class TestDistance:
def setup_method(self):
G = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted")
self.G = G
def test_eccentricity(self):
assert nx.eccentricity(self.G, 1) == 6
e = nx.eccentricity(self.G)
assert e[1] == 6
sp = dict(nx.shortest_path_length(self.G))
e = nx.eccentricity(self.G, sp=sp)
assert e[1] == 6
e = nx.eccentricity(self.G, v=1)
assert e == 6
# This behavior changed in version 1.8 (ticket #739)
e = nx.eccentricity(self.G, v=[1, 1])
assert e[1] == 6
e = nx.eccentricity(self.G, v=[1, 2])
assert e[1] == 6
# test against graph with one node
G = nx.path_graph(1)
e = nx.eccentricity(G)
assert e[0] == 0
e = nx.eccentricity(G, v=0)
assert e == 0
pytest.raises(nx.NetworkXError, nx.eccentricity, G, 1)
# test against empty graph
G = nx.empty_graph()
e = nx.eccentricity(G)
assert e == {}
def test_diameter(self):
assert nx.diameter(self.G) == 6
def test_harmonic_diameter(self):
assert abs(nx.harmonic_diameter(self.G) - 2.0477815699658715) < 1e-12
def test_harmonic_diameter_empty(self):
assert math.isnan(nx.harmonic_diameter(nx.empty_graph()))
def test_harmonic_diameter_single_node(self):
assert math.isnan(nx.harmonic_diameter(nx.empty_graph(1)))
def test_harmonic_diameter_discrete(self):
assert math.isinf(nx.harmonic_diameter(nx.empty_graph(3)))
def test_harmonic_diameter_not_strongly_connected(self):
DG = nx.DiGraph()
DG.add_edge(0, 1)
assert nx.harmonic_diameter(DG) == 2
def test_radius(self):
assert nx.radius(self.G) == 4
def test_periphery(self):
assert set(nx.periphery(self.G)) == {1, 4, 13, 16}
def test_center(self):
assert set(nx.center(self.G)) == {6, 7, 10, 11}
def test_bound_diameter(self):
assert nx.diameter(self.G, usebounds=True) == 6
def test_bound_radius(self):
assert nx.radius(self.G, usebounds=True) == 4
def test_bound_periphery(self):
result = {1, 4, 13, 16}
assert set(nx.periphery(self.G, usebounds=True)) == result
def test_bound_center(self):
result = {6, 7, 10, 11}
assert set(nx.center(self.G, usebounds=True)) == result
def test_radius_exception(self):
G = nx.Graph()
G.add_edge(1, 2)
G.add_edge(3, 4)
pytest.raises(nx.NetworkXError, nx.diameter, G)
def test_eccentricity_infinite(self):
with pytest.raises(nx.NetworkXError):
G = nx.Graph([(1, 2), (3, 4)])
e = nx.eccentricity(G)
def test_eccentricity_undirected_not_connected(self):
with pytest.raises(nx.NetworkXError):
G = nx.Graph([(1, 2), (3, 4)])
e = nx.eccentricity(G, sp=1)
def test_eccentricity_directed_weakly_connected(self):
with pytest.raises(nx.NetworkXError):
DG = nx.DiGraph([(1, 2), (1, 3)])
nx.eccentricity(DG)
class TestWeightedDistance:
def setup_method(self):
G = nx.Graph()
G.add_edge(0, 1, weight=0.6, cost=0.6, high_cost=6)
G.add_edge(0, 2, weight=0.2, cost=0.2, high_cost=2)
G.add_edge(2, 3, weight=0.1, cost=0.1, high_cost=1)
G.add_edge(2, 4, weight=0.7, cost=0.7, high_cost=7)
G.add_edge(2, 5, weight=0.9, cost=0.9, high_cost=9)
G.add_edge(1, 5, weight=0.3, cost=0.3, high_cost=3)
self.G = G
self.weight_fn = lambda v, u, e: 2
def test_eccentricity_weight_None(self):
assert nx.eccentricity(self.G, 1, weight=None) == 3
e = nx.eccentricity(self.G, weight=None)
assert e[1] == 3
e = nx.eccentricity(self.G, v=1, weight=None)
assert e == 3
# This behavior changed in version 1.8 (ticket #739)
e = nx.eccentricity(self.G, v=[1, 1], weight=None)
assert e[1] == 3
e = nx.eccentricity(self.G, v=[1, 2], weight=None)
assert e[1] == 3
def test_eccentricity_weight_attr(self):
assert nx.eccentricity(self.G, 1, weight="weight") == 1.5
e = nx.eccentricity(self.G, weight="weight")
assert (
e
== nx.eccentricity(self.G, weight="cost")
!= nx.eccentricity(self.G, weight="high_cost")
)
assert e[1] == 1.5
e = nx.eccentricity(self.G, v=1, weight="weight")
assert e == 1.5
# This behavior changed in version 1.8 (ticket #739)
e = nx.eccentricity(self.G, v=[1, 1], weight="weight")
assert e[1] == 1.5
e = nx.eccentricity(self.G, v=[1, 2], weight="weight")
assert e[1] == 1.5
def test_eccentricity_weight_fn(self):
assert nx.eccentricity(self.G, 1, weight=self.weight_fn) == 6
e = nx.eccentricity(self.G, weight=self.weight_fn)
assert e[1] == 6
e = nx.eccentricity(self.G, v=1, weight=self.weight_fn)
assert e == 6
# This behavior changed in version 1.8 (ticket #739)
e = nx.eccentricity(self.G, v=[1, 1], weight=self.weight_fn)
assert e[1] == 6
e = nx.eccentricity(self.G, v=[1, 2], weight=self.weight_fn)
assert e[1] == 6
def test_diameter_weight_None(self):
assert nx.diameter(self.G, weight=None) == 3
def test_diameter_weight_attr(self):
assert (
nx.diameter(self.G, weight="weight")
== nx.diameter(self.G, weight="cost")
== 1.6
!= nx.diameter(self.G, weight="high_cost")
)
def test_diameter_weight_fn(self):
assert nx.diameter(self.G, weight=self.weight_fn) == 6
def test_radius_weight_None(self):
assert pytest.approx(nx.radius(self.G, weight=None)) == 2
def test_radius_weight_attr(self):
assert (
pytest.approx(nx.radius(self.G, weight="weight"))
== pytest.approx(nx.radius(self.G, weight="cost"))
== 0.9
!= nx.radius(self.G, weight="high_cost")
)
def test_radius_weight_fn(self):
assert nx.radius(self.G, weight=self.weight_fn) == 4
def test_periphery_weight_None(self):
for v in set(nx.periphery(self.G, weight=None)):
assert nx.eccentricity(self.G, v, weight=None) == nx.diameter(
self.G, weight=None
)
def test_periphery_weight_attr(self):
periphery = set(nx.periphery(self.G, weight="weight"))
assert (
periphery
== set(nx.periphery(self.G, weight="cost"))
== set(nx.periphery(self.G, weight="high_cost"))
)
for v in periphery:
assert (
nx.eccentricity(self.G, v, weight="high_cost")
!= nx.eccentricity(self.G, v, weight="weight")
== nx.eccentricity(self.G, v, weight="cost")
== nx.diameter(self.G, weight="weight")
== nx.diameter(self.G, weight="cost")
!= nx.diameter(self.G, weight="high_cost")
)
assert nx.eccentricity(self.G, v, weight="high_cost") == nx.diameter(
self.G, weight="high_cost"
)
def test_periphery_weight_fn(self):
for v in set(nx.periphery(self.G, weight=self.weight_fn)):
assert nx.eccentricity(self.G, v, weight=self.weight_fn) == nx.diameter(
self.G, weight=self.weight_fn
)
def test_center_weight_None(self):
for v in set(nx.center(self.G, weight=None)):
assert pytest.approx(nx.eccentricity(self.G, v, weight=None)) == nx.radius(
self.G, weight=None
)
def test_center_weight_attr(self):
center = set(nx.center(self.G, weight="weight"))
assert (
center
== set(nx.center(self.G, weight="cost"))
!= set(nx.center(self.G, weight="high_cost"))
)
for v in center:
assert (
nx.eccentricity(self.G, v, weight="high_cost")
!= pytest.approx(nx.eccentricity(self.G, v, weight="weight"))
== pytest.approx(nx.eccentricity(self.G, v, weight="cost"))
== nx.radius(self.G, weight="weight")
== nx.radius(self.G, weight="cost")
!= nx.radius(self.G, weight="high_cost")
)
assert nx.eccentricity(self.G, v, weight="high_cost") == nx.radius(
self.G, weight="high_cost"
)
def test_center_weight_fn(self):
for v in set(nx.center(self.G, weight=self.weight_fn)):
assert nx.eccentricity(self.G, v, weight=self.weight_fn) == nx.radius(
self.G, weight=self.weight_fn
)
def test_bound_diameter_weight_None(self):
assert nx.diameter(self.G, usebounds=True, weight=None) == 3
def test_bound_diameter_weight_attr(self):
assert (
nx.diameter(self.G, usebounds=True, weight="high_cost")
!= nx.diameter(self.G, usebounds=True, weight="weight")
== nx.diameter(self.G, usebounds=True, weight="cost")
== 1.6
!= nx.diameter(self.G, usebounds=True, weight="high_cost")
)
assert nx.diameter(self.G, usebounds=True, weight="high_cost") == nx.diameter(
self.G, usebounds=True, weight="high_cost"
)
def test_bound_diameter_weight_fn(self):
assert nx.diameter(self.G, usebounds=True, weight=self.weight_fn) == 6
def test_bound_radius_weight_None(self):
assert pytest.approx(nx.radius(self.G, usebounds=True, weight=None)) == 2
def test_bound_radius_weight_attr(self):
assert (
nx.radius(self.G, usebounds=True, weight="high_cost")
!= pytest.approx(nx.radius(self.G, usebounds=True, weight="weight"))
== pytest.approx(nx.radius(self.G, usebounds=True, weight="cost"))
== 0.9
!= nx.radius(self.G, usebounds=True, weight="high_cost")
)
assert nx.radius(self.G, usebounds=True, weight="high_cost") == nx.radius(
self.G, usebounds=True, weight="high_cost"
)
def test_bound_radius_weight_fn(self):
assert nx.radius(self.G, usebounds=True, weight=self.weight_fn) == 4
def test_bound_periphery_weight_None(self):
result = {1, 3, 4}
assert set(nx.periphery(self.G, usebounds=True, weight=None)) == result
def test_bound_periphery_weight_attr(self):
result = {4, 5}
assert (
set(nx.periphery(self.G, usebounds=True, weight="weight"))
== set(nx.periphery(self.G, usebounds=True, weight="cost"))
== result
)
def test_bound_periphery_weight_fn(self):
result = {1, 3, 4}
assert (
set(nx.periphery(self.G, usebounds=True, weight=self.weight_fn)) == result
)
def test_bound_center_weight_None(self):
result = {0, 2, 5}
assert set(nx.center(self.G, usebounds=True, weight=None)) == result
def test_bound_center_weight_attr(self):
result = {0}
assert (
set(nx.center(self.G, usebounds=True, weight="weight"))
== set(nx.center(self.G, usebounds=True, weight="cost"))
== result
)
def test_bound_center_weight_fn(self):
result = {0, 2, 5}
assert set(nx.center(self.G, usebounds=True, weight=self.weight_fn)) == result
class TestResistanceDistance:
@classmethod
def setup_class(cls):
global np
np = pytest.importorskip("numpy")
sp = pytest.importorskip("scipy")
def setup_method(self):
G = nx.Graph()
G.add_edge(1, 2, weight=2)
G.add_edge(2, 3, weight=4)
G.add_edge(3, 4, weight=1)
G.add_edge(1, 4, weight=3)
self.G = G
def test_resistance_distance_directed_graph(self):
G = nx.DiGraph()
with pytest.raises(nx.NetworkXNotImplemented):
nx.resistance_distance(G)
def test_resistance_distance_empty(self):
G = nx.Graph()
with pytest.raises(nx.NetworkXError):
nx.resistance_distance(G)
def test_resistance_distance_not_connected(self):
with pytest.raises(nx.NetworkXError):
self.G.add_node(5)
nx.resistance_distance(self.G, 1, 5)
def test_resistance_distance_nodeA_not_in_graph(self):
with pytest.raises(nx.NetworkXError):
nx.resistance_distance(self.G, 9, 1)
def test_resistance_distance_nodeB_not_in_graph(self):
with pytest.raises(nx.NetworkXError):
nx.resistance_distance(self.G, 1, 9)
def test_resistance_distance(self):
rd = nx.resistance_distance(self.G, 1, 3, "weight", True)
test_data = 1 / (1 / (2 + 4) + 1 / (1 + 3))
assert round(rd, 5) == round(test_data, 5)
def test_resistance_distance_noinv(self):
rd = nx.resistance_distance(self.G, 1, 3, "weight", False)
test_data = 1 / (1 / (1 / 2 + 1 / 4) + 1 / (1 / 1 + 1 / 3))
assert round(rd, 5) == round(test_data, 5)
def test_resistance_distance_no_weight(self):
rd = nx.resistance_distance(self.G, 1, 3)
assert round(rd, 5) == 1
def test_resistance_distance_neg_weight(self):
self.G[2][3]["weight"] = -4
rd = nx.resistance_distance(self.G, 1, 3, "weight", True)
test_data = 1 / (1 / (2 + -4) + 1 / (1 + 3))
assert round(rd, 5) == round(test_data, 5)
def test_multigraph(self):
G = nx.MultiGraph()
G.add_edge(1, 2, weight=2)
G.add_edge(2, 3, weight=4)
G.add_edge(3, 4, weight=1)
G.add_edge(1, 4, weight=3)
rd = nx.resistance_distance(G, 1, 3, "weight", True)
assert np.isclose(rd, 1 / (1 / (2 + 4) + 1 / (1 + 3)))
def test_resistance_distance_div0(self):
with pytest.raises(ZeroDivisionError):
self.G[1][2]["weight"] = 0
nx.resistance_distance(self.G, 1, 3, "weight")
def test_resistance_distance_same_node(self):
assert nx.resistance_distance(self.G, 1, 1) == 0
def test_resistance_distance_only_nodeA(self):
rd = nx.resistance_distance(self.G, nodeA=1)
test_data = {}
test_data[1] = 0
test_data[2] = 0.75
test_data[3] = 1
test_data[4] = 0.75
assert type(rd) == dict
assert sorted(rd.keys()) == sorted(test_data.keys())
for key in rd:
assert np.isclose(rd[key], test_data[key])
def test_resistance_distance_only_nodeB(self):
rd = nx.resistance_distance(self.G, nodeB=1)
test_data = {}
test_data[1] = 0
test_data[2] = 0.75
test_data[3] = 1
test_data[4] = 0.75
assert type(rd) == dict
assert sorted(rd.keys()) == sorted(test_data.keys())
for key in rd:
assert np.isclose(rd[key], test_data[key])
def test_resistance_distance_all(self):
rd = nx.resistance_distance(self.G)
assert type(rd) == dict
assert round(rd[1][3], 5) == 1
class TestEffectiveGraphResistance:
@classmethod
def setup_class(cls):
global np
np = pytest.importorskip("numpy")
sp = pytest.importorskip("scipy")
def setup_method(self):
G = nx.Graph()
G.add_edge(1, 2, weight=2)
G.add_edge(1, 3, weight=1)
G.add_edge(2, 3, weight=4)
self.G = G
def test_effective_graph_resistance_directed_graph(self):
G = nx.DiGraph()
with pytest.raises(nx.NetworkXNotImplemented):
nx.effective_graph_resistance(G)
def test_effective_graph_resistance_empty(self):
G = nx.Graph()
with pytest.raises(nx.NetworkXError):
nx.effective_graph_resistance(G)
def test_effective_graph_resistance_not_connected(self):
G = nx.Graph([(1, 2), (3, 4)])
RG = nx.effective_graph_resistance(G)
assert np.isinf(RG)
def test_effective_graph_resistance(self):
RG = nx.effective_graph_resistance(self.G, "weight", True)
rd12 = 1 / (1 / (1 + 4) + 1 / 2)
rd13 = 1 / (1 / (1 + 2) + 1 / 4)
rd23 = 1 / (1 / (2 + 4) + 1 / 1)
assert np.isclose(RG, rd12 + rd13 + rd23)
def test_effective_graph_resistance_noinv(self):
RG = nx.effective_graph_resistance(self.G, "weight", False)
rd12 = 1 / (1 / (1 / 1 + 1 / 4) + 1 / (1 / 2))
rd13 = 1 / (1 / (1 / 1 + 1 / 2) + 1 / (1 / 4))
rd23 = 1 / (1 / (1 / 2 + 1 / 4) + 1 / (1 / 1))
assert np.isclose(RG, rd12 + rd13 + rd23)
def test_effective_graph_resistance_no_weight(self):
RG = nx.effective_graph_resistance(self.G)
assert np.isclose(RG, 2)
def test_effective_graph_resistance_neg_weight(self):
self.G[2][3]["weight"] = -4
RG = nx.effective_graph_resistance(self.G, "weight", True)
rd12 = 1 / (1 / (1 + -4) + 1 / 2)
rd13 = 1 / (1 / (1 + 2) + 1 / (-4))
rd23 = 1 / (1 / (2 + -4) + 1 / 1)
assert np.isclose(RG, rd12 + rd13 + rd23)
def test_effective_graph_resistance_multigraph(self):
G = nx.MultiGraph()
G.add_edge(1, 2, weight=2)
G.add_edge(1, 3, weight=1)
G.add_edge(2, 3, weight=1)
G.add_edge(2, 3, weight=3)
RG = nx.effective_graph_resistance(G, "weight", True)
edge23 = 1 / (1 / 1 + 1 / 3)
rd12 = 1 / (1 / (1 + edge23) + 1 / 2)
rd13 = 1 / (1 / (1 + 2) + 1 / edge23)
rd23 = 1 / (1 / (2 + edge23) + 1 / 1)
assert np.isclose(RG, rd12 + rd13 + rd23)
def test_effective_graph_resistance_div0(self):
with pytest.raises(ZeroDivisionError):
self.G[1][2]["weight"] = 0
nx.effective_graph_resistance(self.G, "weight")
def test_effective_graph_resistance_complete_graph(self):
N = 10
G = nx.complete_graph(N)
RG = nx.effective_graph_resistance(G)
assert np.isclose(RG, N - 1)
def test_effective_graph_resistance_path_graph(self):
N = 10
G = nx.path_graph(N)
RG = nx.effective_graph_resistance(G)
assert np.isclose(RG, (N - 1) * N * (N + 1) // 6)
class TestBarycenter:
"""Test :func:`networkx.algorithms.distance_measures.barycenter`."""
def barycenter_as_subgraph(self, g, **kwargs):
"""Return the subgraph induced on the barycenter of g"""
b = nx.barycenter(g, **kwargs)
assert isinstance(b, list)
assert set(b) <= set(g)
return g.subgraph(b)
def test_must_be_connected(self):
pytest.raises(nx.NetworkXNoPath, nx.barycenter, nx.empty_graph(5))
def test_sp_kwarg(self):
# Complete graph K_5. Normally it works...
K_5 = nx.complete_graph(5)
sp = dict(nx.shortest_path_length(K_5))
assert nx.barycenter(K_5, sp=sp) == list(K_5)
# ...but not with the weight argument
for u, v, data in K_5.edges.data():
data["weight"] = 1
pytest.raises(ValueError, nx.barycenter, K_5, sp=sp, weight="weight")
# ...and a corrupted sp can make it seem like K_5 is disconnected
del sp[0][1]
pytest.raises(nx.NetworkXNoPath, nx.barycenter, K_5, sp=sp)
def test_trees(self):
"""The barycenter of a tree is a single vertex or an edge.
See [West01]_, p. 78.
"""
prng = Random(0xDEADBEEF)
for i in range(50):
RT = nx.random_labeled_tree(prng.randint(1, 75), seed=prng)
b = self.barycenter_as_subgraph(RT)
if len(b) == 2:
assert b.size() == 1
else:
assert len(b) == 1
assert b.size() == 0
def test_this_one_specific_tree(self):
"""Test the tree pictured at the bottom of [West01]_, p. 78."""
g = nx.Graph(
{
"a": ["b"],
"b": ["a", "x"],
"x": ["b", "y"],
"y": ["x", "z"],
"z": ["y", 0, 1, 2, 3, 4],
0: ["z"],
1: ["z"],
2: ["z"],
3: ["z"],
4: ["z"],
}
)
b = self.barycenter_as_subgraph(g, attr="barycentricity")
assert list(b) == ["z"]
assert not b.edges
expected_barycentricity = {
0: 23,
1: 23,
2: 23,
3: 23,
4: 23,
"a": 35,
"b": 27,
"x": 21,
"y": 17,
"z": 15,
}
for node, barycentricity in expected_barycentricity.items():
assert g.nodes[node]["barycentricity"] == barycentricity
# Doubling weights should do nothing but double the barycentricities
for edge in g.edges:
g.edges[edge]["weight"] = 2
b = self.barycenter_as_subgraph(g, weight="weight", attr="barycentricity2")
assert list(b) == ["z"]
assert not b.edges
for node, barycentricity in expected_barycentricity.items():
assert g.nodes[node]["barycentricity2"] == barycentricity * 2
class TestKemenyConstant:
@classmethod
def setup_class(cls):
global np
np = pytest.importorskip("numpy")
sp = pytest.importorskip("scipy")
def setup_method(self):
G = nx.Graph()
w12 = 2
w13 = 3
w23 = 4
G.add_edge(1, 2, weight=w12)
G.add_edge(1, 3, weight=w13)
G.add_edge(2, 3, weight=w23)
self.G = G
def test_kemeny_constant_directed(self):
G = nx.DiGraph()
G.add_edge(1, 2)
G.add_edge(1, 3)
G.add_edge(2, 3)
with pytest.raises(nx.NetworkXNotImplemented):
nx.kemeny_constant(G)
def test_kemeny_constant_not_connected(self):
self.G.add_node(5)
with pytest.raises(nx.NetworkXError):
nx.kemeny_constant(self.G)
def test_kemeny_constant_no_nodes(self):
G = nx.Graph()
with pytest.raises(nx.NetworkXError):
nx.kemeny_constant(G)
def test_kemeny_constant_negative_weight(self):
G = nx.Graph()
w12 = 2
w13 = 3
w23 = -10
G.add_edge(1, 2, weight=w12)
G.add_edge(1, 3, weight=w13)
G.add_edge(2, 3, weight=w23)
with pytest.raises(nx.NetworkXError):
nx.kemeny_constant(G, weight="weight")
def test_kemeny_constant(self):
K = nx.kemeny_constant(self.G, weight="weight")
w12 = 2
w13 = 3
w23 = 4
test_data = (
3
/ 2
* (w12 + w13)
* (w12 + w23)
* (w13 + w23)
/ (
w12**2 * (w13 + w23)
+ w13**2 * (w12 + w23)
+ w23**2 * (w12 + w13)
+ 3 * w12 * w13 * w23
)
)
assert np.isclose(K, test_data)
def test_kemeny_constant_no_weight(self):
K = nx.kemeny_constant(self.G)
assert np.isclose(K, 4 / 3)
def test_kemeny_constant_multigraph(self):
G = nx.MultiGraph()
w12_1 = 2
w12_2 = 1
w13 = 3
w23 = 4
G.add_edge(1, 2, weight=w12_1)
G.add_edge(1, 2, weight=w12_2)
G.add_edge(1, 3, weight=w13)
G.add_edge(2, 3, weight=w23)
K = nx.kemeny_constant(G, weight="weight")
w12 = w12_1 + w12_2
test_data = (
3
/ 2
* (w12 + w13)
* (w12 + w23)
* (w13 + w23)
/ (
w12**2 * (w13 + w23)
+ w13**2 * (w12 + w23)
+ w23**2 * (w12 + w13)
+ 3 * w12 * w13 * w23
)
)
assert np.isclose(K, test_data)
def test_kemeny_constant_weight0(self):
G = nx.Graph()
w12 = 0
w13 = 3
w23 = 4
G.add_edge(1, 2, weight=w12)
G.add_edge(1, 3, weight=w13)
G.add_edge(2, 3, weight=w23)
K = nx.kemeny_constant(G, weight="weight")
test_data = (
3
/ 2
* (w12 + w13)
* (w12 + w23)
* (w13 + w23)
/ (
w12**2 * (w13 + w23)
+ w13**2 * (w12 + w23)
+ w23**2 * (w12 + w13)
+ 3 * w12 * w13 * w23
)
)
assert np.isclose(K, test_data)
def test_kemeny_constant_selfloop(self):
G = nx.Graph()
w11 = 1
w12 = 2
w13 = 3
w23 = 4
G.add_edge(1, 1, weight=w11)
G.add_edge(1, 2, weight=w12)
G.add_edge(1, 3, weight=w13)
G.add_edge(2, 3, weight=w23)
K = nx.kemeny_constant(G, weight="weight")
test_data = (
(2 * w11 + 3 * w12 + 3 * w13)
* (w12 + w23)
* (w13 + w23)
/ (
(w12 * w13 + w12 * w23 + w13 * w23)
* (w11 + 2 * w12 + 2 * w13 + 2 * w23)
)
)
assert np.isclose(K, test_data)
def test_kemeny_constant_complete_bipartite_graph(self):
# Theorem 1 in https://www.sciencedirect.com/science/article/pii/S0166218X20302912
n1 = 5
n2 = 4
G = nx.complete_bipartite_graph(n1, n2)
K = nx.kemeny_constant(G)
assert np.isclose(K, n1 + n2 - 3 / 2)
def test_kemeny_constant_path_graph(self):
# Theorem 2 in https://www.sciencedirect.com/science/article/pii/S0166218X20302912
n = 10
G = nx.path_graph(n)
K = nx.kemeny_constant(G)
assert np.isclose(K, n**2 / 3 - 2 * n / 3 + 1 / 2)