"""Unit tests for the :mod:`networkx.algorithms.boundary` module.""" from itertools import combinations import pytest import networkx as nx from networkx import convert_node_labels_to_integers as cnlti from networkx.utils import edges_equal class TestNodeBoundary: """Unit tests for the :func:`~networkx.node_boundary` function.""" def test_null_graph(self): """Tests that the null graph has empty node boundaries.""" null = nx.null_graph() assert nx.node_boundary(null, []) == set() assert nx.node_boundary(null, [], []) == set() assert nx.node_boundary(null, [1, 2, 3]) == set() assert nx.node_boundary(null, [1, 2, 3], [4, 5, 6]) == set() assert nx.node_boundary(null, [1, 2, 3], [3, 4, 5]) == set() def test_path_graph(self): P10 = cnlti(nx.path_graph(10), first_label=1) assert nx.node_boundary(P10, []) == set() assert nx.node_boundary(P10, [], []) == set() assert nx.node_boundary(P10, [1, 2, 3]) == {4} assert nx.node_boundary(P10, [4, 5, 6]) == {3, 7} assert nx.node_boundary(P10, [3, 4, 5, 6, 7]) == {2, 8} assert nx.node_boundary(P10, [8, 9, 10]) == {7} assert nx.node_boundary(P10, [4, 5, 6], [9, 10]) == set() def test_complete_graph(self): K10 = cnlti(nx.complete_graph(10), first_label=1) assert nx.node_boundary(K10, []) == set() assert nx.node_boundary(K10, [], []) == set() assert nx.node_boundary(K10, [1, 2, 3]) == {4, 5, 6, 7, 8, 9, 10} assert nx.node_boundary(K10, [4, 5, 6]) == {1, 2, 3, 7, 8, 9, 10} assert nx.node_boundary(K10, [3, 4, 5, 6, 7]) == {1, 2, 8, 9, 10} assert nx.node_boundary(K10, [4, 5, 6], []) == set() assert nx.node_boundary(K10, K10) == set() assert nx.node_boundary(K10, [1, 2, 3], [3, 4, 5]) == {4, 5} def test_petersen(self): """Check boundaries in the petersen graph cheeger(G,k)=min(|bdy(S)|/|S| for |S|=k, 0<k<=|V(G)|/2) """ def cheeger(G, k): return min(len(nx.node_boundary(G, nn)) / k for nn in combinations(G, k)) P = nx.petersen_graph() assert cheeger(P, 1) == pytest.approx(3.00, abs=1e-2) assert cheeger(P, 2) == pytest.approx(2.00, abs=1e-2) assert cheeger(P, 3) == pytest.approx(1.67, abs=1e-2) assert cheeger(P, 4) == pytest.approx(1.00, abs=1e-2) assert cheeger(P, 5) == pytest.approx(0.80, abs=1e-2) def test_directed(self): """Tests the node boundary of a directed graph.""" G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]) S = {0, 1} boundary = nx.node_boundary(G, S) expected = {2} assert boundary == expected def test_multigraph(self): """Tests the node boundary of a multigraph.""" G = nx.MultiGraph(list(nx.cycle_graph(5).edges()) * 2) S = {0, 1} boundary = nx.node_boundary(G, S) expected = {2, 4} assert boundary == expected def test_multidigraph(self): """Tests the edge boundary of a multidigraph.""" edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)] G = nx.MultiDiGraph(edges * 2) S = {0, 1} boundary = nx.node_boundary(G, S) expected = {2} assert boundary == expected class TestEdgeBoundary: """Unit tests for the :func:`~networkx.edge_boundary` function.""" def test_null_graph(self): null = nx.null_graph() assert list(nx.edge_boundary(null, [])) == [] assert list(nx.edge_boundary(null, [], [])) == [] assert list(nx.edge_boundary(null, [1, 2, 3])) == [] assert list(nx.edge_boundary(null, [1, 2, 3], [4, 5, 6])) == [] assert list(nx.edge_boundary(null, [1, 2, 3], [3, 4, 5])) == [] def test_path_graph(self): P10 = cnlti(nx.path_graph(10), first_label=1) assert list(nx.edge_boundary(P10, [])) == [] assert list(nx.edge_boundary(P10, [], [])) == [] assert list(nx.edge_boundary(P10, [1, 2, 3])) == [(3, 4)] assert sorted(nx.edge_boundary(P10, [4, 5, 6])) == [(4, 3), (6, 7)] assert sorted(nx.edge_boundary(P10, [3, 4, 5, 6, 7])) == [(3, 2), (7, 8)] assert list(nx.edge_boundary(P10, [8, 9, 10])) == [(8, 7)] assert sorted(nx.edge_boundary(P10, [4, 5, 6], [9, 10])) == [] assert list(nx.edge_boundary(P10, [1, 2, 3], [3, 4, 5])) == [(2, 3), (3, 4)] def test_complete_graph(self): K10 = cnlti(nx.complete_graph(10), first_label=1) def ilen(iterable): return sum(1 for i in iterable) assert list(nx.edge_boundary(K10, [])) == [] assert list(nx.edge_boundary(K10, [], [])) == [] assert ilen(nx.edge_boundary(K10, [1, 2, 3])) == 21 assert ilen(nx.edge_boundary(K10, [4, 5, 6, 7])) == 24 assert ilen(nx.edge_boundary(K10, [3, 4, 5, 6, 7])) == 25 assert ilen(nx.edge_boundary(K10, [8, 9, 10])) == 21 assert edges_equal( nx.edge_boundary(K10, [4, 5, 6], [9, 10]), [(4, 9), (4, 10), (5, 9), (5, 10), (6, 9), (6, 10)], ) assert edges_equal( nx.edge_boundary(K10, [1, 2, 3], [3, 4, 5]), [(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)], ) def test_directed(self): """Tests the edge boundary of a directed graph.""" G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]) S = {0, 1} boundary = list(nx.edge_boundary(G, S)) expected = [(1, 2)] assert boundary == expected def test_multigraph(self): """Tests the edge boundary of a multigraph.""" G = nx.MultiGraph(list(nx.cycle_graph(5).edges()) * 2) S = {0, 1} boundary = list(nx.edge_boundary(G, S)) expected = [(0, 4), (0, 4), (1, 2), (1, 2)] assert boundary == expected def test_multidigraph(self): """Tests the edge boundary of a multidigraph.""" edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)] G = nx.MultiDiGraph(edges * 2) S = {0, 1} boundary = list(nx.edge_boundary(G, S)) expected = [(1, 2), (1, 2)] assert boundary == expected