"""Test trophic levels, trophic differences and trophic coherence"""
import pytest
np = pytest.importorskip("numpy")
pytest.importorskip("scipy")
import networkx as nx
def test_trophic_levels():
"""Trivial example"""
G = nx.DiGraph()
G.add_edge("a", "b")
G.add_edge("b", "c")
d = nx.trophic_levels(G)
assert d == {"a": 1, "b": 2, "c": 3}
def test_trophic_levels_levine():
"""Example from Figure 5 in Stephen Levine (1980) J. theor. Biol. 83,
195-207
"""
S = nx.DiGraph()
S.add_edge(1, 2, weight=1.0)
S.add_edge(1, 3, weight=0.2)
S.add_edge(1, 4, weight=0.8)
S.add_edge(2, 3, weight=0.2)
S.add_edge(2, 5, weight=0.3)
S.add_edge(4, 3, weight=0.6)
S.add_edge(4, 5, weight=0.7)
S.add_edge(5, 4, weight=0.2)
# save copy for later, test intermediate implementation details first
S2 = S.copy()
# drop nodes of in-degree zero
z = [nid for nid, d in S.in_degree if d == 0]
for nid in z:
S.remove_node(nid)
# find adjacency matrix
q = nx.linalg.graphmatrix.adjacency_matrix(S).T
# fmt: off
expected_q = np.array([
[0, 0, 0., 0],
[0.2, 0, 0.6, 0],
[0, 0, 0, 0.2],
[0.3, 0, 0.7, 0]
])
# fmt: on
assert np.array_equal(q.todense(), expected_q)
# must be square, size of number of nodes
assert len(q.shape) == 2
assert q.shape[0] == q.shape[1]
assert q.shape[0] == len(S)
nn = q.shape[0]
i = np.eye(nn)
n = np.linalg.inv(i - q)
y = np.asarray(n) @ np.ones(nn)
expected_y = np.array([1, 2.07906977, 1.46511628, 2.3255814])
assert np.allclose(y, expected_y)
expected_d = {1: 1, 2: 2, 3: 3.07906977, 4: 2.46511628, 5: 3.3255814}
d = nx.trophic_levels(S2)
for nid, level in d.items():
expected_level = expected_d[nid]
assert expected_level == pytest.approx(level, abs=1e-7)
def test_trophic_levels_simple():
matrix_a = np.array([[0, 0], [1, 0]])
G = nx.from_numpy_array(matrix_a, create_using=nx.DiGraph)
d = nx.trophic_levels(G)
assert d[0] == pytest.approx(2, abs=1e-7)
assert d[1] == pytest.approx(1, abs=1e-7)
def test_trophic_levels_more_complex():
# fmt: off
matrix = np.array([
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
[0, 0, 0, 0]
])
# fmt: on
G = nx.from_numpy_array(matrix, create_using=nx.DiGraph)
d = nx.trophic_levels(G)
expected_result = [1, 2, 3, 4]
for ind in range(4):
assert d[ind] == pytest.approx(expected_result[ind], abs=1e-7)
# fmt: off
matrix = np.array([
[0, 1, 1, 0],
[0, 0, 1, 1],
[0, 0, 0, 1],
[0, 0, 0, 0]
])
# fmt: on
G = nx.from_numpy_array(matrix, create_using=nx.DiGraph)
d = nx.trophic_levels(G)
expected_result = [1, 2, 2.5, 3.25]
print("Calculated result: ", d)
print("Expected Result: ", expected_result)
for ind in range(4):
assert d[ind] == pytest.approx(expected_result[ind], abs=1e-7)
def test_trophic_levels_even_more_complex():
# fmt: off
# Another, bigger matrix
matrix = np.array([
[0, 0, 0, 0, 0],
[0, 1, 0, 1, 0],
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 0, 1, 0]
])
# Generated this linear system using pen and paper:
K = np.array([
[1, 0, -1, 0, 0],
[0, 0.5, 0, -0.5, 0],
[0, 0, 1, 0, 0],
[0, -0.5, 0, 1, -0.5],
[0, 0, 0, 0, 1],
])
# fmt: on
result_1 = np.ravel(np.linalg.inv(K) @ np.ones(5))
G = nx.from_numpy_array(matrix, create_using=nx.DiGraph)
result_2 = nx.trophic_levels(G)
for ind in range(5):
assert result_1[ind] == pytest.approx(result_2[ind], abs=1e-7)
def test_trophic_levels_singular_matrix():
"""Should raise an error with graphs with only non-basal nodes"""
matrix = np.identity(4)
G = nx.from_numpy_array(matrix, create_using=nx.DiGraph)
with pytest.raises(nx.NetworkXError) as e:
nx.trophic_levels(G)
msg = (
"Trophic levels are only defined for graphs where every node "
+ "has a path from a basal node (basal nodes are nodes with no "
+ "incoming edges)."
)
assert msg in str(e.value)
def test_trophic_levels_singular_with_basal():
"""Should fail to compute if there are any parts of the graph which are not
reachable from any basal node (with in-degree zero).
"""
G = nx.DiGraph()
# a has in-degree zero
G.add_edge("a", "b")
# b is one level above a, c and d
G.add_edge("c", "b")
G.add_edge("d", "b")
# c and d form a loop, neither are reachable from a
G.add_edge("c", "d")
G.add_edge("d", "c")
with pytest.raises(nx.NetworkXError) as e:
nx.trophic_levels(G)
msg = (
"Trophic levels are only defined for graphs where every node "
+ "has a path from a basal node (basal nodes are nodes with no "
+ "incoming edges)."
)
assert msg in str(e.value)
# if self-loops are allowed, smaller example:
G = nx.DiGraph()
G.add_edge("a", "b") # a has in-degree zero
G.add_edge("c", "b") # b is one level above a and c
G.add_edge("c", "c") # c has a self-loop
with pytest.raises(nx.NetworkXError) as e:
nx.trophic_levels(G)
msg = (
"Trophic levels are only defined for graphs where every node "
+ "has a path from a basal node (basal nodes are nodes with no "
+ "incoming edges)."
)
assert msg in str(e.value)
def test_trophic_differences():
matrix_a = np.array([[0, 1], [0, 0]])
G = nx.from_numpy_array(matrix_a, create_using=nx.DiGraph)
diffs = nx.trophic_differences(G)
assert diffs[(0, 1)] == pytest.approx(1, abs=1e-7)
# fmt: off
matrix_b = np.array([
[0, 1, 1, 0],
[0, 0, 1, 1],
[0, 0, 0, 1],
[0, 0, 0, 0]
])
# fmt: on
G = nx.from_numpy_array(matrix_b, create_using=nx.DiGraph)
diffs = nx.trophic_differences(G)
assert diffs[(0, 1)] == pytest.approx(1, abs=1e-7)
assert diffs[(0, 2)] == pytest.approx(1.5, abs=1e-7)
assert diffs[(1, 2)] == pytest.approx(0.5, abs=1e-7)
assert diffs[(1, 3)] == pytest.approx(1.25, abs=1e-7)
assert diffs[(2, 3)] == pytest.approx(0.75, abs=1e-7)
def test_trophic_incoherence_parameter_no_cannibalism():
matrix_a = np.array([[0, 1], [0, 0]])
G = nx.from_numpy_array(matrix_a, create_using=nx.DiGraph)
q = nx.trophic_incoherence_parameter(G, cannibalism=False)
assert q == pytest.approx(0, abs=1e-7)
# fmt: off
matrix_b = np.array([
[0, 1, 1, 0],
[0, 0, 1, 1],
[0, 0, 0, 1],
[0, 0, 0, 0]
])
# fmt: on
G = nx.from_numpy_array(matrix_b, create_using=nx.DiGraph)
q = nx.trophic_incoherence_parameter(G, cannibalism=False)
assert q == pytest.approx(np.std([1, 1.5, 0.5, 0.75, 1.25]), abs=1e-7)
# fmt: off
matrix_c = np.array([
[0, 1, 1, 0],
[0, 1, 1, 1],
[0, 0, 0, 1],
[0, 0, 0, 1]
])
# fmt: on
G = nx.from_numpy_array(matrix_c, create_using=nx.DiGraph)
q = nx.trophic_incoherence_parameter(G, cannibalism=False)
# Ignore the -link
assert q == pytest.approx(np.std([1, 1.5, 0.5, 0.75, 1.25]), abs=1e-7)
# no self-loops case
# fmt: off
matrix_d = np.array([
[0, 1, 1, 0],
[0, 0, 1, 1],
[0, 0, 0, 1],
[0, 0, 0, 0]
])
# fmt: on
G = nx.from_numpy_array(matrix_d, create_using=nx.DiGraph)
q = nx.trophic_incoherence_parameter(G, cannibalism=False)
# Ignore the -link
assert q == pytest.approx(np.std([1, 1.5, 0.5, 0.75, 1.25]), abs=1e-7)
def test_trophic_incoherence_parameter_cannibalism():
matrix_a = np.array([[0, 1], [0, 0]])
G = nx.from_numpy_array(matrix_a, create_using=nx.DiGraph)
q = nx.trophic_incoherence_parameter(G, cannibalism=True)
assert q == pytest.approx(0, abs=1e-7)
# fmt: off
matrix_b = np.array([
[0, 0, 0, 0, 0],
[0, 1, 0, 1, 0],
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 0, 1, 0]
])
# fmt: on
G = nx.from_numpy_array(matrix_b, create_using=nx.DiGraph)
q = nx.trophic_incoherence_parameter(G, cannibalism=True)
assert q == pytest.approx(2, abs=1e-7)
# fmt: off
matrix_c = np.array([
[0, 1, 1, 0],
[0, 0, 1, 1],
[0, 0, 0, 1],
[0, 0, 0, 0]
])
# fmt: on
G = nx.from_numpy_array(matrix_c, create_using=nx.DiGraph)
q = nx.trophic_incoherence_parameter(G, cannibalism=True)
# Ignore the -link
assert q == pytest.approx(np.std([1, 1.5, 0.5, 0.75, 1.25]), abs=1e-7)