import pytest import networkx as nx from networkx.algorithms.approximation.steinertree import ( _remove_nonterminal_leaves, metric_closure, steiner_tree, ) from networkx.utils import edges_equal class TestSteinerTree: @classmethod def setup_class(cls): G1 = nx.Graph() G1.add_edge(1, 2, weight=10) G1.add_edge(2, 3, weight=10) G1.add_edge(3, 4, weight=10) G1.add_edge(4, 5, weight=10) G1.add_edge(5, 6, weight=10) G1.add_edge(2, 7, weight=1) G1.add_edge(7, 5, weight=1) G2 = nx.Graph() G2.add_edge(0, 5, weight=6) G2.add_edge(1, 2, weight=2) G2.add_edge(1, 5, weight=3) G2.add_edge(2, 4, weight=4) G2.add_edge(3, 5, weight=5) G2.add_edge(4, 5, weight=1) G3 = nx.Graph() G3.add_edge(1, 2, weight=8) G3.add_edge(1, 9, weight=3) G3.add_edge(1, 8, weight=6) G3.add_edge(1, 10, weight=2) G3.add_edge(1, 14, weight=3) G3.add_edge(2, 3, weight=6) G3.add_edge(3, 4, weight=3) G3.add_edge(3, 10, weight=2) G3.add_edge(3, 11, weight=1) G3.add_edge(4, 5, weight=1) G3.add_edge(4, 11, weight=1) G3.add_edge(5, 6, weight=4) G3.add_edge(5, 11, weight=2) G3.add_edge(5, 12, weight=1) G3.add_edge(5, 13, weight=3) G3.add_edge(6, 7, weight=2) G3.add_edge(6, 12, weight=3) G3.add_edge(6, 13, weight=1) G3.add_edge(7, 8, weight=3) G3.add_edge(7, 9, weight=3) G3.add_edge(7, 11, weight=5) G3.add_edge(7, 13, weight=2) G3.add_edge(7, 14, weight=4) G3.add_edge(8, 9, weight=2) G3.add_edge(9, 14, weight=1) G3.add_edge(10, 11, weight=2) G3.add_edge(10, 14, weight=1) G3.add_edge(11, 12, weight=1) G3.add_edge(11, 14, weight=7) G3.add_edge(12, 14, weight=3) G3.add_edge(12, 15, weight=1) G3.add_edge(13, 14, weight=4) G3.add_edge(13, 15, weight=1) G3.add_edge(14, 15, weight=2) cls.G1 = G1 cls.G2 = G2 cls.G3 = G3 cls.G1_term_nodes = [1, 2, 3, 4, 5] cls.G2_term_nodes = [0, 2, 3] cls.G3_term_nodes = [1, 3, 5, 6, 8, 10, 11, 12, 13] cls.methods = ["kou", "mehlhorn"] def test_connected_metric_closure(self): G = self.G1.copy() G.add_node(100) pytest.raises(nx.NetworkXError, metric_closure, G) def test_metric_closure(self): M = metric_closure(self.G1) mc = [ (1, 2, {"distance": 10, "path": [1, 2]}), (1, 3, {"distance": 20, "path": [1, 2, 3]}), (1, 4, {"distance": 22, "path": [1, 2, 7, 5, 4]}), (1, 5, {"distance": 12, "path": [1, 2, 7, 5]}), (1, 6, {"distance": 22, "path": [1, 2, 7, 5, 6]}), (1, 7, {"distance": 11, "path": [1, 2, 7]}), (2, 3, {"distance": 10, "path": [2, 3]}), (2, 4, {"distance": 12, "path": [2, 7, 5, 4]}), (2, 5, {"distance": 2, "path": [2, 7, 5]}), (2, 6, {"distance": 12, "path": [2, 7, 5, 6]}), (2, 7, {"distance": 1, "path": [2, 7]}), (3, 4, {"distance": 10, "path": [3, 4]}), (3, 5, {"distance": 12, "path": [3, 2, 7, 5]}), (3, 6, {"distance": 22, "path": [3, 2, 7, 5, 6]}), (3, 7, {"distance": 11, "path": [3, 2, 7]}), (4, 5, {"distance": 10, "path": [4, 5]}), (4, 6, {"distance": 20, "path": [4, 5, 6]}), (4, 7, {"distance": 11, "path": [4, 5, 7]}), (5, 6, {"distance": 10, "path": [5, 6]}), (5, 7, {"distance": 1, "path": [5, 7]}), (6, 7, {"distance": 11, "path": [6, 5, 7]}), ] assert edges_equal(list(M.edges(data=True)), mc) def test_steiner_tree(self): valid_steiner_trees = [ [ [ (1, 2, {"weight": 10}), (2, 3, {"weight": 10}), (2, 7, {"weight": 1}), (3, 4, {"weight": 10}), (5, 7, {"weight": 1}), ], [ (1, 2, {"weight": 10}), (2, 7, {"weight": 1}), (3, 4, {"weight": 10}), (4, 5, {"weight": 10}), (5, 7, {"weight": 1}), ], [ (1, 2, {"weight": 10}), (2, 3, {"weight": 10}), (2, 7, {"weight": 1}), (4, 5, {"weight": 10}), (5, 7, {"weight": 1}), ], ], [ [ (0, 5, {"weight": 6}), (1, 2, {"weight": 2}), (1, 5, {"weight": 3}), (3, 5, {"weight": 5}), ], [ (0, 5, {"weight": 6}), (4, 2, {"weight": 4}), (4, 5, {"weight": 1}), (3, 5, {"weight": 5}), ], ], [ [ (1, 10, {"weight": 2}), (3, 10, {"weight": 2}), (3, 11, {"weight": 1}), (5, 12, {"weight": 1}), (6, 13, {"weight": 1}), (8, 9, {"weight": 2}), (9, 14, {"weight": 1}), (10, 14, {"weight": 1}), (11, 12, {"weight": 1}), (12, 15, {"weight": 1}), (13, 15, {"weight": 1}), ] ], ] for method in self.methods: for G, term_nodes, valid_trees in zip( [self.G1, self.G2, self.G3], [self.G1_term_nodes, self.G2_term_nodes, self.G3_term_nodes], valid_steiner_trees, ): S = steiner_tree(G, term_nodes, method=method) assert any( edges_equal(list(S.edges(data=True)), valid_tree) for valid_tree in valid_trees ) def test_multigraph_steiner_tree(self): G = nx.MultiGraph() G.add_edges_from( [ (1, 2, 0, {"weight": 1}), (2, 3, 0, {"weight": 999}), (2, 3, 1, {"weight": 1}), (3, 4, 0, {"weight": 1}), (3, 5, 0, {"weight": 1}), ] ) terminal_nodes = [2, 4, 5] expected_edges = [ (2, 3, 1, {"weight": 1}), # edge with key 1 has lower weight (3, 4, 0, {"weight": 1}), (3, 5, 0, {"weight": 1}), ] for method in self.methods: S = steiner_tree(G, terminal_nodes, method=method) assert edges_equal(S.edges(data=True, keys=True), expected_edges) def test_remove_nonterminal_leaves(self): G = nx.path_graph(10) _remove_nonterminal_leaves(G, [4, 5, 6]) assert list(G) == [4, 5, 6] # only the terminal nodes are left @pytest.mark.parametrize("method", ("kou", "mehlhorn")) def test_steiner_tree_weight_attribute(method): G = nx.star_graph(4) # Add an edge attribute that is named something other than "weight" nx.set_edge_attributes(G, {e: 10 for e in G.edges}, name="distance") H = nx.approximation.steiner_tree(G, [1, 3], method=method, weight="distance") assert nx.utils.edges_equal(H.edges, [(0, 1), (0, 3)]) @pytest.mark.parametrize("method", ("kou", "mehlhorn")) def test_steiner_tree_multigraph_weight_attribute(method): G = nx.cycle_graph(3, create_using=nx.MultiGraph) nx.set_edge_attributes(G, {e: 10 for e in G.edges}, name="distance") G.add_edge(2, 0, distance=5) H = nx.approximation.steiner_tree(G, list(G), method=method, weight="distance") assert len(H.edges) == 2 and H.has_edge(2, 0, key=1) assert sum(dist for *_, dist in H.edges(data="distance")) == 15 @pytest.mark.parametrize("method", (None, "mehlhorn", "kou")) def test_steiner_tree_methods(method): G = nx.star_graph(4) expected = nx.Graph([(0, 1), (0, 3)]) st = nx.approximation.steiner_tree(G, [1, 3], method=method) assert nx.utils.edges_equal(st.edges, expected.edges) def test_steiner_tree_method_invalid(): G = nx.star_graph(4) with pytest.raises( ValueError, match="invalid_method is not a valid choice for an algorithm." ): nx.approximation.steiner_tree(G, terminal_nodes=[1, 3], method="invalid_method") def test_steiner_tree_remove_non_terminal_leaves_self_loop_edges(): # To verify that the last step of the steiner tree approximation # behaves in the case where a non-terminal leaf has a self loop edge G = nx.path_graph(10) # Add self loops to the terminal nodes G.add_edges_from([(2, 2), (3, 3), (4, 4), (7, 7), (8, 8)]) # Remove non-terminal leaves _remove_nonterminal_leaves(G, [4, 5, 6, 7]) # The terminal nodes should be left assert list(G) == [4, 5, 6, 7] # only the terminal nodes are left def test_steiner_tree_non_terminal_leaves_multigraph_self_loop_edges(): # To verify that the last step of the steiner tree approximation # behaves in the case where a non-terminal leaf has a self loop edge G = nx.MultiGraph() G.add_edges_from([(i, i + 1) for i in range(10)]) G.add_edges_from([(2, 2), (3, 3), (4, 4), (4, 4), (7, 7)]) # Remove non-terminal leaves _remove_nonterminal_leaves(G, [4, 5, 6, 7]) # Only the terminal nodes should be left assert list(G) == [4, 5, 6, 7]