# Test for approximation to k-components algorithm
import pytest
import networkx as nx
from networkx.algorithms.approximation import k_components
from networkx.algorithms.approximation.kcomponents import _AntiGraph, _same
def build_k_number_dict(k_components):
k_num = {}
for k, comps in sorted(k_components.items()):
for comp in comps:
for node in comp:
k_num[node] = k
return k_num
##
# Some nice synthetic graphs
##
def graph_example_1():
G = nx.convert_node_labels_to_integers(
nx.grid_graph([5, 5]), label_attribute="labels"
)
rlabels = nx.get_node_attributes(G, "labels")
labels = {v: k for k, v in rlabels.items()}
for nodes in [
(labels[(0, 0)], labels[(1, 0)]),
(labels[(0, 4)], labels[(1, 4)]),
(labels[(3, 0)], labels[(4, 0)]),
(labels[(3, 4)], labels[(4, 4)]),
]:
new_node = G.order() + 1
# Petersen graph is triconnected
P = nx.petersen_graph()
G = nx.disjoint_union(G, P)
# Add two edges between the grid and P
G.add_edge(new_node + 1, nodes[0])
G.add_edge(new_node, nodes[1])
# K5 is 4-connected
K = nx.complete_graph(5)
G = nx.disjoint_union(G, K)
# Add three edges between P and K5
G.add_edge(new_node + 2, new_node + 11)
G.add_edge(new_node + 3, new_node + 12)
G.add_edge(new_node + 4, new_node + 13)
# Add another K5 sharing a node
G = nx.disjoint_union(G, K)
nbrs = G[new_node + 10]
G.remove_node(new_node + 10)
for nbr in nbrs:
G.add_edge(new_node + 17, nbr)
G.add_edge(new_node + 16, new_node + 5)
return G
def torrents_and_ferraro_graph():
G = nx.convert_node_labels_to_integers(
nx.grid_graph([5, 5]), label_attribute="labels"
)
rlabels = nx.get_node_attributes(G, "labels")
labels = {v: k for k, v in rlabels.items()}
for nodes in [(labels[(0, 4)], labels[(1, 4)]), (labels[(3, 4)], labels[(4, 4)])]:
new_node = G.order() + 1
# Petersen graph is triconnected
P = nx.petersen_graph()
G = nx.disjoint_union(G, P)
# Add two edges between the grid and P
G.add_edge(new_node + 1, nodes[0])
G.add_edge(new_node, nodes[1])
# K5 is 4-connected
K = nx.complete_graph(5)
G = nx.disjoint_union(G, K)
# Add three edges between P and K5
G.add_edge(new_node + 2, new_node + 11)
G.add_edge(new_node + 3, new_node + 12)
G.add_edge(new_node + 4, new_node + 13)
# Add another K5 sharing a node
G = nx.disjoint_union(G, K)
nbrs = G[new_node + 10]
G.remove_node(new_node + 10)
for nbr in nbrs:
G.add_edge(new_node + 17, nbr)
# Commenting this makes the graph not biconnected !!
# This stupid mistake make one reviewer very angry :P
G.add_edge(new_node + 16, new_node + 8)
for nodes in [(labels[(0, 0)], labels[(1, 0)]), (labels[(3, 0)], labels[(4, 0)])]:
new_node = G.order() + 1
# Petersen graph is triconnected
P = nx.petersen_graph()
G = nx.disjoint_union(G, P)
# Add two edges between the grid and P
G.add_edge(new_node + 1, nodes[0])
G.add_edge(new_node, nodes[1])
# K5 is 4-connected
K = nx.complete_graph(5)
G = nx.disjoint_union(G, K)
# Add three edges between P and K5
G.add_edge(new_node + 2, new_node + 11)
G.add_edge(new_node + 3, new_node + 12)
G.add_edge(new_node + 4, new_node + 13)
# Add another K5 sharing two nodes
G = nx.disjoint_union(G, K)
nbrs = G[new_node + 10]
G.remove_node(new_node + 10)
for nbr in nbrs:
G.add_edge(new_node + 17, nbr)
nbrs2 = G[new_node + 9]
G.remove_node(new_node + 9)
for nbr in nbrs2:
G.add_edge(new_node + 18, nbr)
return G
# Helper function
def _check_connectivity(G):
result = k_components(G)
for k, components in result.items():
if k < 3:
continue
for component in components:
C = G.subgraph(component)
K = nx.node_connectivity(C)
assert K >= k
def test_torrents_and_ferraro_graph():
G = torrents_and_ferraro_graph()
_check_connectivity(G)
def test_example_1():
G = graph_example_1()
_check_connectivity(G)
def test_karate_0():
G = nx.karate_club_graph()
_check_connectivity(G)
def test_karate_1():
karate_k_num = {
0: 4,
1: 4,
2: 4,
3: 4,
4: 3,
5: 3,
6: 3,
7: 4,
8: 4,
9: 2,
10: 3,
11: 1,
12: 2,
13: 4,
14: 2,
15: 2,
16: 2,
17: 2,
18: 2,
19: 3,
20: 2,
21: 2,
22: 2,
23: 3,
24: 3,
25: 3,
26: 2,
27: 3,
28: 3,
29: 3,
30: 4,
31: 3,
32: 4,
33: 4,
}
approx_karate_k_num = karate_k_num.copy()
approx_karate_k_num[24] = 2
approx_karate_k_num[25] = 2
G = nx.karate_club_graph()
k_comps = k_components(G)
k_num = build_k_number_dict(k_comps)
assert k_num in (karate_k_num, approx_karate_k_num)
def test_example_1_detail_3_and_4():
G = graph_example_1()
result = k_components(G)
# In this example graph there are 8 3-components, 4 with 15 nodes
# and 4 with 5 nodes.
assert len(result[3]) == 8
assert len([c for c in result[3] if len(c) == 15]) == 4
assert len([c for c in result[3] if len(c) == 5]) == 4
# There are also 8 4-components all with 5 nodes.
assert len(result[4]) == 8
assert all(len(c) == 5 for c in result[4])
# Finally check that the k-components detected have actually node
# connectivity >= k.
for k, components in result.items():
if k < 3:
continue
for component in components:
K = nx.node_connectivity(G.subgraph(component))
assert K >= k
def test_directed():
with pytest.raises(nx.NetworkXNotImplemented):
G = nx.gnp_random_graph(10, 0.4, directed=True)
kc = k_components(G)
def test_same():
equal = {"A": 2, "B": 2, "C": 2}
slightly_different = {"A": 2, "B": 1, "C": 2}
different = {"A": 2, "B": 8, "C": 18}
assert _same(equal)
assert not _same(slightly_different)
assert _same(slightly_different, tol=1)
assert not _same(different)
assert not _same(different, tol=4)
class TestAntiGraph:
@classmethod
def setup_class(cls):
cls.Gnp = nx.gnp_random_graph(20, 0.8, seed=42)
cls.Anp = _AntiGraph(nx.complement(cls.Gnp))
cls.Gd = nx.davis_southern_women_graph()
cls.Ad = _AntiGraph(nx.complement(cls.Gd))
cls.Gk = nx.karate_club_graph()
cls.Ak = _AntiGraph(nx.complement(cls.Gk))
cls.GA = [(cls.Gnp, cls.Anp), (cls.Gd, cls.Ad), (cls.Gk, cls.Ak)]
def test_size(self):
for G, A in self.GA:
n = G.order()
s = len(list(G.edges())) + len(list(A.edges()))
assert s == (n * (n - 1)) / 2
def test_degree(self):
for G, A in self.GA:
assert sorted(G.degree()) == sorted(A.degree())
def test_core_number(self):
for G, A in self.GA:
assert nx.core_number(G) == nx.core_number(A)
def test_connected_components(self):
# ccs are same unless isolated nodes or any node has degree=len(G)-1
# graphs in self.GA avoid this problem
for G, A in self.GA:
gc = [set(c) for c in nx.connected_components(G)]
ac = [set(c) for c in nx.connected_components(A)]
for comp in ac:
assert comp in gc
def test_adj(self):
for G, A in self.GA:
for n, nbrs in G.adj.items():
a_adj = sorted((n, sorted(ad)) for n, ad in A.adj.items())
g_adj = sorted((n, sorted(ad)) for n, ad in G.adj.items())
assert a_adj == g_adj
def test_adjacency(self):
for G, A in self.GA:
a_adj = list(A.adjacency())
for n, nbrs in G.adjacency():
assert (n, set(nbrs)) in a_adj
def test_neighbors(self):
for G, A in self.GA:
node = list(G.nodes())[0]
assert set(G.neighbors(node)) == set(A.neighbors(node))
def test_node_not_in_graph(self):
for G, A in self.GA:
node = "non_existent_node"
pytest.raises(nx.NetworkXError, A.neighbors, node)
pytest.raises(nx.NetworkXError, G.neighbors, node)
def test_degree_thingraph(self):
for G, A in self.GA:
node = list(G.nodes())[0]
nodes = list(G.nodes())[1:4]
assert G.degree(node) == A.degree(node)
assert sum(d for n, d in G.degree()) == sum(d for n, d in A.degree())
# AntiGraph is a ThinGraph, so all the weights are 1
assert sum(d for n, d in A.degree()) == sum(
d for n, d in A.degree(weight="weight")
)
assert sum(d for n, d in G.degree(nodes)) == sum(
d for n, d in A.degree(nodes)
)