aboutsummaryrefslogtreecommitdiff
# +-----------------------------------------------+
# |                                               |
# |           Give Feedback / Get Help            |
# | https://github.com/BerriAI/litellm/issues/new |
# |                                               |
# +-----------------------------------------------+
#
#  Thank you ! We ❤️ you! - Krrish & Ishaan

import asyncio
import copy
import enum
import hashlib
import inspect
import json
import logging
import threading
import time
import traceback
import uuid
from collections import defaultdict
from functools import lru_cache
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    List,
    Literal,
    Optional,
    Tuple,
    Union,
    cast,
)

import httpx
import openai
from openai import AsyncOpenAI
from pydantic import BaseModel
from typing_extensions import overload

import litellm
import litellm.litellm_core_utils
import litellm.litellm_core_utils.exception_mapping_utils
from litellm import get_secret_str
from litellm._logging import verbose_router_logger
from litellm.caching.caching import (
    DualCache,
    InMemoryCache,
    RedisCache,
    RedisClusterCache,
)
from litellm.integrations.custom_logger import CustomLogger
from litellm.litellm_core_utils.asyncify import run_async_function
from litellm.litellm_core_utils.core_helpers import _get_parent_otel_span_from_kwargs
from litellm.litellm_core_utils.dd_tracing import tracer
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLogging
from litellm.router_strategy.budget_limiter import RouterBudgetLimiting
from litellm.router_strategy.least_busy import LeastBusyLoggingHandler
from litellm.router_strategy.lowest_cost import LowestCostLoggingHandler
from litellm.router_strategy.lowest_latency import LowestLatencyLoggingHandler
from litellm.router_strategy.lowest_tpm_rpm import LowestTPMLoggingHandler
from litellm.router_strategy.lowest_tpm_rpm_v2 import LowestTPMLoggingHandler_v2
from litellm.router_strategy.simple_shuffle import simple_shuffle
from litellm.router_strategy.tag_based_routing import get_deployments_for_tag
from litellm.router_utils.add_retry_fallback_headers import (
    add_fallback_headers_to_response,
    add_retry_headers_to_response,
)
from litellm.router_utils.batch_utils import (
    _get_router_metadata_variable_name,
    replace_model_in_jsonl,
)
from litellm.router_utils.client_initalization_utils import InitalizeCachedClient
from litellm.router_utils.clientside_credential_handler import (
    get_dynamic_litellm_params,
    is_clientside_credential,
)
from litellm.router_utils.cooldown_cache import CooldownCache
from litellm.router_utils.cooldown_handlers import (
    DEFAULT_COOLDOWN_TIME_SECONDS,
    _async_get_cooldown_deployments,
    _async_get_cooldown_deployments_with_debug_info,
    _get_cooldown_deployments,
    _set_cooldown_deployments,
)
from litellm.router_utils.fallback_event_handlers import (
    _check_non_standard_fallback_format,
    get_fallback_model_group,
    run_async_fallback,
)
from litellm.router_utils.get_retry_from_policy import (
    get_num_retries_from_retry_policy as _get_num_retries_from_retry_policy,
)
from litellm.router_utils.handle_error import (
    async_raise_no_deployment_exception,
    send_llm_exception_alert,
)
from litellm.router_utils.pre_call_checks.prompt_caching_deployment_check import (
    PromptCachingDeploymentCheck,
)
from litellm.router_utils.router_callbacks.track_deployment_metrics import (
    increment_deployment_failures_for_current_minute,
    increment_deployment_successes_for_current_minute,
)
from litellm.scheduler import FlowItem, Scheduler
from litellm.types.llms.openai import AllMessageValues, Batch, FileObject, FileTypes
from litellm.types.router import (
    CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS,
    VALID_LITELLM_ENVIRONMENTS,
    AlertingConfig,
    AllowedFailsPolicy,
    AssistantsTypedDict,
    CredentialLiteLLMParams,
    CustomRoutingStrategyBase,
    Deployment,
    DeploymentTypedDict,
    LiteLLM_Params,
    ModelGroupInfo,
    OptionalPreCallChecks,
    RetryPolicy,
    RouterCacheEnum,
    RouterGeneralSettings,
    RouterModelGroupAliasItem,
    RouterRateLimitError,
    RouterRateLimitErrorBasic,
    RoutingStrategy,
)
from litellm.types.services import ServiceTypes
from litellm.types.utils import GenericBudgetConfigType
from litellm.types.utils import ModelInfo as ModelMapInfo
from litellm.types.utils import StandardLoggingPayload
from litellm.utils import (
    CustomStreamWrapper,
    EmbeddingResponse,
    ModelResponse,
    Rules,
    function_setup,
    get_llm_provider,
    get_non_default_completion_params,
    get_secret,
    get_utc_datetime,
    is_region_allowed,
)

from .router_utils.pattern_match_deployments import PatternMatchRouter

if TYPE_CHECKING:
    from opentelemetry.trace import Span as _Span

    Span = _Span
else:
    Span = Any


class RoutingArgs(enum.Enum):
    ttl = 60  # 1min (RPM/TPM expire key)


class Router:
    model_names: List = []
    cache_responses: Optional[bool] = False
    default_cache_time_seconds: int = 1 * 60 * 60  # 1 hour
    tenacity = None
    leastbusy_logger: Optional[LeastBusyLoggingHandler] = None
    lowesttpm_logger: Optional[LowestTPMLoggingHandler] = None

    def __init__(  # noqa: PLR0915
        self,
        model_list: Optional[
            Union[List[DeploymentTypedDict], List[Dict[str, Any]]]
        ] = None,
        ## ASSISTANTS API ##
        assistants_config: Optional[AssistantsTypedDict] = None,
        ## CACHING ##
        redis_url: Optional[str] = None,
        redis_host: Optional[str] = None,
        redis_port: Optional[int] = None,
        redis_password: Optional[str] = None,
        cache_responses: Optional[bool] = False,
        cache_kwargs: dict = {},  # additional kwargs to pass to RedisCache (see caching.py)
        caching_groups: Optional[
            List[tuple]
        ] = None,  # if you want to cache across model groups
        client_ttl: int = 3600,  # ttl for cached clients - will re-initialize after this time in seconds
        ## SCHEDULER ##
        polling_interval: Optional[float] = None,
        default_priority: Optional[int] = None,
        ## RELIABILITY ##
        num_retries: Optional[int] = None,
        max_fallbacks: Optional[
            int
        ] = None,  # max fallbacks to try before exiting the call. Defaults to 5.
        timeout: Optional[float] = None,
        stream_timeout: Optional[float] = None,
        default_litellm_params: Optional[
            dict
        ] = None,  # default params for Router.chat.completion.create
        default_max_parallel_requests: Optional[int] = None,
        set_verbose: bool = False,
        debug_level: Literal["DEBUG", "INFO"] = "INFO",
        default_fallbacks: Optional[
            List[str]
        ] = None,  # generic fallbacks, works across all deployments
        fallbacks: List = [],
        context_window_fallbacks: List = [],
        content_policy_fallbacks: List = [],
        model_group_alias: Optional[
            Dict[str, Union[str, RouterModelGroupAliasItem]]
        ] = {},
        enable_pre_call_checks: bool = False,
        enable_tag_filtering: bool = False,
        retry_after: int = 0,  # min time to wait before retrying a failed request
        retry_policy: Optional[
            Union[RetryPolicy, dict]
        ] = None,  # set custom retries for different exceptions
        model_group_retry_policy: Dict[
            str, RetryPolicy
        ] = {},  # set custom retry policies based on model group
        allowed_fails: Optional[
            int
        ] = None,  # Number of times a deployment can failbefore being added to cooldown
        allowed_fails_policy: Optional[
            AllowedFailsPolicy
        ] = None,  # set custom allowed fails policy
        cooldown_time: Optional[
            float
        ] = None,  # (seconds) time to cooldown a deployment after failure
        disable_cooldowns: Optional[bool] = None,
        routing_strategy: Literal[
            "simple-shuffle",
            "least-busy",
            "usage-based-routing",
            "latency-based-routing",
            "cost-based-routing",
            "usage-based-routing-v2",
        ] = "simple-shuffle",
        optional_pre_call_checks: Optional[OptionalPreCallChecks] = None,
        routing_strategy_args: dict = {},  # just for latency-based
        provider_budget_config: Optional[GenericBudgetConfigType] = None,
        alerting_config: Optional[AlertingConfig] = None,
        router_general_settings: Optional[
            RouterGeneralSettings
        ] = RouterGeneralSettings(),
    ) -> None:
        """
        Initialize the Router class with the given parameters for caching, reliability, and routing strategy.

        Args:
            model_list (Optional[list]): List of models to be used. Defaults to None.
            redis_url (Optional[str]): URL of the Redis server. Defaults to None.
            redis_host (Optional[str]): Hostname of the Redis server. Defaults to None.
            redis_port (Optional[int]): Port of the Redis server. Defaults to None.
            redis_password (Optional[str]): Password of the Redis server. Defaults to None.
            cache_responses (Optional[bool]): Flag to enable caching of responses. Defaults to False.
            cache_kwargs (dict): Additional kwargs to pass to RedisCache. Defaults to {}.
            caching_groups (Optional[List[tuple]]): List of model groups for caching across model groups. Defaults to None.
            client_ttl (int): Time-to-live for cached clients in seconds. Defaults to 3600.
            polling_interval: (Optional[float]): frequency of polling queue. Only for '.scheduler_acompletion()'. Default is 3ms.
            default_priority: (Optional[int]): the default priority for a request. Only for '.scheduler_acompletion()'. Default is None.
            num_retries (Optional[int]): Number of retries for failed requests. Defaults to 2.
            timeout (Optional[float]): Timeout for requests. Defaults to None.
            default_litellm_params (dict): Default parameters for Router.chat.completion.create. Defaults to {}.
            set_verbose (bool): Flag to set verbose mode. Defaults to False.
            debug_level (Literal["DEBUG", "INFO"]): Debug level for logging. Defaults to "INFO".
            fallbacks (List): List of fallback options. Defaults to [].
            context_window_fallbacks (List): List of context window fallback options. Defaults to [].
            enable_pre_call_checks (boolean): Filter out deployments which are outside context window limits for a given prompt
            model_group_alias (Optional[dict]): Alias for model groups. Defaults to {}.
            retry_after (int): Minimum time to wait before retrying a failed request. Defaults to 0.
            allowed_fails (Optional[int]): Number of allowed fails before adding to cooldown. Defaults to None.
            cooldown_time (float): Time to cooldown a deployment after failure in seconds. Defaults to 1.
            routing_strategy (Literal["simple-shuffle", "least-busy", "usage-based-routing", "latency-based-routing", "cost-based-routing"]): Routing strategy. Defaults to "simple-shuffle".
            routing_strategy_args (dict): Additional args for latency-based routing. Defaults to {}.
            alerting_config (AlertingConfig): Slack alerting configuration. Defaults to None.
            provider_budget_config (ProviderBudgetConfig): Provider budget configuration. Use this to set llm_provider budget limits. example $100/day to OpenAI, $100/day to Azure, etc. Defaults to None.
        Returns:
            Router: An instance of the litellm.Router class.

        Example Usage:
        ```python
        from litellm import Router
        model_list = [
        {
            "model_name": "azure-gpt-3.5-turbo", # model alias
            "litellm_params": { # params for litellm completion/embedding call
                "model": "azure/<your-deployment-name-1>",
                "api_key": <your-api-key>,
                "api_version": <your-api-version>,
                "api_base": <your-api-base>
            },
        },
        {
            "model_name": "azure-gpt-3.5-turbo", # model alias
            "litellm_params": { # params for litellm completion/embedding call
                "model": "azure/<your-deployment-name-2>",
                "api_key": <your-api-key>,
                "api_version": <your-api-version>,
                "api_base": <your-api-base>
            },
        },
        {
            "model_name": "openai-gpt-3.5-turbo", # model alias
            "litellm_params": { # params for litellm completion/embedding call
                "model": "gpt-3.5-turbo",
                "api_key": <your-api-key>,
            },
        ]

        router = Router(model_list=model_list, fallbacks=[{"azure-gpt-3.5-turbo": "openai-gpt-3.5-turbo"}])
        ```
        """

        from litellm._service_logger import ServiceLogging

        self.set_verbose = set_verbose
        self.debug_level = debug_level
        self.enable_pre_call_checks = enable_pre_call_checks
        self.enable_tag_filtering = enable_tag_filtering
        litellm.suppress_debug_info = True  # prevents 'Give Feedback/Get help' message from being emitted on Router - Relevant Issue: https://github.com/BerriAI/litellm/issues/5942
        if self.set_verbose is True:
            if debug_level == "INFO":
                verbose_router_logger.setLevel(logging.INFO)
            elif debug_level == "DEBUG":
                verbose_router_logger.setLevel(logging.DEBUG)
        self.router_general_settings: RouterGeneralSettings = (
            router_general_settings or RouterGeneralSettings()
        )

        self.assistants_config = assistants_config
        self.deployment_names: List = (
            []
        )  # names of models under litellm_params. ex. azure/chatgpt-v-2
        self.deployment_latency_map = {}
        ### CACHING ###
        cache_type: Literal["local", "redis", "redis-semantic", "s3", "disk"] = (
            "local"  # default to an in-memory cache
        )
        redis_cache = None
        cache_config: Dict[str, Any] = {}

        self.client_ttl = client_ttl
        if redis_url is not None or (redis_host is not None and redis_port is not None):
            cache_type = "redis"

            if redis_url is not None:
                cache_config["url"] = redis_url

            if redis_host is not None:
                cache_config["host"] = redis_host

            if redis_port is not None:
                cache_config["port"] = str(redis_port)  # type: ignore

            if redis_password is not None:
                cache_config["password"] = redis_password

            # Add additional key-value pairs from cache_kwargs
            cache_config.update(cache_kwargs)
            redis_cache = self._create_redis_cache(cache_config)

        if cache_responses:
            if litellm.cache is None:
                # the cache can be initialized on the proxy server. We should not overwrite it
                litellm.cache = litellm.Cache(type=cache_type, **cache_config)  # type: ignore
            self.cache_responses = cache_responses
        self.cache = DualCache(
            redis_cache=redis_cache, in_memory_cache=InMemoryCache()
        )  # use a dual cache (Redis+In-Memory) for tracking cooldowns, usage, etc.

        ### SCHEDULER ###
        self.scheduler = Scheduler(
            polling_interval=polling_interval, redis_cache=redis_cache
        )
        self.default_priority = default_priority
        self.default_deployment = None  # use this to track the users default deployment, when they want to use model = *
        self.default_max_parallel_requests = default_max_parallel_requests
        self.provider_default_deployment_ids: List[str] = []
        self.pattern_router = PatternMatchRouter()

        if model_list is not None:
            model_list = copy.deepcopy(model_list)
            self.set_model_list(model_list)
            self.healthy_deployments: List = self.model_list  # type: ignore
            for m in model_list:
                if "model" in m["litellm_params"]:
                    self.deployment_latency_map[m["litellm_params"]["model"]] = 0
        else:
            self.model_list: List = (
                []
            )  # initialize an empty list - to allow _add_deployment and delete_deployment to work

        if allowed_fails is not None:
            self.allowed_fails = allowed_fails
        else:
            self.allowed_fails = litellm.allowed_fails
        self.cooldown_time = cooldown_time or DEFAULT_COOLDOWN_TIME_SECONDS
        self.cooldown_cache = CooldownCache(
            cache=self.cache, default_cooldown_time=self.cooldown_time
        )
        self.disable_cooldowns = disable_cooldowns
        self.failed_calls = (
            InMemoryCache()
        )  # cache to track failed call per deployment, if num failed calls within 1 minute > allowed fails, then add it to cooldown

        if num_retries is not None:
            self.num_retries = num_retries
        elif litellm.num_retries is not None:
            self.num_retries = litellm.num_retries
        else:
            self.num_retries = openai.DEFAULT_MAX_RETRIES

        if max_fallbacks is not None:
            self.max_fallbacks = max_fallbacks
        elif litellm.max_fallbacks is not None:
            self.max_fallbacks = litellm.max_fallbacks
        else:
            self.max_fallbacks = litellm.ROUTER_MAX_FALLBACKS

        self.timeout = timeout or litellm.request_timeout
        self.stream_timeout = stream_timeout

        self.retry_after = retry_after
        self.routing_strategy = routing_strategy

        ## SETTING FALLBACKS ##
        ### validate if it's set + in correct format
        _fallbacks = fallbacks or litellm.fallbacks

        self.validate_fallbacks(fallback_param=_fallbacks)
        ### set fallbacks
        self.fallbacks = _fallbacks

        if default_fallbacks is not None or litellm.default_fallbacks is not None:
            _fallbacks = default_fallbacks or litellm.default_fallbacks
            if self.fallbacks is not None:
                self.fallbacks.append({"*": _fallbacks})
            else:
                self.fallbacks = [{"*": _fallbacks}]

        self.context_window_fallbacks = (
            context_window_fallbacks or litellm.context_window_fallbacks
        )

        _content_policy_fallbacks = (
            content_policy_fallbacks or litellm.content_policy_fallbacks
        )
        self.validate_fallbacks(fallback_param=_content_policy_fallbacks)
        self.content_policy_fallbacks = _content_policy_fallbacks
        self.total_calls: defaultdict = defaultdict(
            int
        )  # dict to store total calls made to each model
        self.fail_calls: defaultdict = defaultdict(
            int
        )  # dict to store fail_calls made to each model
        self.success_calls: defaultdict = defaultdict(
            int
        )  # dict to store success_calls  made to each model
        self.previous_models: List = (
            []
        )  # list to store failed calls (passed in as metadata to next call)
        self.model_group_alias: Dict[str, Union[str, RouterModelGroupAliasItem]] = (
            model_group_alias or {}
        )  # dict to store aliases for router, ex. {"gpt-4": "gpt-3.5-turbo"}, all requests with gpt-4 -> get routed to gpt-3.5-turbo group

        # make Router.chat.completions.create compatible for openai.chat.completions.create
        default_litellm_params = default_litellm_params or {}
        self.chat = litellm.Chat(params=default_litellm_params, router_obj=self)

        # default litellm args
        self.default_litellm_params = default_litellm_params
        self.default_litellm_params.setdefault("timeout", timeout)
        self.default_litellm_params.setdefault("max_retries", 0)
        self.default_litellm_params.setdefault("metadata", {}).update(
            {"caching_groups": caching_groups}
        )

        self.deployment_stats: dict = {}  # used for debugging load balancing
        """
        deployment_stats = {
            "122999-2828282-277:
            {
                "model": "gpt-3",
                "api_base": "http://localhost:4000",
                "num_requests": 20,
                "avg_latency": 0.001,
                "num_failures": 0,
                "num_successes": 20
            }
        }
        """
        ### ROUTING SETUP ###
        self.routing_strategy_init(
            routing_strategy=routing_strategy,
            routing_strategy_args=routing_strategy_args,
        )
        self.access_groups = None
        ## USAGE TRACKING ##
        if isinstance(litellm._async_success_callback, list):
            litellm.logging_callback_manager.add_litellm_async_success_callback(
                self.deployment_callback_on_success
            )
        else:
            litellm.logging_callback_manager.add_litellm_async_success_callback(
                self.deployment_callback_on_success
            )
        if isinstance(litellm.success_callback, list):
            litellm.logging_callback_manager.add_litellm_success_callback(
                self.sync_deployment_callback_on_success
            )
        else:
            litellm.success_callback = [self.sync_deployment_callback_on_success]
        if isinstance(litellm._async_failure_callback, list):
            litellm.logging_callback_manager.add_litellm_async_failure_callback(
                self.async_deployment_callback_on_failure
            )
        else:
            litellm._async_failure_callback = [
                self.async_deployment_callback_on_failure
            ]
        ## COOLDOWNS ##
        if isinstance(litellm.failure_callback, list):
            litellm.logging_callback_manager.add_litellm_failure_callback(
                self.deployment_callback_on_failure
            )
        else:
            litellm.failure_callback = [self.deployment_callback_on_failure]
        verbose_router_logger.debug(
            f"Intialized router with Routing strategy: {self.routing_strategy}\n\n"
            f"Routing enable_pre_call_checks: {self.enable_pre_call_checks}\n\n"
            f"Routing fallbacks: {self.fallbacks}\n\n"
            f"Routing content fallbacks: {self.content_policy_fallbacks}\n\n"
            f"Routing context window fallbacks: {self.context_window_fallbacks}\n\n"
            f"Router Redis Caching={self.cache.redis_cache}\n"
        )
        self.service_logger_obj = ServiceLogging()
        self.routing_strategy_args = routing_strategy_args
        self.provider_budget_config = provider_budget_config
        self.router_budget_logger: Optional[RouterBudgetLimiting] = None
        if RouterBudgetLimiting.should_init_router_budget_limiter(
            model_list=model_list, provider_budget_config=self.provider_budget_config
        ):
            if optional_pre_call_checks is not None:
                optional_pre_call_checks.append("router_budget_limiting")
            else:
                optional_pre_call_checks = ["router_budget_limiting"]
        self.retry_policy: Optional[RetryPolicy] = None
        if retry_policy is not None:
            if isinstance(retry_policy, dict):
                self.retry_policy = RetryPolicy(**retry_policy)
            elif isinstance(retry_policy, RetryPolicy):
                self.retry_policy = retry_policy
            verbose_router_logger.info(
                "\033[32mRouter Custom Retry Policy Set:\n{}\033[0m".format(
                    self.retry_policy.model_dump(exclude_none=True)
                )
            )

        self.model_group_retry_policy: Optional[Dict[str, RetryPolicy]] = (
            model_group_retry_policy
        )

        self.allowed_fails_policy: Optional[AllowedFailsPolicy] = None
        if allowed_fails_policy is not None:
            if isinstance(allowed_fails_policy, dict):
                self.allowed_fails_policy = AllowedFailsPolicy(**allowed_fails_policy)
            elif isinstance(allowed_fails_policy, AllowedFailsPolicy):
                self.allowed_fails_policy = allowed_fails_policy

            verbose_router_logger.info(
                "\033[32mRouter Custom Allowed Fails Policy Set:\n{}\033[0m".format(
                    self.allowed_fails_policy.model_dump(exclude_none=True)
                )
            )

        self.alerting_config: Optional[AlertingConfig] = alerting_config

        if optional_pre_call_checks is not None:
            self.add_optional_pre_call_checks(optional_pre_call_checks)

        if self.alerting_config is not None:
            self._initialize_alerting()

        self.initialize_assistants_endpoint()
        self.initialize_router_endpoints()

    def discard(self):
        """
        Pseudo-destructor to be invoked to clean up global data structures when router is no longer used.
        For now, unhook router's callbacks from all lists
        """
        litellm.logging_callback_manager.remove_callback_from_list_by_object(
            litellm._async_success_callback, self
        )
        litellm.logging_callback_manager.remove_callback_from_list_by_object(
            litellm.success_callback, self
        )
        litellm.logging_callback_manager.remove_callback_from_list_by_object(
            litellm._async_failure_callback, self
        )
        litellm.logging_callback_manager.remove_callback_from_list_by_object(
            litellm.failure_callback, self
        )
        litellm.logging_callback_manager.remove_callback_from_list_by_object(
            litellm.input_callback, self
        )
        litellm.logging_callback_manager.remove_callback_from_list_by_object(
            litellm.service_callback, self
        )
        litellm.logging_callback_manager.remove_callback_from_list_by_object(
            litellm.callbacks, self
        )

    @staticmethod
    def _create_redis_cache(
        cache_config: Dict[str, Any]
    ) -> Union[RedisCache, RedisClusterCache]:
        """
        Initializes either a RedisCache or RedisClusterCache based on the cache_config.
        """
        if cache_config.get("startup_nodes"):
            return RedisClusterCache(**cache_config)
        else:
            return RedisCache(**cache_config)

    def _update_redis_cache(self, cache: RedisCache):
        """
        Update the redis cache for the router, if none set.

        Allows proxy user to just do
        ```yaml
        litellm_settings:
            cache: true
        ```
        and caching to just work.
        """
        if self.cache.redis_cache is None:
            self.cache.redis_cache = cache

    def routing_strategy_init(
        self, routing_strategy: Union[RoutingStrategy, str], routing_strategy_args: dict
    ):
        verbose_router_logger.info(f"Routing strategy: {routing_strategy}")
        if (
            routing_strategy == RoutingStrategy.LEAST_BUSY.value
            or routing_strategy == RoutingStrategy.LEAST_BUSY
        ):
            self.leastbusy_logger = LeastBusyLoggingHandler(
                router_cache=self.cache, model_list=self.model_list
            )
            ## add callback
            if isinstance(litellm.input_callback, list):
                litellm.input_callback.append(self.leastbusy_logger)  # type: ignore
            else:
                litellm.input_callback = [self.leastbusy_logger]  # type: ignore
            if isinstance(litellm.callbacks, list):
                litellm.logging_callback_manager.add_litellm_callback(self.leastbusy_logger)  # type: ignore
        elif (
            routing_strategy == RoutingStrategy.USAGE_BASED_ROUTING.value
            or routing_strategy == RoutingStrategy.USAGE_BASED_ROUTING
        ):
            self.lowesttpm_logger = LowestTPMLoggingHandler(
                router_cache=self.cache,
                model_list=self.model_list,
                routing_args=routing_strategy_args,
            )
            if isinstance(litellm.callbacks, list):
                litellm.logging_callback_manager.add_litellm_callback(self.lowesttpm_logger)  # type: ignore
        elif (
            routing_strategy == RoutingStrategy.USAGE_BASED_ROUTING_V2.value
            or routing_strategy == RoutingStrategy.USAGE_BASED_ROUTING_V2
        ):
            self.lowesttpm_logger_v2 = LowestTPMLoggingHandler_v2(
                router_cache=self.cache,
                model_list=self.model_list,
                routing_args=routing_strategy_args,
            )
            if isinstance(litellm.callbacks, list):
                litellm.logging_callback_manager.add_litellm_callback(self.lowesttpm_logger_v2)  # type: ignore
        elif (
            routing_strategy == RoutingStrategy.LATENCY_BASED.value
            or routing_strategy == RoutingStrategy.LATENCY_BASED
        ):
            self.lowestlatency_logger = LowestLatencyLoggingHandler(
                router_cache=self.cache,
                model_list=self.model_list,
                routing_args=routing_strategy_args,
            )
            if isinstance(litellm.callbacks, list):
                litellm.logging_callback_manager.add_litellm_callback(self.lowestlatency_logger)  # type: ignore
        elif (
            routing_strategy == RoutingStrategy.COST_BASED.value
            or routing_strategy == RoutingStrategy.COST_BASED
        ):
            self.lowestcost_logger = LowestCostLoggingHandler(
                router_cache=self.cache,
                model_list=self.model_list,
                routing_args={},
            )
            if isinstance(litellm.callbacks, list):
                litellm.logging_callback_manager.add_litellm_callback(self.lowestcost_logger)  # type: ignore
        else:
            pass

    def initialize_assistants_endpoint(self):
        ## INITIALIZE PASS THROUGH ASSISTANTS ENDPOINT ##
        self.acreate_assistants = self.factory_function(litellm.acreate_assistants)
        self.adelete_assistant = self.factory_function(litellm.adelete_assistant)
        self.aget_assistants = self.factory_function(litellm.aget_assistants)
        self.acreate_thread = self.factory_function(litellm.acreate_thread)
        self.aget_thread = self.factory_function(litellm.aget_thread)
        self.a_add_message = self.factory_function(litellm.a_add_message)
        self.aget_messages = self.factory_function(litellm.aget_messages)
        self.arun_thread = self.factory_function(litellm.arun_thread)

    def initialize_router_endpoints(self):
        self.amoderation = self.factory_function(
            litellm.amoderation, call_type="moderation"
        )
        self.aanthropic_messages = self.factory_function(
            litellm.anthropic_messages, call_type="anthropic_messages"
        )
        self.aresponses = self.factory_function(
            litellm.aresponses, call_type="aresponses"
        )
        self.responses = self.factory_function(litellm.responses, call_type="responses")

    def validate_fallbacks(self, fallback_param: Optional[List]):
        """
        Validate the fallbacks parameter.
        """
        if fallback_param is None:
            return
        for fallback_dict in fallback_param:
            if not isinstance(fallback_dict, dict):
                raise ValueError(f"Item '{fallback_dict}' is not a dictionary.")
            if len(fallback_dict) != 1:
                raise ValueError(
                    f"Dictionary '{fallback_dict}' must have exactly one key, but has {len(fallback_dict)} keys."
                )

    def add_optional_pre_call_checks(
        self, optional_pre_call_checks: Optional[OptionalPreCallChecks]
    ):
        if optional_pre_call_checks is not None:
            for pre_call_check in optional_pre_call_checks:
                _callback: Optional[CustomLogger] = None
                if pre_call_check == "prompt_caching":
                    _callback = PromptCachingDeploymentCheck(cache=self.cache)
                elif pre_call_check == "router_budget_limiting":
                    _callback = RouterBudgetLimiting(
                        dual_cache=self.cache,
                        provider_budget_config=self.provider_budget_config,
                        model_list=self.model_list,
                    )
                if _callback is not None:
                    litellm.logging_callback_manager.add_litellm_callback(_callback)

    def print_deployment(self, deployment: dict):
        """
        returns a copy of the deployment with the api key masked

        Only returns 2 characters of the api key and masks the rest with * (10 *).
        """
        try:
            _deployment_copy = copy.deepcopy(deployment)
            litellm_params: dict = _deployment_copy["litellm_params"]
            if "api_key" in litellm_params:
                litellm_params["api_key"] = litellm_params["api_key"][:2] + "*" * 10
            return _deployment_copy
        except Exception as e:
            verbose_router_logger.debug(
                f"Error occurred while printing deployment - {str(e)}"
            )
            raise e

    ### COMPLETION, EMBEDDING, IMG GENERATION FUNCTIONS

    def completion(
        self, model: str, messages: List[Dict[str, str]], **kwargs
    ) -> Union[ModelResponse, CustomStreamWrapper]:
        """
        Example usage:
        response = router.completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey, how's it going?"}]
        """
        try:
            verbose_router_logger.debug(f"router.completion(model={model},..)")
            kwargs["model"] = model
            kwargs["messages"] = messages
            kwargs["original_function"] = self._completion
            self._update_kwargs_before_fallbacks(model=model, kwargs=kwargs)

            response = self.function_with_fallbacks(**kwargs)
            return response
        except Exception as e:
            raise e

    def _completion(
        self, model: str, messages: List[Dict[str, str]], **kwargs
    ) -> Union[ModelResponse, CustomStreamWrapper]:
        model_name = None
        try:
            # pick the one that is available (lowest TPM/RPM)
            deployment = self.get_available_deployment(
                model=model,
                messages=messages,
                specific_deployment=kwargs.pop("specific_deployment", None),
            )
            self._update_kwargs_with_deployment(deployment=deployment, kwargs=kwargs)

            data = deployment["litellm_params"].copy()
            model_name = data["model"]
            potential_model_client = self._get_client(
                deployment=deployment, kwargs=kwargs
            )
            # check if provided keys == client keys #
            dynamic_api_key = kwargs.get("api_key", None)
            if (
                dynamic_api_key is not None
                and potential_model_client is not None
                and dynamic_api_key != potential_model_client.api_key
            ):
                model_client = None
            else:
                model_client = potential_model_client

            ### DEPLOYMENT-SPECIFIC PRE-CALL CHECKS ### (e.g. update rpm pre-call. Raise error, if deployment over limit)
            ## only run if model group given, not model id
            if model not in self.get_model_ids():
                self.routing_strategy_pre_call_checks(deployment=deployment)

            response = litellm.completion(
                **{
                    **data,
                    "messages": messages,
                    "caching": self.cache_responses,
                    "client": model_client,
                    **kwargs,
                }
            )
            verbose_router_logger.info(
                f"litellm.completion(model={model_name})\033[32m 200 OK\033[0m"
            )

            ## CHECK CONTENT FILTER ERROR ##
            if isinstance(response, ModelResponse):
                _should_raise = self._should_raise_content_policy_error(
                    model=model, response=response, kwargs=kwargs
                )
                if _should_raise:
                    raise litellm.ContentPolicyViolationError(
                        message="Response output was blocked.",
                        model=model,
                        llm_provider="",
                    )

            return response
        except Exception as e:
            verbose_router_logger.info(
                f"litellm.completion(model={model_name})\033[31m Exception {str(e)}\033[0m"
            )
            raise e

    # fmt: off

    @overload
    async def acompletion(
        self, model: str, messages: List[AllMessageValues], stream: Literal[True], **kwargs
    ) -> CustomStreamWrapper: 
        ...

    @overload
    async def acompletion(
        self, model: str, messages: List[AllMessageValues], stream: Literal[False] = False, **kwargs
    ) -> ModelResponse: 
        ...

    @overload
    async def acompletion(
        self, model: str, messages: List[AllMessageValues], stream: Union[Literal[True], Literal[False]] = False, **kwargs
    ) -> Union[CustomStreamWrapper, ModelResponse]: 
        ...

    # fmt: on

    # The actual implementation of the function
    async def acompletion(
        self,
        model: str,
        messages: List[AllMessageValues],
        stream: bool = False,
        **kwargs,
    ):
        try:
            kwargs["model"] = model
            kwargs["messages"] = messages
            kwargs["stream"] = stream
            kwargs["original_function"] = self._acompletion

            self._update_kwargs_before_fallbacks(model=model, kwargs=kwargs)
            request_priority = kwargs.get("priority") or self.default_priority
            start_time = time.time()
            _is_prompt_management_model = self._is_prompt_management_model(model)

            if _is_prompt_management_model:
                return await self._prompt_management_factory(
                    model=model,
                    messages=messages,
                    kwargs=kwargs,
                )
            if request_priority is not None and isinstance(request_priority, int):
                response = await self.schedule_acompletion(**kwargs)
            else:
                response = await self.async_function_with_fallbacks(**kwargs)
            end_time = time.time()
            _duration = end_time - start_time
            asyncio.create_task(
                self.service_logger_obj.async_service_success_hook(
                    service=ServiceTypes.ROUTER,
                    duration=_duration,
                    call_type="acompletion",
                    start_time=start_time,
                    end_time=end_time,
                    parent_otel_span=_get_parent_otel_span_from_kwargs(kwargs),
                )
            )

            return response
        except Exception as e:
            asyncio.create_task(
                send_llm_exception_alert(
                    litellm_router_instance=self,
                    request_kwargs=kwargs,
                    error_traceback_str=traceback.format_exc(),
                    original_exception=e,
                )
            )
            raise e

    async def _acompletion(
        self, model: str, messages: List[Dict[str, str]], **kwargs
    ) -> Union[ModelResponse, CustomStreamWrapper]:
        """
        - Get an available deployment
        - call it with a semaphore over the call
        - semaphore specific to it's rpm
        - in the semaphore,  make a check against it's local rpm before running
        """
        model_name = None
        _timeout_debug_deployment_dict = (
            {}
        )  # this is a temporary dict to debug timeout issues
        try:
            verbose_router_logger.debug(
                f"Inside _acompletion()- model: {model}; kwargs: {kwargs}"
            )
            parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
            start_time = time.time()
            deployment = await self.async_get_available_deployment(
                model=model,
                messages=messages,
                specific_deployment=kwargs.pop("specific_deployment", None),
                request_kwargs=kwargs,
            )

            _timeout_debug_deployment_dict = deployment
            end_time = time.time()
            _duration = end_time - start_time
            asyncio.create_task(
                self.service_logger_obj.async_service_success_hook(
                    service=ServiceTypes.ROUTER,
                    duration=_duration,
                    call_type="async_get_available_deployment",
                    start_time=start_time,
                    end_time=end_time,
                    parent_otel_span=_get_parent_otel_span_from_kwargs(kwargs),
                )
            )

            # debug how often this deployment picked

            self._track_deployment_metrics(
                deployment=deployment, parent_otel_span=parent_otel_span
            )
            self._update_kwargs_with_deployment(deployment=deployment, kwargs=kwargs)
            data = deployment["litellm_params"].copy()

            model_name = data["model"]

            model_client = self._get_async_openai_model_client(
                deployment=deployment,
                kwargs=kwargs,
            )
            self.total_calls[model_name] += 1

            _response = litellm.acompletion(
                **{
                    **data,
                    "messages": messages,
                    "caching": self.cache_responses,
                    "client": model_client,
                    **kwargs,
                }
            )

            logging_obj: Optional[LiteLLMLogging] = kwargs.get(
                "litellm_logging_obj", None
            )

            rpm_semaphore = self._get_client(
                deployment=deployment,
                kwargs=kwargs,
                client_type="max_parallel_requests",
            )
            if rpm_semaphore is not None and isinstance(
                rpm_semaphore, asyncio.Semaphore
            ):
                async with rpm_semaphore:
                    """
                    - Check rpm limits before making the call
                    - If allowed, increment the rpm limit (allows global value to be updated, concurrency-safe)
                    """
                    await self.async_routing_strategy_pre_call_checks(
                        deployment=deployment,
                        logging_obj=logging_obj,
                        parent_otel_span=parent_otel_span,
                    )
                    response = await _response
            else:
                await self.async_routing_strategy_pre_call_checks(
                    deployment=deployment,
                    logging_obj=logging_obj,
                    parent_otel_span=parent_otel_span,
                )

                response = await _response

            ## CHECK CONTENT FILTER ERROR ##
            if isinstance(response, ModelResponse):
                _should_raise = self._should_raise_content_policy_error(
                    model=model, response=response, kwargs=kwargs
                )
                if _should_raise:
                    raise litellm.ContentPolicyViolationError(
                        message="Response output was blocked.",
                        model=model,
                        llm_provider="",
                    )

            self.success_calls[model_name] += 1
            verbose_router_logger.info(
                f"litellm.acompletion(model={model_name})\033[32m 200 OK\033[0m"
            )
            # debug how often this deployment picked
            self._track_deployment_metrics(
                deployment=deployment,
                response=response,
                parent_otel_span=parent_otel_span,
            )

            return response
        except litellm.Timeout as e:
            deployment_request_timeout_param = _timeout_debug_deployment_dict.get(
                "litellm_params", {}
            ).get("request_timeout", None)
            deployment_timeout_param = _timeout_debug_deployment_dict.get(
                "litellm_params", {}
            ).get("timeout", None)
            e.message += f"\n\nDeployment Info: request_timeout: {deployment_request_timeout_param}\ntimeout: {deployment_timeout_param}"
            raise e
        except Exception as e:
            verbose_router_logger.info(
                f"litellm.acompletion(model={model_name})\033[31m Exception {str(e)}\033[0m"
            )
            if model_name is not None:
                self.fail_calls[model_name] += 1
            raise e

    def _update_kwargs_before_fallbacks(self, model: str, kwargs: dict) -> None:
        """
        Adds/updates to kwargs:
        - num_retries
        - litellm_trace_id
        - metadata
        """
        kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries)
        kwargs.setdefault("litellm_trace_id", str(uuid.uuid4()))
        kwargs.setdefault("metadata", {}).update({"model_group": model})

    def _update_kwargs_with_default_litellm_params(
        self, kwargs: dict, metadata_variable_name: Optional[str] = "metadata"
    ) -> None:
        """
        Adds default litellm params to kwargs, if set.
        """
        self.default_litellm_params[metadata_variable_name] = (
            self.default_litellm_params.pop("metadata", {})
        )
        for k, v in self.default_litellm_params.items():
            if (
                k not in kwargs and v is not None
            ):  # prioritize model-specific params > default router params
                kwargs[k] = v
            elif k == metadata_variable_name:
                kwargs[metadata_variable_name].update(v)

    def _handle_clientside_credential(
        self, deployment: dict, kwargs: dict
    ) -> Deployment:
        """
        Handle clientside credential
        """
        model_info = deployment.get("model_info", {}).copy()
        litellm_params = deployment["litellm_params"].copy()
        dynamic_litellm_params = get_dynamic_litellm_params(
            litellm_params=litellm_params, request_kwargs=kwargs
        )
        metadata = kwargs.get("metadata", {})
        model_group = cast(str, metadata.get("model_group"))
        _model_id = self._generate_model_id(
            model_group=model_group, litellm_params=dynamic_litellm_params
        )
        original_model_id = model_info.get("id")
        model_info["id"] = _model_id
        model_info["original_model_id"] = original_model_id
        deployment_pydantic_obj = Deployment(
            model_name=model_group,
            litellm_params=LiteLLM_Params(**dynamic_litellm_params),
            model_info=model_info,
        )
        self.upsert_deployment(
            deployment=deployment_pydantic_obj
        )  # add new deployment to router
        return deployment_pydantic_obj

    def _update_kwargs_with_deployment(
        self,
        deployment: dict,
        kwargs: dict,
        function_name: Optional[str] = None,
    ) -> None:
        """
        2 jobs:
        - Adds selected deployment, model_info and api_base to kwargs["metadata"] (used for logging)
        - Adds default litellm params to kwargs, if set.
        """
        model_info = deployment.get("model_info", {}).copy()
        deployment_model_name = deployment["litellm_params"]["model"]
        deployment_api_base = deployment["litellm_params"].get("api_base")
        if is_clientside_credential(request_kwargs=kwargs):
            deployment_pydantic_obj = self._handle_clientside_credential(
                deployment=deployment, kwargs=kwargs
            )
            model_info = deployment_pydantic_obj.model_info.model_dump()
            deployment_model_name = deployment_pydantic_obj.litellm_params.model
            deployment_api_base = deployment_pydantic_obj.litellm_params.api_base

        metadata_variable_name = _get_router_metadata_variable_name(
            function_name=function_name,
        )
        kwargs.setdefault(metadata_variable_name, {}).update(
            {
                "deployment": deployment_model_name,
                "model_info": model_info,
                "api_base": deployment_api_base,
            }
        )
        kwargs["model_info"] = model_info

        kwargs["timeout"] = self._get_timeout(
            kwargs=kwargs, data=deployment["litellm_params"]
        )

        self._update_kwargs_with_default_litellm_params(
            kwargs=kwargs, metadata_variable_name=metadata_variable_name
        )

    def _get_async_openai_model_client(self, deployment: dict, kwargs: dict):
        """
        Helper to get AsyncOpenAI or AsyncAzureOpenAI client that was created for the deployment

        The same OpenAI client is re-used to optimize latency / performance in production

        If dynamic api key is provided:
            Do not re-use the client. Pass model_client=None. The OpenAI/ AzureOpenAI client will be recreated in the handler for the llm provider
        """
        potential_model_client = self._get_client(
            deployment=deployment, kwargs=kwargs, client_type="async"
        )

        # check if provided keys == client keys #
        dynamic_api_key = kwargs.get("api_key", None)
        if (
            dynamic_api_key is not None
            and potential_model_client is not None
            and dynamic_api_key != potential_model_client.api_key
        ):
            model_client = None
        else:
            model_client = potential_model_client

        return model_client

    def _get_stream_timeout(
        self, kwargs: dict, data: dict
    ) -> Optional[Union[float, int]]:
        """Helper to get stream timeout from kwargs or deployment params"""
        return (
            kwargs.get("stream_timeout", None)  # the params dynamically set by user
            or data.get(
                "stream_timeout", None
            )  # timeout set on litellm_params for this deployment
            or self.stream_timeout  # timeout set on router
            or self.default_litellm_params.get("stream_timeout", None)
        )

    def _get_non_stream_timeout(
        self, kwargs: dict, data: dict
    ) -> Optional[Union[float, int]]:
        """Helper to get non-stream timeout from kwargs or deployment params"""
        timeout = (
            kwargs.get("timeout", None)  # the params dynamically set by user
            or kwargs.get("request_timeout", None)  # the params dynamically set by user
            or data.get(
                "timeout", None
            )  # timeout set on litellm_params for this deployment
            or data.get(
                "request_timeout", None
            )  # timeout set on litellm_params for this deployment
            or self.timeout  # timeout set on router
            or self.default_litellm_params.get("timeout", None)
        )
        return timeout

    def _get_timeout(self, kwargs: dict, data: dict) -> Optional[Union[float, int]]:
        """Helper to get timeout from kwargs or deployment params"""
        timeout: Optional[Union[float, int]] = None
        if kwargs.get("stream", False):
            timeout = self._get_stream_timeout(kwargs=kwargs, data=data)
        if timeout is None:
            timeout = self._get_non_stream_timeout(
                kwargs=kwargs, data=data
            )  # default to this if no stream specific timeout set
        return timeout

    async def abatch_completion(
        self,
        models: List[str],
        messages: Union[List[Dict[str, str]], List[List[Dict[str, str]]]],
        **kwargs,
    ):
        """
        Async Batch Completion. Used for 2 scenarios:
        1. Batch Process 1 request to N models on litellm.Router. Pass messages as List[Dict[str, str]] to use this
        2. Batch Process N requests to M models on litellm.Router. Pass messages as List[List[Dict[str, str]]] to use this

        Example Request for 1 request to N models:
        ```
            response = await router.abatch_completion(
                models=["gpt-3.5-turbo", "groq-llama"],
                messages=[
                    {"role": "user", "content": "is litellm becoming a better product ?"}
                ],
                max_tokens=15,
            )
        ```


        Example Request for N requests to M models:
        ```
            response = await router.abatch_completion(
                models=["gpt-3.5-turbo", "groq-llama"],
                messages=[
                    [{"role": "user", "content": "is litellm becoming a better product ?"}],
                    [{"role": "user", "content": "who is this"}],
                ],
            )
        ```
        """
        ############## Helpers for async completion ##################

        async def _async_completion_no_exceptions(
            model: str, messages: List[AllMessageValues], **kwargs
        ):
            """
            Wrapper around self.async_completion that catches exceptions and returns them as a result
            """
            try:
                return await self.acompletion(model=model, messages=messages, **kwargs)
            except Exception as e:
                return e

        async def _async_completion_no_exceptions_return_idx(
            model: str,
            messages: List[AllMessageValues],
            idx: int,  # index of message this response corresponds to
            **kwargs,
        ):
            """
            Wrapper around self.async_completion that catches exceptions and returns them as a result
            """
            try:
                return (
                    await self.acompletion(model=model, messages=messages, **kwargs),
                    idx,
                )
            except Exception as e:
                return e, idx

        ############## Helpers for async completion ##################

        if isinstance(messages, list) and all(isinstance(m, dict) for m in messages):
            _tasks = []
            for model in models:
                # add each task but if the task fails
                _tasks.append(_async_completion_no_exceptions(model=model, messages=messages, **kwargs))  # type: ignore
            response = await asyncio.gather(*_tasks)
            return response
        elif isinstance(messages, list) and all(isinstance(m, list) for m in messages):
            _tasks = []
            for idx, message in enumerate(messages):
                for model in models:
                    # Request Number X, Model Number Y
                    _tasks.append(
                        _async_completion_no_exceptions_return_idx(
                            model=model, idx=idx, messages=message, **kwargs  # type: ignore
                        )
                    )
            responses = await asyncio.gather(*_tasks)
            final_responses: List[List[Any]] = [[] for _ in range(len(messages))]
            for response in responses:
                if isinstance(response, tuple):
                    final_responses[response[1]].append(response[0])
                else:
                    final_responses[0].append(response)
            return final_responses

    async def abatch_completion_one_model_multiple_requests(
        self, model: str, messages: List[List[AllMessageValues]], **kwargs
    ):
        """
        Async Batch Completion - Batch Process multiple Messages to one model_group on litellm.Router

        Use this for sending multiple requests to 1 model

        Args:
            model (List[str]): model group
            messages (List[List[Dict[str, str]]]): list of messages. Each element in the list is one request
            **kwargs: additional kwargs
        Usage:
            response = await self.abatch_completion_one_model_multiple_requests(
                model="gpt-3.5-turbo",
                messages=[
                    [{"role": "user", "content": "hello"}, {"role": "user", "content": "tell me something funny"}],
                    [{"role": "user", "content": "hello good mornign"}],
                ]
            )
        """

        async def _async_completion_no_exceptions(
            model: str, messages: List[AllMessageValues], **kwargs
        ):
            """
            Wrapper around self.async_completion that catches exceptions and returns them as a result
            """
            try:
                return await self.acompletion(model=model, messages=messages, **kwargs)
            except Exception as e:
                return e

        _tasks = []
        for message_request in messages:
            # add each task but if the task fails
            _tasks.append(
                _async_completion_no_exceptions(
                    model=model, messages=message_request, **kwargs
                )
            )

        response = await asyncio.gather(*_tasks)
        return response

    # fmt: off

    @overload
    async def abatch_completion_fastest_response(
        self, model: str, messages: List[Dict[str, str]], stream: Literal[True], **kwargs
    ) -> CustomStreamWrapper:
        ...



    @overload
    async def abatch_completion_fastest_response(
        self, model: str, messages: List[Dict[str, str]], stream: Literal[False] = False, **kwargs
    ) -> ModelResponse:
        ...

    # fmt: on

    async def abatch_completion_fastest_response(
        self,
        model: str,
        messages: List[Dict[str, str]],
        stream: bool = False,
        **kwargs,
    ):
        """
        model - List of comma-separated model names. E.g. model="gpt-4, gpt-3.5-turbo"

        Returns fastest response from list of model names. OpenAI-compatible endpoint.
        """
        models = [m.strip() for m in model.split(",")]

        async def _async_completion_no_exceptions(
            model: str, messages: List[Dict[str, str]], stream: bool, **kwargs: Any
        ) -> Union[ModelResponse, CustomStreamWrapper, Exception]:
            """
            Wrapper around self.acompletion that catches exceptions and returns them as a result
            """
            try:
                return await self.acompletion(model=model, messages=messages, stream=stream, **kwargs)  # type: ignore
            except asyncio.CancelledError:
                verbose_router_logger.debug(
                    "Received 'task.cancel'. Cancelling call w/ model={}.".format(model)
                )
                raise
            except Exception as e:
                return e

        pending_tasks = []  # type: ignore

        async def check_response(task: asyncio.Task):
            nonlocal pending_tasks
            try:
                result = await task
                if isinstance(result, (ModelResponse, CustomStreamWrapper)):
                    verbose_router_logger.debug(
                        "Received successful response. Cancelling other LLM API calls."
                    )
                    # If a desired response is received, cancel all other pending tasks
                    for t in pending_tasks:
                        t.cancel()
                    return result
            except Exception:
                # Ignore exceptions, let the loop handle them
                pass
            finally:
                # Remove the task from pending tasks if it finishes
                try:
                    pending_tasks.remove(task)
                except KeyError:
                    pass

        for model in models:
            task = asyncio.create_task(
                _async_completion_no_exceptions(
                    model=model, messages=messages, stream=stream, **kwargs
                )
            )
            pending_tasks.append(task)

        # Await the first task to complete successfully
        while pending_tasks:
            done, pending_tasks = await asyncio.wait(  # type: ignore
                pending_tasks, return_when=asyncio.FIRST_COMPLETED
            )
            for completed_task in done:
                result = await check_response(completed_task)
                if result is not None:
                    # Return the first successful result
                    result._hidden_params["fastest_response_batch_completion"] = True
                    return result

        # If we exit the loop without returning, all tasks failed
        raise Exception("All tasks failed")

    ### SCHEDULER ###

    # fmt: off

    @overload
    async def schedule_acompletion(
        self, model: str, messages: List[AllMessageValues], priority: int, stream: Literal[False] = False, **kwargs
    ) -> ModelResponse: 
        ...
    
    @overload
    async def schedule_acompletion(
        self, model: str, messages: List[AllMessageValues], priority: int, stream: Literal[True], **kwargs
    ) -> CustomStreamWrapper: 
        ...

    # fmt: on

    async def schedule_acompletion(
        self,
        model: str,
        messages: List[AllMessageValues],
        priority: int,
        stream=False,
        **kwargs,
    ):
        parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
        ### FLOW ITEM ###
        _request_id = str(uuid.uuid4())
        item = FlowItem(
            priority=priority,  # 👈 SET PRIORITY FOR REQUEST
            request_id=_request_id,  # 👈 SET REQUEST ID
            model_name="gpt-3.5-turbo",  # 👈 SAME as 'Router'
        )
        ### [fin] ###

        ## ADDS REQUEST TO QUEUE ##
        await self.scheduler.add_request(request=item)

        ## POLL QUEUE
        end_time = time.time() + self.timeout
        curr_time = time.time()
        poll_interval = self.scheduler.polling_interval  # poll every 3ms
        make_request = False

        while curr_time < end_time:
            _healthy_deployments, _ = await self._async_get_healthy_deployments(
                model=model, parent_otel_span=parent_otel_span
            )
            make_request = await self.scheduler.poll(  ## POLL QUEUE ## - returns 'True' if there's healthy deployments OR if request is at top of queue
                id=item.request_id,
                model_name=item.model_name,
                health_deployments=_healthy_deployments,
            )
            if make_request:  ## IF TRUE -> MAKE REQUEST
                break
            else:  ## ELSE -> loop till default_timeout
                await asyncio.sleep(poll_interval)
                curr_time = time.time()

        if make_request:
            try:
                _response = await self.acompletion(
                    model=model, messages=messages, stream=stream, **kwargs
                )
                _response._hidden_params.setdefault("additional_headers", {})
                _response._hidden_params["additional_headers"].update(
                    {"x-litellm-request-prioritization-used": True}
                )
                return _response
            except Exception as e:
                setattr(e, "priority", priority)
                raise e
        else:
            raise litellm.Timeout(
                message="Request timed out while polling queue",
                model=model,
                llm_provider="openai",
            )

    async def _schedule_factory(
        self,
        model: str,
        priority: int,
        original_function: Callable,
        args: Tuple[Any, ...],
        kwargs: Dict[str, Any],
    ):
        parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
        ### FLOW ITEM ###
        _request_id = str(uuid.uuid4())
        item = FlowItem(
            priority=priority,  # 👈 SET PRIORITY FOR REQUEST
            request_id=_request_id,  # 👈 SET REQUEST ID
            model_name=model,  # 👈 SAME as 'Router'
        )
        ### [fin] ###

        ## ADDS REQUEST TO QUEUE ##
        await self.scheduler.add_request(request=item)

        ## POLL QUEUE
        end_time = time.time() + self.timeout
        curr_time = time.time()
        poll_interval = self.scheduler.polling_interval  # poll every 3ms
        make_request = False

        while curr_time < end_time:
            _healthy_deployments, _ = await self._async_get_healthy_deployments(
                model=model, parent_otel_span=parent_otel_span
            )
            make_request = await self.scheduler.poll(  ## POLL QUEUE ## - returns 'True' if there's healthy deployments OR if request is at top of queue
                id=item.request_id,
                model_name=item.model_name,
                health_deployments=_healthy_deployments,
            )
            if make_request:  ## IF TRUE -> MAKE REQUEST
                break
            else:  ## ELSE -> loop till default_timeout
                await asyncio.sleep(poll_interval)
                curr_time = time.time()

        if make_request:
            try:
                _response = await original_function(*args, **kwargs)
                if isinstance(_response._hidden_params, dict):
                    _response._hidden_params.setdefault("additional_headers", {})
                    _response._hidden_params["additional_headers"].update(
                        {"x-litellm-request-prioritization-used": True}
                    )
                return _response
            except Exception as e:
                setattr(e, "priority", priority)
                raise e
        else:
            raise litellm.Timeout(
                message="Request timed out while polling queue",
                model=model,
                llm_provider="openai",
            )

    def _is_prompt_management_model(self, model: str) -> bool:
        model_list = self.get_model_list(model_name=model)
        if model_list is None:
            return False
        if len(model_list) != 1:
            return False

        litellm_model = model_list[0]["litellm_params"].get("model", None)

        if litellm_model is None:
            return False

        if "/" in litellm_model:
            split_litellm_model = litellm_model.split("/")[0]
            if split_litellm_model in litellm._known_custom_logger_compatible_callbacks:
                return True
        return False

    async def _prompt_management_factory(
        self,
        model: str,
        messages: List[AllMessageValues],
        kwargs: Dict[str, Any],
    ):
        litellm_logging_object = kwargs.get("litellm_logging_obj", None)
        if litellm_logging_object is None:
            litellm_logging_object, kwargs = function_setup(
                **{
                    "original_function": "acompletion",
                    "rules_obj": Rules(),
                    "start_time": get_utc_datetime(),
                    **kwargs,
                }
            )
        litellm_logging_object = cast(LiteLLMLogging, litellm_logging_object)
        prompt_management_deployment = self.get_available_deployment(
            model=model,
            messages=[{"role": "user", "content": "prompt"}],
            specific_deployment=kwargs.pop("specific_deployment", None),
        )

        litellm_model = prompt_management_deployment["litellm_params"].get(
            "model", None
        )
        prompt_id = kwargs.get("prompt_id") or prompt_management_deployment[
            "litellm_params"
        ].get("prompt_id", None)
        prompt_variables = kwargs.get(
            "prompt_variables"
        ) or prompt_management_deployment["litellm_params"].get(
            "prompt_variables", None
        )

        if prompt_id is None or not isinstance(prompt_id, str):
            raise ValueError(
                f"Prompt ID is not set or not a string. Got={prompt_id}, type={type(prompt_id)}"
            )
        if prompt_variables is not None and not isinstance(prompt_variables, dict):
            raise ValueError(
                f"Prompt variables is set but not a dictionary. Got={prompt_variables}, type={type(prompt_variables)}"
            )

        model, messages, optional_params = (
            litellm_logging_object.get_chat_completion_prompt(
                model=litellm_model,
                messages=messages,
                non_default_params=get_non_default_completion_params(kwargs=kwargs),
                prompt_id=prompt_id,
                prompt_variables=prompt_variables,
            )
        )

        kwargs = {**kwargs, **optional_params}
        kwargs["model"] = model
        kwargs["messages"] = messages
        kwargs["litellm_logging_obj"] = litellm_logging_object
        kwargs["prompt_id"] = prompt_id
        kwargs["prompt_variables"] = prompt_variables

        _model_list = self.get_model_list(model_name=model)
        if _model_list is None or len(_model_list) == 0:  # if direct call to model
            kwargs.pop("original_function")
            return await litellm.acompletion(**kwargs)

        return await self.async_function_with_fallbacks(**kwargs)

    def image_generation(self, prompt: str, model: str, **kwargs):
        try:
            kwargs["model"] = model
            kwargs["prompt"] = prompt
            kwargs["original_function"] = self._image_generation
            kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries)
            kwargs.setdefault("metadata", {}).update({"model_group": model})
            response = self.function_with_fallbacks(**kwargs)

            return response
        except Exception as e:
            raise e

    def _image_generation(self, prompt: str, model: str, **kwargs):
        model_name = ""
        try:
            verbose_router_logger.debug(
                f"Inside _image_generation()- model: {model}; kwargs: {kwargs}"
            )
            deployment = self.get_available_deployment(
                model=model,
                messages=[{"role": "user", "content": "prompt"}],
                specific_deployment=kwargs.pop("specific_deployment", None),
            )
            self._update_kwargs_with_deployment(deployment=deployment, kwargs=kwargs)
            data = deployment["litellm_params"].copy()

            model_client = self._get_async_openai_model_client(
                deployment=deployment,
                kwargs=kwargs,
            )

            self.total_calls[model_name] += 1

            ### DEPLOYMENT-SPECIFIC PRE-CALL CHECKS ### (e.g. update rpm pre-call. Raise error, if deployment over limit)
            self.routing_strategy_pre_call_checks(deployment=deployment)

            response = litellm.image_generation(
                **{
                    **data,
                    "prompt": prompt,
                    "caching": self.cache_responses,
                    "client": model_client,
                    **kwargs,
                }
            )
            self.success_calls[model_name] += 1
            verbose_router_logger.info(
                f"litellm.image_generation(model={model_name})\033[32m 200 OK\033[0m"
            )
            return response
        except Exception as e:
            verbose_router_logger.info(
                f"litellm.image_generation(model={model_name})\033[31m Exception {str(e)}\033[0m"
            )
            if model_name is not None:
                self.fail_calls[model_name] += 1
            raise e

    async def aimage_generation(self, prompt: str, model: str, **kwargs):
        try:
            kwargs["model"] = model
            kwargs["prompt"] = prompt
            kwargs["original_function"] = self._aimage_generation
            kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries)
            self._update_kwargs_before_fallbacks(model=model, kwargs=kwargs)
            response = await self.async_function_with_fallbacks(**kwargs)

            return response
        except Exception as e:
            asyncio.create_task(
                send_llm_exception_alert(
                    litellm_router_instance=self,
                    request_kwargs=kwargs,
                    error_traceback_str=traceback.format_exc(),
                    original_exception=e,
                )
            )
            raise e

    async def _aimage_generation(self, prompt: str, model: str, **kwargs):
        model_name = model
        try:
            verbose_router_logger.debug(
                f"Inside _image_generation()- model: {model}; kwargs: {kwargs}"
            )
            parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
            deployment = await self.async_get_available_deployment(
                model=model,
                messages=[{"role": "user", "content": "prompt"}],
                specific_deployment=kwargs.pop("specific_deployment", None),
                request_kwargs=kwargs,
            )
            self._update_kwargs_with_deployment(deployment=deployment, kwargs=kwargs)

            data = deployment["litellm_params"].copy()
            model_name = data["model"]

            model_client = self._get_async_openai_model_client(
                deployment=deployment,
                kwargs=kwargs,
            )

            self.total_calls[model_name] += 1
            response = litellm.aimage_generation(
                **{
                    **data,
                    "prompt": prompt,
                    "caching": self.cache_responses,
                    "client": model_client,
                    **kwargs,
                }
            )

            ### CONCURRENCY-SAFE RPM CHECKS ###
            rpm_semaphore = self._get_client(
                deployment=deployment,
                kwargs=kwargs,
                client_type="max_parallel_requests",
            )

            if rpm_semaphore is not None and isinstance(
                rpm_semaphore, asyncio.Semaphore
            ):
                async with rpm_semaphore:
                    """
                    - Check rpm limits before making the call
                    - If allowed, increment the rpm limit (allows global value to be updated, concurrency-safe)
                    """
                    await self.async_routing_strategy_pre_call_checks(
                        deployment=deployment, parent_otel_span=parent_otel_span
                    )
                    response = await response
            else:
                await self.async_routing_strategy_pre_call_checks(
                    deployment=deployment, parent_otel_span=parent_otel_span
                )
                response = await response

            self.success_calls[model_name] += 1
            verbose_router_logger.info(
                f"litellm.aimage_generation(model={model_name})\033[32m 200 OK\033[0m"
            )
            return response
        except Exception as e:
            verbose_router_logger.info(
                f"litellm.aimage_generation(model={model_name})\033[31m Exception {str(e)}\033[0m"
            )
            if model_name is not None:
                self.fail_calls[model_name] += 1
            raise e

    async def atranscription(self, file: FileTypes, model: str, **kwargs):
        """
        Example Usage:

        ```
        from litellm import Router
        client = Router(model_list = [
            {
                "model_name": "whisper",
                "litellm_params": {
                    "model": "whisper-1",
                },
            },
        ])

        audio_file = open("speech.mp3", "rb")
        transcript = await client.atranscription(
        model="whisper",
        file=audio_file
        )

        ```
        """
        try:
            kwargs["model"] = model
            kwargs["file"] = file
            kwargs["original_function"] = self._atranscription
            self._update_kwargs_before_fallbacks(model=model, kwargs=kwargs)
            response = await self.async_function_with_fallbacks(**kwargs)

            return response
        except Exception as e:
            asyncio.create_task(
                send_llm_exception_alert(
                    litellm_router_instance=self,
                    request_kwargs=kwargs,
                    error_traceback_str=traceback.format_exc(),
                    original_exception=e,
                )
            )
            raise e

    async def _atranscription(self, file: FileTypes, model: str, **kwargs):
        model_name = model
        try:
            verbose_router_logger.debug(
                f"Inside _atranscription()- model: {model}; kwargs: {kwargs}"
            )
            parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
            deployment = await self.async_get_available_deployment(
                model=model,
                messages=[{"role": "user", "content": "prompt"}],
                specific_deployment=kwargs.pop("specific_deployment", None),
                request_kwargs=kwargs,
            )

            self._update_kwargs_with_deployment(deployment=deployment, kwargs=kwargs)
            data = deployment["litellm_params"].copy()
            model_client = self._get_async_openai_model_client(
                deployment=deployment,
                kwargs=kwargs,
            )

            self.total_calls[model_name] += 1
            response = litellm.atranscription(
                **{
                    **data,
                    "file": file,
                    "caching": self.cache_responses,
                    "client": model_client,
                    **kwargs,
                }
            )

            ### CONCURRENCY-SAFE RPM CHECKS ###
            rpm_semaphore = self._get_client(
                deployment=deployment,
                kwargs=kwargs,
                client_type="max_parallel_requests",
            )

            if rpm_semaphore is not None and isinstance(
                rpm_semaphore, asyncio.Semaphore
            ):
                async with rpm_semaphore:
                    """
                    - Check rpm limits before making the call
                    - If allowed, increment the rpm limit (allows global value to be updated, concurrency-safe)
                    """
                    await self.async_routing_strategy_pre_call_checks(
                        deployment=deployment, parent_otel_span=parent_otel_span
                    )
                    response = await response
            else:
                await self.async_routing_strategy_pre_call_checks(
                    deployment=deployment, parent_otel_span=parent_otel_span
                )
                response = await response

            self.success_calls[model_name] += 1
            verbose_router_logger.info(
                f"litellm.atranscription(model={model_name})\033[32m 200 OK\033[0m"
            )
            return response
        except Exception as e:
            verbose_router_logger.info(
                f"litellm.atranscription(model={model_name})\033[31m Exception {str(e)}\033[0m"
            )
            if model_name is not None:
                self.fail_calls[model_name] += 1
            raise e

    async def aspeech(self, model: str, input: str, voice: str, **kwargs):
        """
        Example Usage:

        ```
        from litellm import Router
        client = Router(model_list = [
            {
                "model_name": "tts",
                "litellm_params": {
                    "model": "tts-1",
                },
            },
        ])

        async with client.aspeech(
            model="tts",
            voice="alloy",
            input="the quick brown fox jumped over the lazy dogs",
            api_base=None,
            api_key=None,
            organization=None,
            project=None,
            max_retries=1,
            timeout=600,
            client=None,
            optional_params={},
        ) as response:
            response.stream_to_file(speech_file_path)

        ```
        """
        try:
            kwargs["input"] = input
            kwargs["voice"] = voice

            deployment = await self.async_get_available_deployment(
                model=model,
                messages=[{"role": "user", "content": "prompt"}],
                specific_deployment=kwargs.pop("specific_deployment", None),
                request_kwargs=kwargs,
            )
            self._update_kwargs_before_fallbacks(model=model, kwargs=kwargs)
            data = deployment["litellm_params"].copy()
            data["model"]
            for k, v in self.default_litellm_params.items():
                if (
                    k not in kwargs
                ):  # prioritize model-specific params > default router params
                    kwargs[k] = v
                elif k == "metadata":
                    kwargs[k].update(v)

            potential_model_client = self._get_client(
                deployment=deployment, kwargs=kwargs, client_type="async"
            )
            # check if provided keys == client keys #
            dynamic_api_key = kwargs.get("api_key", None)
            if (
                dynamic_api_key is not None
                and potential_model_client is not None
                and dynamic_api_key != potential_model_client.api_key
            ):
                model_client = None
            else:
                model_client = potential_model_client

            response = await litellm.aspeech(
                **{
                    **data,
                    "client": model_client,
                    **kwargs,
                }
            )
            return response
        except Exception as e:
            asyncio.create_task(
                send_llm_exception_alert(
                    litellm_router_instance=self,
                    request_kwargs=kwargs,
                    error_traceback_str=traceback.format_exc(),
                    original_exception=e,
                )
            )
            raise e

    async def arerank(self, model: str, **kwargs):
        try:
            kwargs["model"] = model
            kwargs["input"] = input
            kwargs["original_function"] = self._arerank
            self._update_kwargs_before_fallbacks(model=model, kwargs=kwargs)

            response = await self.async_function_with_fallbacks(**kwargs)

            return response
        except Exception as e:
            asyncio.create_task(
                send_llm_exception_alert(
                    litellm_router_instance=self,
                    request_kwargs=kwargs,
                    error_traceback_str=traceback.format_exc(),
                    original_exception=e,
                )
            )
            raise e

    async def _arerank(self, model: str, **kwargs):
        model_name = None
        try:
            verbose_router_logger.debug(
                f"Inside _rerank()- model: {model}; kwargs: {kwargs}"
            )
            deployment = await self.async_get_available_deployment(
                model=model,
                specific_deployment=kwargs.pop("specific_deployment", None),
                request_kwargs=kwargs,
            )
            self._update_kwargs_with_deployment(deployment=deployment, kwargs=kwargs)
            data = deployment["litellm_params"].copy()
            model_name = data["model"]

            model_client = self._get_async_openai_model_client(
                deployment=deployment,
                kwargs=kwargs,
            )
            self.total_calls[model_name] += 1

            response = await litellm.arerank(
                **{
                    **data,
                    "caching": self.cache_responses,
                    "client": model_client,
                    **kwargs,
                }
            )

            self.success_calls[model_name] += 1
            verbose_router_logger.info(
                f"litellm.arerank(model={model_name})\033[32m 200 OK\033[0m"
            )
            return response
        except Exception as e:
            verbose_router_logger.info(
                f"litellm.arerank(model={model_name})\033[31m Exception {str(e)}\033[0m"
            )
            if model_name is not None:
                self.fail_calls[model_name] += 1
            raise e

    async def _arealtime(self, model: str, **kwargs):
        messages = [{"role": "user", "content": "dummy-text"}]
        try:
            kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries)
            self._update_kwargs_before_fallbacks(model=model, kwargs=kwargs)

            # pick the one that is available (lowest TPM/RPM)
            deployment = await self.async_get_available_deployment(
                model=model,
                messages=messages,
                specific_deployment=kwargs.pop("specific_deployment", None),
                request_kwargs=kwargs,
            )

            data = deployment["litellm_params"].copy()
            for k, v in self.default_litellm_params.items():
                if (
                    k not in kwargs
                ):  # prioritize model-specific params > default router params
                    kwargs[k] = v
                elif k == "metadata":
                    kwargs[k].update(v)

            return await litellm._arealtime(**{**data, "caching": self.cache_responses, **kwargs})  # type: ignore
        except Exception as e:
            if self.num_retries > 0:
                kwargs["model"] = model
                kwargs["messages"] = messages
                kwargs["original_function"] = self._arealtime
                return await self.async_function_with_retries(**kwargs)
            else:
                raise e

    def text_completion(
        self,
        model: str,
        prompt: str,
        is_retry: Optional[bool] = False,
        is_fallback: Optional[bool] = False,
        is_async: Optional[bool] = False,
        **kwargs,
    ):
        messages = [{"role": "user", "content": prompt}]
        try:
            kwargs["model"] = model
            kwargs["prompt"] = prompt
            kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries)
            kwargs.setdefault("metadata", {}).update({"model_group": model})

            # pick the one that is available (lowest TPM/RPM)
            deployment = self.get_available_deployment(
                model=model,
                messages=messages,
                specific_deployment=kwargs.pop("specific_deployment", None),
            )

            data = deployment["litellm_params"].copy()
            for k, v in self.default_litellm_params.items():
                if (
                    k not in kwargs
                ):  # prioritize model-specific params > default router params
                    kwargs[k] = v
                elif k == "metadata":
                    kwargs[k].update(v)

            # call via litellm.completion()
            return litellm.text_completion(**{**data, "prompt": prompt, "caching": self.cache_responses, **kwargs})  # type: ignore
        except Exception as e:
            raise e

    async def atext_completion(
        self,
        model: str,
        prompt: str,
        is_retry: Optional[bool] = False,
        is_fallback: Optional[bool] = False,
        is_async: Optional[bool] = False,
        **kwargs,
    ):
        if kwargs.get("priority", None) is not None:
            return await self._schedule_factory(
                model=model,
                priority=kwargs.pop("priority"),
                original_function=self.atext_completion,
                args=(model, prompt),
                kwargs=kwargs,
            )
        try:
            kwargs["model"] = model
            kwargs["prompt"] = prompt
            kwargs["original_function"] = self._atext_completion

            self._update_kwargs_before_fallbacks(model=model, kwargs=kwargs)
            response = await self.async_function_with_fallbacks(**kwargs)

            return response
        except Exception as e:
            asyncio.create_task(
                send_llm_exception_alert(
                    litellm_router_instance=self,
                    request_kwargs=kwargs,
                    error_traceback_str=traceback.format_exc(),
                    original_exception=e,
                )
            )
            raise e

    async def _atext_completion(self, model: str, prompt: str, **kwargs):
        try:
            verbose_router_logger.debug(
                f"Inside _atext_completion()- model: {model}; kwargs: {kwargs}"
            )
            parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
            deployment = await self.async_get_available_deployment(
                model=model,
                messages=[{"role": "user", "content": prompt}],
                specific_deployment=kwargs.pop("specific_deployment", None),
                request_kwargs=kwargs,
            )
            self._update_kwargs_with_deployment(deployment=deployment, kwargs=kwargs)

            data = deployment["litellm_params"].copy()
            model_name = data["model"]

            model_client = self._get_async_openai_model_client(
                deployment=deployment,
                kwargs=kwargs,
            )
            self.total_calls[model_name] += 1

            response = litellm.atext_completion(
                **{
                    **data,
                    "prompt": prompt,
                    "caching": self.cache_responses,
                    "client": model_client,
                    **kwargs,
                }
            )

            rpm_semaphore = self._get_client(
                deployment=deployment,
                kwargs=kwargs,
                client_type="max_parallel_requests",
            )

            if rpm_semaphore is not None and isinstance(
                rpm_semaphore, asyncio.Semaphore
            ):
                async with rpm_semaphore:
                    """
                    - Check rpm limits before making the call
                    - If allowed, increment the rpm limit (allows global value to be updated, concurrency-safe)
                    """
                    await self.async_routing_strategy_pre_call_checks(
                        deployment=deployment, parent_otel_span=parent_otel_span
                    )
                    response = await response
            else:
                await self.async_routing_strategy_pre_call_checks(
                    deployment=deployment, parent_otel_span=parent_otel_span
                )
                response = await response

            self.success_calls[model_name] += 1
            verbose_router_logger.info(
                f"litellm.atext_completion(model={model_name})\033[32m 200 OK\033[0m"
            )
            return response
        except Exception as e:
            verbose_router_logger.info(
                f"litellm.atext_completion(model={model})\033[31m Exception {str(e)}\033[0m"
            )
            if model is not None:
                self.fail_calls[model] += 1
            raise e

    async def aadapter_completion(
        self,
        adapter_id: str,
        model: str,
        is_retry: Optional[bool] = False,
        is_fallback: Optional[bool] = False,
        is_async: Optional[bool] = False,
        **kwargs,
    ):
        try:
            kwargs["model"] = model
            kwargs["adapter_id"] = adapter_id
            kwargs["original_function"] = self._aadapter_completion
            kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries)
            kwargs.setdefault("metadata", {}).update({"model_group": model})
            response = await self.async_function_with_fallbacks(**kwargs)

            return response
        except Exception as e:
            asyncio.create_task(
                send_llm_exception_alert(
                    litellm_router_instance=self,
                    request_kwargs=kwargs,
                    error_traceback_str=traceback.format_exc(),
                    original_exception=e,
                )
            )
            raise e

    async def _aadapter_completion(self, adapter_id: str, model: str, **kwargs):
        try:
            verbose_router_logger.debug(
                f"Inside _aadapter_completion()- model: {model}; kwargs: {kwargs}"
            )
            parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
            deployment = await self.async_get_available_deployment(
                model=model,
                messages=[{"role": "user", "content": "default text"}],
                specific_deployment=kwargs.pop("specific_deployment", None),
                request_kwargs=kwargs,
            )
            self._update_kwargs_with_deployment(deployment=deployment, kwargs=kwargs)

            data = deployment["litellm_params"].copy()
            model_name = data["model"]

            model_client = self._get_async_openai_model_client(
                deployment=deployment,
                kwargs=kwargs,
            )
            self.total_calls[model_name] += 1

            response = litellm.aadapter_completion(
                **{
                    **data,
                    "adapter_id": adapter_id,
                    "caching": self.cache_responses,
                    "client": model_client,
                    **kwargs,
                }
            )

            rpm_semaphore = self._get_client(
                deployment=deployment,
                kwargs=kwargs,
                client_type="max_parallel_requests",
            )

            if rpm_semaphore is not None and isinstance(
                rpm_semaphore, asyncio.Semaphore
            ):
                async with rpm_semaphore:
                    """
                    - Check rpm limits before making the call
                    - If allowed, increment the rpm limit (allows global value to be updated, concurrency-safe)
                    """
                    await self.async_routing_strategy_pre_call_checks(
                        deployment=deployment, parent_otel_span=parent_otel_span
                    )
                    response = await response  # type: ignore
            else:
                await self.async_routing_strategy_pre_call_checks(
                    deployment=deployment, parent_otel_span=parent_otel_span
                )
                response = await response  # type: ignore

            self.success_calls[model_name] += 1
            verbose_router_logger.info(
                f"litellm.aadapter_completion(model={model_name})\033[32m 200 OK\033[0m"
            )
            return response
        except Exception as e:
            verbose_router_logger.info(
                f"litellm.aadapter_completion(model={model})\033[31m Exception {str(e)}\033[0m"
            )
            if model is not None:
                self.fail_calls[model] += 1
            raise e

    async def _ageneric_api_call_with_fallbacks(
        self, model: str, original_function: Callable, **kwargs
    ):
        """
        Make a generic LLM API call through the router, this allows you to use retries/fallbacks with litellm router

        Args:
            model: The model to use
            handler_function: The handler function to call (e.g., litellm.anthropic_messages)
            **kwargs: Additional arguments to pass to the handler function

        Returns:
            The response from the handler function
        """
        handler_name = original_function.__name__
        try:
            verbose_router_logger.debug(
                f"Inside _ageneric_api_call() - handler: {handler_name}, model: {model}; kwargs: {kwargs}"
            )
            parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
            deployment = await self.async_get_available_deployment(
                model=model,
                request_kwargs=kwargs,
                messages=kwargs.get("messages", None),
                specific_deployment=kwargs.pop("specific_deployment", None),
            )
            self._update_kwargs_with_deployment(
                deployment=deployment, kwargs=kwargs, function_name="generic_api_call"
            )

            data = deployment["litellm_params"].copy()
            model_name = data["model"]
            self.total_calls[model_name] += 1

            response = original_function(
                **{
                    **data,
                    "caching": self.cache_responses,
                    **kwargs,
                }
            )

            rpm_semaphore = self._get_client(
                deployment=deployment,
                kwargs=kwargs,
                client_type="max_parallel_requests",
            )

            if rpm_semaphore is not None and isinstance(
                rpm_semaphore, asyncio.Semaphore
            ):
                async with rpm_semaphore:
                    """
                    - Check rpm limits before making the call
                    - If allowed, increment the rpm limit (allows global value to be updated, concurrency-safe)
                    """
                    await self.async_routing_strategy_pre_call_checks(
                        deployment=deployment, parent_otel_span=parent_otel_span
                    )
                    response = await response  # type: ignore
            else:
                await self.async_routing_strategy_pre_call_checks(
                    deployment=deployment, parent_otel_span=parent_otel_span
                )
                response = await response  # type: ignore

            self.success_calls[model_name] += 1
            verbose_router_logger.info(
                f"{handler_name}(model={model_name})\033[32m 200 OK\033[0m"
            )
            return response
        except Exception as e:
            verbose_router_logger.info(
                f"{handler_name}(model={model})\033[31m Exception {str(e)}\033[0m"
            )
            if model is not None:
                self.fail_calls[model] += 1
            raise e

    def _generic_api_call_with_fallbacks(
        self, model: str, original_function: Callable, **kwargs
    ):
        """
        Make a generic LLM API call through the router, this allows you to use retries/fallbacks with litellm router
        Args:
            model: The model to use
            original_function: The handler function to call (e.g., litellm.completion)
            **kwargs: Additional arguments to pass to the handler function
        Returns:
            The response from the handler function
        """
        handler_name = original_function.__name__
        try:
            verbose_router_logger.debug(
                f"Inside _generic_api_call() - handler: {handler_name}, model: {model}; kwargs: {kwargs}"
            )
            deployment = self.get_available_deployment(
                model=model,
                messages=kwargs.get("messages", None),
                specific_deployment=kwargs.pop("specific_deployment", None),
            )
            self._update_kwargs_with_deployment(
                deployment=deployment, kwargs=kwargs, function_name="generic_api_call"
            )

            data = deployment["litellm_params"].copy()
            model_name = data["model"]

            self.total_calls[model_name] += 1

            # Perform pre-call checks for routing strategy
            self.routing_strategy_pre_call_checks(deployment=deployment)

            response = original_function(
                **{
                    **data,
                    "caching": self.cache_responses,
                    **kwargs,
                }
            )

            self.success_calls[model_name] += 1
            verbose_router_logger.info(
                f"{handler_name}(model={model_name})\033[32m 200 OK\033[0m"
            )
            return response
        except Exception as e:
            verbose_router_logger.info(
                f"{handler_name}(model={model})\033[31m Exception {str(e)}\033[0m"
            )
            if model is not None:
                self.fail_calls[model] += 1
            raise e

    def embedding(
        self,
        model: str,
        input: Union[str, List],
        is_async: Optional[bool] = False,
        **kwargs,
    ) -> EmbeddingResponse:
        try:
            kwargs["model"] = model
            kwargs["input"] = input
            kwargs["original_function"] = self._embedding
            kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries)
            kwargs.setdefault("metadata", {}).update({"model_group": model})
            response = self.function_with_fallbacks(**kwargs)
            return response
        except Exception as e:
            raise e

    def _embedding(self, input: Union[str, List], model: str, **kwargs):
        model_name = None
        try:
            verbose_router_logger.debug(
                f"Inside embedding()- model: {model}; kwargs: {kwargs}"
            )
            deployment = self.get_available_deployment(
                model=model,
                input=input,
                specific_deployment=kwargs.pop("specific_deployment", None),
            )
            self._update_kwargs_with_deployment(deployment=deployment, kwargs=kwargs)
            data = deployment["litellm_params"].copy()
            model_name = data["model"]

            potential_model_client = self._get_client(
                deployment=deployment, kwargs=kwargs, client_type="sync"
            )
            # check if provided keys == client keys #
            dynamic_api_key = kwargs.get("api_key", None)
            if (
                dynamic_api_key is not None
                and potential_model_client is not None
                and dynamic_api_key != potential_model_client.api_key
            ):
                model_client = None
            else:
                model_client = potential_model_client

            self.total_calls[model_name] += 1

            ### DEPLOYMENT-SPECIFIC PRE-CALL CHECKS ### (e.g. update rpm pre-call. Raise error, if deployment over limit)
            self.routing_strategy_pre_call_checks(deployment=deployment)

            response = litellm.embedding(
                **{
                    **data,
                    "input": input,
                    "caching": self.cache_responses,
                    "client": model_client,
                    **kwargs,
                }
            )
            self.success_calls[model_name] += 1
            verbose_router_logger.info(
                f"litellm.embedding(model={model_name})\033[32m 200 OK\033[0m"
            )
            return response
        except Exception as e:
            verbose_router_logger.info(
                f"litellm.embedding(model={model_name})\033[31m Exception {str(e)}\033[0m"
            )
            if model_name is not None:
                self.fail_calls[model_name] += 1
            raise e

    async def aembedding(
        self,
        model: str,
        input: Union[str, List],
        is_async: Optional[bool] = True,
        **kwargs,
    ) -> EmbeddingResponse:
        try:
            kwargs["model"] = model
            kwargs["input"] = input
            kwargs["original_function"] = self._aembedding
            self._update_kwargs_before_fallbacks(model=model, kwargs=kwargs)
            response = await self.async_function_with_fallbacks(**kwargs)
            return response
        except Exception as e:
            asyncio.create_task(
                send_llm_exception_alert(
                    litellm_router_instance=self,
                    request_kwargs=kwargs,
                    error_traceback_str=traceback.format_exc(),
                    original_exception=e,
                )
            )
            raise e

    async def _aembedding(self, input: Union[str, List], model: str, **kwargs):
        model_name = None
        try:
            verbose_router_logger.debug(
                f"Inside _aembedding()- model: {model}; kwargs: {kwargs}"
            )
            parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
            deployment = await self.async_get_available_deployment(
                model=model,
                input=input,
                specific_deployment=kwargs.pop("specific_deployment", None),
                request_kwargs=kwargs,
            )
            self._update_kwargs_with_deployment(deployment=deployment, kwargs=kwargs)
            data = deployment["litellm_params"].copy()
            model_name = data["model"]
            model_client = self._get_async_openai_model_client(
                deployment=deployment,
                kwargs=kwargs,
            )

            self.total_calls[model_name] += 1
            response = litellm.aembedding(
                **{
                    **data,
                    "input": input,
                    "caching": self.cache_responses,
                    "client": model_client,
                    **kwargs,
                }
            )

            ### CONCURRENCY-SAFE RPM CHECKS ###
            rpm_semaphore = self._get_client(
                deployment=deployment,
                kwargs=kwargs,
                client_type="max_parallel_requests",
            )

            if rpm_semaphore is not None and isinstance(
                rpm_semaphore, asyncio.Semaphore
            ):
                async with rpm_semaphore:
                    """
                    - Check rpm limits before making the call
                    - If allowed, increment the rpm limit (allows global value to be updated, concurrency-safe)
                    """
                    await self.async_routing_strategy_pre_call_checks(
                        deployment=deployment, parent_otel_span=parent_otel_span
                    )
                    response = await response
            else:
                await self.async_routing_strategy_pre_call_checks(
                    deployment=deployment, parent_otel_span=parent_otel_span
                )
                response = await response

            self.success_calls[model_name] += 1
            verbose_router_logger.info(
                f"litellm.aembedding(model={model_name})\033[32m 200 OK\033[0m"
            )
            return response
        except Exception as e:
            verbose_router_logger.info(
                f"litellm.aembedding(model={model_name})\033[31m Exception {str(e)}\033[0m"
            )
            if model_name is not None:
                self.fail_calls[model_name] += 1
            raise e

    #### FILES API ####
    async def acreate_file(
        self,
        model: str,
        **kwargs,
    ) -> FileObject:
        try:
            kwargs["model"] = model
            kwargs["original_function"] = self._acreate_file
            kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries)
            self._update_kwargs_before_fallbacks(model=model, kwargs=kwargs)
            response = await self.async_function_with_fallbacks(**kwargs)

            return response
        except Exception as e:
            asyncio.create_task(
                send_llm_exception_alert(
                    litellm_router_instance=self,
                    request_kwargs=kwargs,
                    error_traceback_str=traceback.format_exc(),
                    original_exception=e,
                )
            )
            raise e

    async def _acreate_file(
        self,
        model: str,
        **kwargs,
    ) -> FileObject:
        try:
            verbose_router_logger.debug(
                f"Inside _atext_completion()- model: {model}; kwargs: {kwargs}"
            )
            parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
            deployment = await self.async_get_available_deployment(
                model=model,
                messages=[{"role": "user", "content": "files-api-fake-text"}],
                specific_deployment=kwargs.pop("specific_deployment", None),
                request_kwargs=kwargs,
            )
            self._update_kwargs_with_deployment(deployment=deployment, kwargs=kwargs)

            data = deployment["litellm_params"].copy()
            model_name = data["model"]

            model_client = self._get_async_openai_model_client(
                deployment=deployment,
                kwargs=kwargs,
            )
            self.total_calls[model_name] += 1

            ## REPLACE MODEL IN FILE WITH SELECTED DEPLOYMENT ##
            stripped_model, custom_llm_provider, _, _ = get_llm_provider(
                model=data["model"]
            )
            kwargs["file"] = replace_model_in_jsonl(
                file_content=kwargs["file"], new_model_name=stripped_model
            )

            response = litellm.acreate_file(
                **{
                    **data,
                    "custom_llm_provider": custom_llm_provider,
                    "caching": self.cache_responses,
                    "client": model_client,
                    **kwargs,
                }
            )

            rpm_semaphore = self._get_client(
                deployment=deployment,
                kwargs=kwargs,
                client_type="max_parallel_requests",
            )

            if rpm_semaphore is not None and isinstance(
                rpm_semaphore, asyncio.Semaphore
            ):
                async with rpm_semaphore:
                    """
                    - Check rpm limits before making the call
                    - If allowed, increment the rpm limit (allows global value to be updated, concurrency-safe)
                    """
                    await self.async_routing_strategy_pre_call_checks(
                        deployment=deployment, parent_otel_span=parent_otel_span
                    )
                    response = await response  # type: ignore
            else:
                await self.async_routing_strategy_pre_call_checks(
                    deployment=deployment, parent_otel_span=parent_otel_span
                )
                response = await response  # type: ignore

            self.success_calls[model_name] += 1
            verbose_router_logger.info(
                f"litellm.acreate_file(model={model_name})\033[32m 200 OK\033[0m"
            )
            return response  # type: ignore
        except Exception as e:
            verbose_router_logger.exception(
                f"litellm.acreate_file(model={model}, {kwargs})\033[31m Exception {str(e)}\033[0m"
            )
            if model is not None:
                self.fail_calls[model] += 1
            raise e

    async def acreate_batch(
        self,
        model: str,
        **kwargs,
    ) -> Batch:
        try:
            kwargs["model"] = model
            kwargs["original_function"] = self._acreate_batch
            kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries)
            self._update_kwargs_before_fallbacks(model=model, kwargs=kwargs)
            response = await self.async_function_with_fallbacks(**kwargs)

            return response
        except Exception as e:
            asyncio.create_task(
                send_llm_exception_alert(
                    litellm_router_instance=self,
                    request_kwargs=kwargs,
                    error_traceback_str=traceback.format_exc(),
                    original_exception=e,
                )
            )
            raise e

    async def _acreate_batch(
        self,
        model: str,
        **kwargs,
    ) -> Batch:
        try:
            verbose_router_logger.debug(
                f"Inside _acreate_batch()- model: {model}; kwargs: {kwargs}"
            )
            parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
            deployment = await self.async_get_available_deployment(
                model=model,
                messages=[{"role": "user", "content": "files-api-fake-text"}],
                specific_deployment=kwargs.pop("specific_deployment", None),
                request_kwargs=kwargs,
            )
            metadata_variable_name = _get_router_metadata_variable_name(
                function_name="_acreate_batch"
            )

            kwargs.setdefault(metadata_variable_name, {}).update(
                {
                    "deployment": deployment["litellm_params"]["model"],
                    "model_info": deployment.get("model_info", {}),
                    "api_base": deployment.get("litellm_params", {}).get("api_base"),
                }
            )
            kwargs["model_info"] = deployment.get("model_info", {})
            data = deployment["litellm_params"].copy()
            model_name = data["model"]
            self._update_kwargs_with_deployment(deployment=deployment, kwargs=kwargs)

            model_client = self._get_async_openai_model_client(
                deployment=deployment,
                kwargs=kwargs,
            )
            self.total_calls[model_name] += 1

            ## SET CUSTOM PROVIDER TO SELECTED DEPLOYMENT ##
            _, custom_llm_provider, _, _ = get_llm_provider(model=data["model"])

            response = litellm.acreate_batch(
                **{
                    **data,
                    "custom_llm_provider": custom_llm_provider,
                    "caching": self.cache_responses,
                    "client": model_client,
                    **kwargs,
                }
            )

            rpm_semaphore = self._get_client(
                deployment=deployment,
                kwargs=kwargs,
                client_type="max_parallel_requests",
            )

            if rpm_semaphore is not None and isinstance(
                rpm_semaphore, asyncio.Semaphore
            ):
                async with rpm_semaphore:
                    """
                    - Check rpm limits before making the call
                    - If allowed, increment the rpm limit (allows global value to be updated, concurrency-safe)
                    """
                    await self.async_routing_strategy_pre_call_checks(
                        deployment=deployment, parent_otel_span=parent_otel_span
                    )
                    response = await response  # type: ignore
            else:
                await self.async_routing_strategy_pre_call_checks(
                    deployment=deployment, parent_otel_span=parent_otel_span
                )
                response = await response  # type: ignore

            self.success_calls[model_name] += 1
            verbose_router_logger.info(
                f"litellm.acreate_file(model={model_name})\033[32m 200 OK\033[0m"
            )
            return response  # type: ignore
        except Exception as e:
            verbose_router_logger.exception(
                f"litellm._acreate_batch(model={model}, {kwargs})\033[31m Exception {str(e)}\033[0m"
            )
            if model is not None:
                self.fail_calls[model] += 1
            raise e

    async def aretrieve_batch(
        self,
        **kwargs,
    ) -> Batch:
        """
        Iterate through all models in a model group to check for batch

        Future Improvement - cache the result.
        """
        try:

            filtered_model_list = self.get_model_list()
            if filtered_model_list is None:
                raise Exception("Router not yet initialized.")

            receieved_exceptions = []

            async def try_retrieve_batch(model_name):
                try:
                    # Update kwargs with the current model name or any other model-specific adjustments
                    ## SET CUSTOM PROVIDER TO SELECTED DEPLOYMENT ##
                    _, custom_llm_provider, _, _ = get_llm_provider(  # type: ignore
                        model=model_name["litellm_params"]["model"]
                    )
                    new_kwargs = copy.deepcopy(kwargs)
                    new_kwargs.pop("custom_llm_provider", None)
                    return await litellm.aretrieve_batch(
                        custom_llm_provider=custom_llm_provider, **new_kwargs  # type: ignore
                    )
                except Exception as e:
                    receieved_exceptions.append(e)
                    return None

            # Check all models in parallel
            results = await asyncio.gather(
                *[try_retrieve_batch(model) for model in filtered_model_list],
                return_exceptions=True,
            )

            # Check for successful responses and handle exceptions
            for result in results:
                if isinstance(result, Batch):
                    return result

            # If no valid Batch response was found, raise the first encountered exception
            if receieved_exceptions:
                raise receieved_exceptions[0]  # Raising the first exception encountered

            # If no exceptions were encountered, raise a generic exception
            raise Exception(
                "Unable to find batch in any model. Received errors - {}".format(
                    receieved_exceptions
                )
            )
        except Exception as e:
            asyncio.create_task(
                send_llm_exception_alert(
                    litellm_router_instance=self,
                    request_kwargs=kwargs,
                    error_traceback_str=traceback.format_exc(),
                    original_exception=e,
                )
            )
            raise e

    async def alist_batches(
        self,
        model: str,
        **kwargs,
    ):
        """
        Return all the batches across all deployments of a model group.
        """

        filtered_model_list = self.get_model_list(model_name=model)
        if filtered_model_list is None:
            raise Exception("Router not yet initialized.")

        async def try_retrieve_batch(model: DeploymentTypedDict):
            try:
                # Update kwargs with the current model name or any other model-specific adjustments
                return await litellm.alist_batches(
                    **{**model["litellm_params"], **kwargs}
                )
            except Exception:
                return None

        # Check all models in parallel
        results = await asyncio.gather(
            *[try_retrieve_batch(model) for model in filtered_model_list]
        )

        final_results = {
            "object": "list",
            "data": [],
            "first_id": None,
            "last_id": None,
            "has_more": False,
        }

        for result in results:
            if result is not None:
                ## check batch id
                if final_results["first_id"] is None and hasattr(result, "first_id"):
                    final_results["first_id"] = getattr(result, "first_id")
                final_results["last_id"] = getattr(result, "last_id")
                final_results["data"].extend(result.data)  # type: ignore

                ## check 'has_more'
                if getattr(result, "has_more", False) is True:
                    final_results["has_more"] = True

        return final_results

    #### PASSTHROUGH API ####

    async def _pass_through_moderation_endpoint_factory(
        self,
        original_function: Callable,
        **kwargs,
    ):
        if kwargs.get("model") and self.get_model_list(model_name=kwargs["model"]):
            deployment = await self.async_get_available_deployment(
                model=kwargs["model"],
                request_kwargs=kwargs,
            )
            kwargs["model"] = deployment["litellm_params"]["model"]
        return await original_function(**kwargs)

    def factory_function(
        self,
        original_function: Callable,
        call_type: Literal[
            "assistants",
            "moderation",
            "anthropic_messages",
            "aresponses",
            "responses",
        ] = "assistants",
    ):
        """
        Creates appropriate wrapper functions for different API call types.

        Returns:
            - A synchronous function for synchronous call types
            - An asynchronous function for asynchronous call types
        """
        # Handle synchronous call types
        if call_type == "responses":

            def sync_wrapper(
                custom_llm_provider: Optional[
                    Literal["openai", "azure", "anthropic"]
                ] = None,
                client: Optional[Any] = None,
                **kwargs,
            ):
                return self._generic_api_call_with_fallbacks(
                    original_function=original_function, **kwargs
                )

            return sync_wrapper

        # Handle asynchronous call types
        async def async_wrapper(
            custom_llm_provider: Optional[
                Literal["openai", "azure", "anthropic"]
            ] = None,
            client: Optional[Any] = None,
            **kwargs,
        ):
            if call_type == "assistants":
                return await self._pass_through_assistants_endpoint_factory(
                    original_function=original_function,
                    custom_llm_provider=custom_llm_provider,
                    client=client,
                    **kwargs,
                )
            elif call_type == "moderation":
                return await self._pass_through_moderation_endpoint_factory(
                    original_function=original_function, **kwargs
                )
            elif call_type in ("anthropic_messages", "aresponses"):
                return await self._ageneric_api_call_with_fallbacks(
                    original_function=original_function,
                    **kwargs,
                )

        return async_wrapper

    async def _pass_through_assistants_endpoint_factory(
        self,
        original_function: Callable,
        custom_llm_provider: Optional[Literal["openai", "azure", "anthropic"]] = None,
        client: Optional[AsyncOpenAI] = None,
        **kwargs,
    ):
        """Internal helper function to pass through the assistants endpoint"""
        if custom_llm_provider is None:
            if self.assistants_config is not None:
                custom_llm_provider = self.assistants_config["custom_llm_provider"]
                kwargs.update(self.assistants_config["litellm_params"])
            else:
                raise Exception(
                    "'custom_llm_provider' must be set. Either via:\n `Router(assistants_config={'custom_llm_provider': ..})` \nor\n `router.arun_thread(custom_llm_provider=..)`"
                )
        return await original_function(  # type: ignore
            custom_llm_provider=custom_llm_provider, client=client, **kwargs
        )

    #### [END] ASSISTANTS API ####

    @tracer.wrap()
    async def async_function_with_fallbacks(self, *args, **kwargs):  # noqa: PLR0915
        """
        Try calling the function_with_retries
        If it fails after num_retries, fall back to another model group
        """
        model_group: Optional[str] = kwargs.get("model")
        disable_fallbacks: Optional[bool] = kwargs.pop("disable_fallbacks", False)
        fallbacks: Optional[List] = kwargs.get("fallbacks", self.fallbacks)
        context_window_fallbacks: Optional[List] = kwargs.get(
            "context_window_fallbacks", self.context_window_fallbacks
        )
        content_policy_fallbacks: Optional[List] = kwargs.get(
            "content_policy_fallbacks", self.content_policy_fallbacks
        )

        mock_timeout = kwargs.pop("mock_timeout", None)

        try:
            self._handle_mock_testing_fallbacks(
                kwargs=kwargs,
                model_group=model_group,
                fallbacks=fallbacks,
                context_window_fallbacks=context_window_fallbacks,
                content_policy_fallbacks=content_policy_fallbacks,
            )

            if mock_timeout is not None:
                response = await self.async_function_with_retries(
                    *args, **kwargs, mock_timeout=mock_timeout
                )
            else:
                response = await self.async_function_with_retries(*args, **kwargs)
            verbose_router_logger.debug(f"Async Response: {response}")
            response = add_fallback_headers_to_response(
                response=response,
                attempted_fallbacks=0,
            )
            return response
        except Exception as e:
            verbose_router_logger.debug(f"Traceback{traceback.format_exc()}")
            original_exception = e
            fallback_model_group = None
            original_model_group: Optional[str] = kwargs.get("model")  # type: ignore
            fallback_failure_exception_str = ""

            if disable_fallbacks is True or original_model_group is None:
                raise e

            input_kwargs = {
                "litellm_router": self,
                "original_exception": original_exception,
                **kwargs,
            }

            if "max_fallbacks" not in input_kwargs:
                input_kwargs["max_fallbacks"] = self.max_fallbacks
            if "fallback_depth" not in input_kwargs:
                input_kwargs["fallback_depth"] = 0

            try:
                verbose_router_logger.info("Trying to fallback b/w models")

                # check if client-side fallbacks are used (e.g. fallbacks = ["gpt-3.5-turbo", "claude-3-haiku"] or fallbacks=[{"model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": "Hey, how's it going?"}]}]
                is_non_standard_fallback_format = _check_non_standard_fallback_format(
                    fallbacks=fallbacks
                )

                if is_non_standard_fallback_format:
                    input_kwargs.update(
                        {
                            "fallback_model_group": fallbacks,
                            "original_model_group": original_model_group,
                        }
                    )

                    response = await run_async_fallback(
                        *args,
                        **input_kwargs,
                    )

                    return response

                if isinstance(e, litellm.ContextWindowExceededError):
                    if context_window_fallbacks is not None:
                        fallback_model_group: Optional[List[str]] = (
                            self._get_fallback_model_group_from_fallbacks(
                                fallbacks=context_window_fallbacks,
                                model_group=model_group,
                            )
                        )
                        if fallback_model_group is None:
                            raise original_exception

                        input_kwargs.update(
                            {
                                "fallback_model_group": fallback_model_group,
                                "original_model_group": original_model_group,
                            }
                        )

                        response = await run_async_fallback(
                            *args,
                            **input_kwargs,
                        )
                        return response

                    else:
                        error_message = "model={}. context_window_fallbacks={}. fallbacks={}.\n\nSet 'context_window_fallback' - https://docs.litellm.ai/docs/routing#fallbacks".format(
                            model_group, context_window_fallbacks, fallbacks
                        )
                        verbose_router_logger.info(
                            msg="Got 'ContextWindowExceededError'. No context_window_fallback set. Defaulting \
                            to fallbacks, if available.{}".format(
                                error_message
                            )
                        )

                        e.message += "\n{}".format(error_message)
                elif isinstance(e, litellm.ContentPolicyViolationError):
                    if content_policy_fallbacks is not None:
                        fallback_model_group: Optional[List[str]] = (
                            self._get_fallback_model_group_from_fallbacks(
                                fallbacks=content_policy_fallbacks,
                                model_group=model_group,
                            )
                        )
                        if fallback_model_group is None:
                            raise original_exception

                        input_kwargs.update(
                            {
                                "fallback_model_group": fallback_model_group,
                                "original_model_group": original_model_group,
                            }
                        )

                        response = await run_async_fallback(
                            *args,
                            **input_kwargs,
                        )
                        return response
                    else:
                        error_message = "model={}. content_policy_fallback={}. fallbacks={}.\n\nSet 'content_policy_fallback' - https://docs.litellm.ai/docs/routing#fallbacks".format(
                            model_group, content_policy_fallbacks, fallbacks
                        )
                        verbose_router_logger.info(
                            msg="Got 'ContentPolicyViolationError'. No content_policy_fallback set. Defaulting \
                            to fallbacks, if available.{}".format(
                                error_message
                            )
                        )

                        e.message += "\n{}".format(error_message)
                if fallbacks is not None and model_group is not None:
                    verbose_router_logger.debug(f"inside model fallbacks: {fallbacks}")
                    fallback_model_group, generic_fallback_idx = (
                        get_fallback_model_group(
                            fallbacks=fallbacks,  # if fallbacks = [{"gpt-3.5-turbo": ["claude-3-haiku"]}]
                            model_group=cast(str, model_group),
                        )
                    )
                    ## if none, check for generic fallback
                    if (
                        fallback_model_group is None
                        and generic_fallback_idx is not None
                    ):
                        fallback_model_group = fallbacks[generic_fallback_idx]["*"]

                    if fallback_model_group is None:
                        verbose_router_logger.info(
                            f"No fallback model group found for original model_group={model_group}. Fallbacks={fallbacks}"
                        )
                        if hasattr(original_exception, "message"):
                            original_exception.message += f"No fallback model group found for original model_group={model_group}. Fallbacks={fallbacks}"  # type: ignore
                        raise original_exception

                    input_kwargs.update(
                        {
                            "fallback_model_group": fallback_model_group,
                            "original_model_group": original_model_group,
                        }
                    )

                    response = await run_async_fallback(
                        *args,
                        **input_kwargs,
                    )

                    return response
            except Exception as new_exception:
                traceback.print_exc()
                parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
                verbose_router_logger.error(
                    "litellm.router.py::async_function_with_fallbacks() - Error occurred while trying to do fallbacks - {}\n{}\n\nDebug Information:\nCooldown Deployments={}".format(
                        str(new_exception),
                        traceback.format_exc(),
                        await _async_get_cooldown_deployments_with_debug_info(
                            litellm_router_instance=self,
                            parent_otel_span=parent_otel_span,
                        ),
                    )
                )
                fallback_failure_exception_str = str(new_exception)

            if hasattr(original_exception, "message"):
                # add the available fallbacks to the exception
                original_exception.message += ". Received Model Group={}\nAvailable Model Group Fallbacks={}".format(  # type: ignore
                    model_group,
                    fallback_model_group,
                )
                if len(fallback_failure_exception_str) > 0:
                    original_exception.message += (  # type: ignore
                        "\nError doing the fallback: {}".format(
                            fallback_failure_exception_str
                        )
                    )

            raise original_exception

    def _handle_mock_testing_fallbacks(
        self,
        kwargs: dict,
        model_group: Optional[str] = None,
        fallbacks: Optional[List] = None,
        context_window_fallbacks: Optional[List] = None,
        content_policy_fallbacks: Optional[List] = None,
    ):
        """
        Helper function to raise a litellm Error for mock testing purposes.

        Raises:
            litellm.InternalServerError: when `mock_testing_fallbacks=True` passed in request params
            litellm.ContextWindowExceededError: when `mock_testing_context_fallbacks=True` passed in request params
            litellm.ContentPolicyViolationError: when `mock_testing_content_policy_fallbacks=True` passed in request params
        """
        mock_testing_fallbacks = kwargs.pop("mock_testing_fallbacks", None)
        mock_testing_context_fallbacks = kwargs.pop(
            "mock_testing_context_fallbacks", None
        )
        mock_testing_content_policy_fallbacks = kwargs.pop(
            "mock_testing_content_policy_fallbacks", None
        )

        if mock_testing_fallbacks is not None and mock_testing_fallbacks is True:
            raise litellm.InternalServerError(
                model=model_group,
                llm_provider="",
                message=f"This is a mock exception for model={model_group}, to trigger a fallback. Fallbacks={fallbacks}",
            )
        elif (
            mock_testing_context_fallbacks is not None
            and mock_testing_context_fallbacks is True
        ):
            raise litellm.ContextWindowExceededError(
                model=model_group,
                llm_provider="",
                message=f"This is a mock exception for model={model_group}, to trigger a fallback. \
                    Context_Window_Fallbacks={context_window_fallbacks}",
            )
        elif (
            mock_testing_content_policy_fallbacks is not None
            and mock_testing_content_policy_fallbacks is True
        ):
            raise litellm.ContentPolicyViolationError(
                model=model_group,
                llm_provider="",
                message=f"This is a mock exception for model={model_group}, to trigger a fallback. \
                    Context_Policy_Fallbacks={content_policy_fallbacks}",
            )

    @tracer.wrap()
    async def async_function_with_retries(self, *args, **kwargs):  # noqa: PLR0915
        verbose_router_logger.debug("Inside async function with retries.")
        original_function = kwargs.pop("original_function")
        fallbacks = kwargs.pop("fallbacks", self.fallbacks)
        parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
        context_window_fallbacks = kwargs.pop(
            "context_window_fallbacks", self.context_window_fallbacks
        )
        content_policy_fallbacks = kwargs.pop(
            "content_policy_fallbacks", self.content_policy_fallbacks
        )
        model_group: Optional[str] = kwargs.get("model")
        num_retries = kwargs.pop("num_retries")

        ## ADD MODEL GROUP SIZE TO METADATA - used for model_group_rate_limit_error tracking
        _metadata: dict = kwargs.get("metadata") or {}
        if "model_group" in _metadata and isinstance(_metadata["model_group"], str):
            model_list = self.get_model_list(model_name=_metadata["model_group"])
            if model_list is not None:
                _metadata.update({"model_group_size": len(model_list)})

        verbose_router_logger.debug(
            f"async function w/ retries: original_function - {original_function}, num_retries - {num_retries}"
        )
        try:
            self._handle_mock_testing_rate_limit_error(
                model_group=model_group, kwargs=kwargs
            )
            # if the function call is successful, no exception will be raised and we'll break out of the loop
            response = await self.make_call(original_function, *args, **kwargs)
            response = add_retry_headers_to_response(
                response=response, attempted_retries=0, max_retries=None
            )
            return response
        except Exception as e:
            current_attempt = None
            original_exception = e
            deployment_num_retries = getattr(e, "num_retries", None)

            if deployment_num_retries is not None and isinstance(
                deployment_num_retries, int
            ):
                num_retries = deployment_num_retries
            """
            Retry Logic
            """
            _healthy_deployments, _all_deployments = (
                await self._async_get_healthy_deployments(
                    model=kwargs.get("model") or "",
                    parent_otel_span=parent_otel_span,
                )
            )

            # raises an exception if this error should not be retries
            self.should_retry_this_error(
                error=e,
                healthy_deployments=_healthy_deployments,
                all_deployments=_all_deployments,
                context_window_fallbacks=context_window_fallbacks,
                regular_fallbacks=fallbacks,
                content_policy_fallbacks=content_policy_fallbacks,
            )

            if (
                self.retry_policy is not None
                or self.model_group_retry_policy is not None
            ):
                # get num_retries from retry policy
                _retry_policy_retries = self.get_num_retries_from_retry_policy(
                    exception=original_exception, model_group=kwargs.get("model")
                )
                if _retry_policy_retries is not None:
                    num_retries = _retry_policy_retries
            ## LOGGING
            if num_retries > 0:
                kwargs = self.log_retry(kwargs=kwargs, e=original_exception)
            else:
                raise

            verbose_router_logger.info(
                f"Retrying request with num_retries: {num_retries}"
            )
            # decides how long to sleep before retry
            retry_after = self._time_to_sleep_before_retry(
                e=original_exception,
                remaining_retries=num_retries,
                num_retries=num_retries,
                healthy_deployments=_healthy_deployments,
                all_deployments=_all_deployments,
            )

            await asyncio.sleep(retry_after)

            for current_attempt in range(num_retries):
                try:
                    # if the function call is successful, no exception will be raised and we'll break out of the loop
                    response = await self.make_call(original_function, *args, **kwargs)
                    if inspect.iscoroutinefunction(
                        response
                    ):  # async errors are often returned as coroutines
                        response = await response

                    response = add_retry_headers_to_response(
                        response=response,
                        attempted_retries=current_attempt + 1,
                        max_retries=num_retries,
                    )
                    return response

                except Exception as e:
                    ## LOGGING
                    kwargs = self.log_retry(kwargs=kwargs, e=e)
                    remaining_retries = num_retries - current_attempt
                    _model: Optional[str] = kwargs.get("model")  # type: ignore
                    if _model is not None:
                        _healthy_deployments, _ = (
                            await self._async_get_healthy_deployments(
                                model=_model,
                                parent_otel_span=parent_otel_span,
                            )
                        )
                    else:
                        _healthy_deployments = []
                    _timeout = self._time_to_sleep_before_retry(
                        e=original_exception,
                        remaining_retries=remaining_retries,
                        num_retries=num_retries,
                        healthy_deployments=_healthy_deployments,
                        all_deployments=_all_deployments,
                    )
                    await asyncio.sleep(_timeout)

            if type(original_exception) in litellm.LITELLM_EXCEPTION_TYPES:
                setattr(original_exception, "max_retries", num_retries)
                setattr(original_exception, "num_retries", current_attempt)

            raise original_exception

    async def make_call(self, original_function: Any, *args, **kwargs):
        """
        Handler for making a call to the .completion()/.embeddings()/etc. functions.
        """
        model_group = kwargs.get("model")
        response = original_function(*args, **kwargs)
        if inspect.iscoroutinefunction(response) or inspect.isawaitable(response):
            response = await response
        ## PROCESS RESPONSE HEADERS
        response = await self.set_response_headers(
            response=response, model_group=model_group
        )

        return response

    def _handle_mock_testing_rate_limit_error(
        self, kwargs: dict, model_group: Optional[str] = None
    ):
        """
        Helper function to raise a mock litellm.RateLimitError error for testing purposes.

        Raises:
            litellm.RateLimitError error when `mock_testing_rate_limit_error=True` passed in request params
        """
        mock_testing_rate_limit_error: Optional[bool] = kwargs.pop(
            "mock_testing_rate_limit_error", None
        )

        available_models = self.get_model_list(model_name=model_group)
        num_retries: Optional[int] = None

        if available_models is not None and len(available_models) == 1:
            num_retries = cast(
                Optional[int], available_models[0]["litellm_params"].get("num_retries")
            )

        if (
            mock_testing_rate_limit_error is not None
            and mock_testing_rate_limit_error is True
        ):
            verbose_router_logger.info(
                f"litellm.router.py::_mock_rate_limit_error() - Raising mock RateLimitError for model={model_group}"
            )
            raise litellm.RateLimitError(
                model=model_group,
                llm_provider="",
                message=f"This is a mock exception for model={model_group}, to trigger a rate limit error.",
                num_retries=num_retries,
            )

    def should_retry_this_error(
        self,
        error: Exception,
        healthy_deployments: Optional[List] = None,
        all_deployments: Optional[List] = None,
        context_window_fallbacks: Optional[List] = None,
        content_policy_fallbacks: Optional[List] = None,
        regular_fallbacks: Optional[List] = None,
    ):
        """
        1. raise an exception for ContextWindowExceededError if context_window_fallbacks is not None
        2. raise an exception for ContentPolicyViolationError if content_policy_fallbacks is not None

        2. raise an exception for RateLimitError if
            - there are no fallbacks
            - there are no healthy deployments in the same model group
        """
        _num_healthy_deployments = 0
        if healthy_deployments is not None and isinstance(healthy_deployments, list):
            _num_healthy_deployments = len(healthy_deployments)

        _num_all_deployments = 0
        if all_deployments is not None and isinstance(all_deployments, list):
            _num_all_deployments = len(all_deployments)

        ### CHECK IF RATE LIMIT / CONTEXT WINDOW ERROR / CONTENT POLICY VIOLATION ERROR w/ fallbacks available / Bad Request Error
        if (
            isinstance(error, litellm.ContextWindowExceededError)
            and context_window_fallbacks is not None
        ):
            raise error

        if (
            isinstance(error, litellm.ContentPolicyViolationError)
            and content_policy_fallbacks is not None
        ):
            raise error

        if isinstance(error, litellm.NotFoundError):
            raise error
        # Error we should only retry if there are other deployments
        if isinstance(error, openai.RateLimitError):
            if (
                _num_healthy_deployments <= 0  # if no healthy deployments
                and regular_fallbacks is not None  # and fallbacks available
                and len(regular_fallbacks) > 0
            ):
                raise error  # then raise the error

        if isinstance(error, openai.AuthenticationError):
            """
            - if other deployments available -> retry
            - else -> raise error
            """
            if (
                _num_all_deployments <= 1
            ):  # if there is only 1 deployment for this model group then don't retry
                raise error  # then raise error

        # Do not retry if there are no healthy deployments
        # just raise the error
        if _num_healthy_deployments <= 0:  # if no healthy deployments
            raise error

        return True

    def function_with_fallbacks(self, *args, **kwargs):
        """
        Sync wrapper for async_function_with_fallbacks

        Wrapped to reduce code duplication and prevent bugs.
        """
        return run_async_function(self.async_function_with_fallbacks, *args, **kwargs)

    def _get_fallback_model_group_from_fallbacks(
        self,
        fallbacks: List[Dict[str, List[str]]],
        model_group: Optional[str] = None,
    ) -> Optional[List[str]]:
        """
        Returns the list of fallback models to use for a given model group

        If no fallback model group is found, returns None

        Example:
            fallbacks = [{"gpt-3.5-turbo": ["gpt-4"]}, {"gpt-4o": ["gpt-3.5-turbo"]}]
            model_group = "gpt-3.5-turbo"
            returns: ["gpt-4"]
        """
        if model_group is None:
            return None

        fallback_model_group: Optional[List[str]] = None
        for item in fallbacks:  # [{"gpt-3.5-turbo": ["gpt-4"]}]
            if list(item.keys())[0] == model_group:
                fallback_model_group = item[model_group]
                break
        return fallback_model_group

    def _time_to_sleep_before_retry(
        self,
        e: Exception,
        remaining_retries: int,
        num_retries: int,
        healthy_deployments: Optional[List] = None,
        all_deployments: Optional[List] = None,
    ) -> Union[int, float]:
        """
        Calculate back-off, then retry

        It should instantly retry only when:
            1. there are healthy deployments in the same model group
            2. there are fallbacks for the completion call
        """

        ## base case - single deployment
        if all_deployments is not None and len(all_deployments) == 1:
            pass
        elif (
            healthy_deployments is not None
            and isinstance(healthy_deployments, list)
            and len(healthy_deployments) > 0
        ):
            return 0

        response_headers: Optional[httpx.Headers] = None
        if hasattr(e, "response") and hasattr(e.response, "headers"):  # type: ignore
            response_headers = e.response.headers  # type: ignore
        if hasattr(e, "litellm_response_headers"):
            response_headers = e.litellm_response_headers  # type: ignore

        if response_headers is not None:
            timeout = litellm._calculate_retry_after(
                remaining_retries=remaining_retries,
                max_retries=num_retries,
                response_headers=response_headers,
                min_timeout=self.retry_after,
            )

        else:
            timeout = litellm._calculate_retry_after(
                remaining_retries=remaining_retries,
                max_retries=num_retries,
                min_timeout=self.retry_after,
            )

        return timeout

    ### HELPER FUNCTIONS

    async def deployment_callback_on_success(
        self,
        kwargs,  # kwargs to completion
        completion_response,  # response from completion
        start_time,
        end_time,  # start/end time
    ):
        """
        Track remaining tpm/rpm quota for model in model_list
        """
        try:
            standard_logging_object: Optional[StandardLoggingPayload] = kwargs.get(
                "standard_logging_object", None
            )
            if standard_logging_object is None:
                raise ValueError("standard_logging_object is None")
            if kwargs["litellm_params"].get("metadata") is None:
                pass
            else:
                deployment_name = kwargs["litellm_params"]["metadata"].get(
                    "deployment", None
                )  # stable name - works for wildcard routes as well
                model_group = standard_logging_object.get("model_group", None)
                id = standard_logging_object.get("model_id", None)
                if model_group is None or id is None:
                    return
                elif isinstance(id, int):
                    id = str(id)

                parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
                total_tokens: float = standard_logging_object.get("total_tokens", 0)

                # ------------
                # Setup values
                # ------------
                dt = get_utc_datetime()
                current_minute = dt.strftime(
                    "%H-%M"
                )  # use the same timezone regardless of system clock

                tpm_key = RouterCacheEnum.TPM.value.format(
                    id=id, current_minute=current_minute, model=deployment_name
                )
                # ------------
                # Update usage
                # ------------
                # update cache

                ## TPM
                await self.cache.async_increment_cache(
                    key=tpm_key,
                    value=total_tokens,
                    parent_otel_span=parent_otel_span,
                    ttl=RoutingArgs.ttl.value,
                )

                ## RPM
                rpm_key = RouterCacheEnum.RPM.value.format(
                    id=id, current_minute=current_minute, model=deployment_name
                )
                await self.cache.async_increment_cache(
                    key=rpm_key,
                    value=1,
                    parent_otel_span=parent_otel_span,
                    ttl=RoutingArgs.ttl.value,
                )

                increment_deployment_successes_for_current_minute(
                    litellm_router_instance=self,
                    deployment_id=id,
                )

                return tpm_key

        except Exception as e:
            verbose_router_logger.exception(
                "litellm.router.Router::deployment_callback_on_success(): Exception occured - {}".format(
                    str(e)
                )
            )
            pass

    def sync_deployment_callback_on_success(
        self,
        kwargs,  # kwargs to completion
        completion_response,  # response from completion
        start_time,
        end_time,  # start/end time
    ) -> Optional[str]:
        """
        Tracks the number of successes for a deployment in the current minute (using in-memory cache)

        Returns:
        - key: str - The key used to increment the cache
        - None: if no key is found
        """
        id = None
        if kwargs["litellm_params"].get("metadata") is None:
            pass
        else:
            model_group = kwargs["litellm_params"]["metadata"].get("model_group", None)
            model_info = kwargs["litellm_params"].get("model_info", {}) or {}
            id = model_info.get("id", None)
            if model_group is None or id is None:
                return None
            elif isinstance(id, int):
                id = str(id)

        if id is not None:
            key = increment_deployment_successes_for_current_minute(
                litellm_router_instance=self,
                deployment_id=id,
            )
            return key

        return None

    def deployment_callback_on_failure(
        self,
        kwargs,  # kwargs to completion
        completion_response,  # response from completion
        start_time,
        end_time,  # start/end time
    ) -> bool:
        """
        2 jobs:
        - Tracks the number of failures for a deployment in the current minute (using in-memory cache)
        - Puts the deployment in cooldown if it exceeds the allowed fails / minute

        Returns:
        - True if the deployment should be put in cooldown
        - False if the deployment should not be put in cooldown
        """
        verbose_router_logger.debug("Router: Entering 'deployment_callback_on_failure'")
        try:
            exception = kwargs.get("exception", None)
            exception_status = getattr(exception, "status_code", "")
            _model_info = kwargs.get("litellm_params", {}).get("model_info", {})

            exception_headers = litellm.litellm_core_utils.exception_mapping_utils._get_response_headers(
                original_exception=exception
            )

            _time_to_cooldown = kwargs.get("litellm_params", {}).get(
                "cooldown_time", self.cooldown_time
            )

            if exception_headers is not None:

                _time_to_cooldown = (
                    litellm.utils._get_retry_after_from_exception_header(
                        response_headers=exception_headers
                    )
                )

                if _time_to_cooldown is None or _time_to_cooldown < 0:
                    # if the response headers did not read it -> set to default cooldown time
                    _time_to_cooldown = self.cooldown_time

            if isinstance(_model_info, dict):
                deployment_id = _model_info.get("id", None)
                increment_deployment_failures_for_current_minute(
                    litellm_router_instance=self,
                    deployment_id=deployment_id,
                )
                result = _set_cooldown_deployments(
                    litellm_router_instance=self,
                    exception_status=exception_status,
                    original_exception=exception,
                    deployment=deployment_id,
                    time_to_cooldown=_time_to_cooldown,
                )  # setting deployment_id in cooldown deployments

                return result
            else:
                verbose_router_logger.debug(
                    "Router: Exiting 'deployment_callback_on_failure' without cooldown. No model_info found."
                )
                return False

        except Exception as e:
            raise e

    async def async_deployment_callback_on_failure(
        self, kwargs, completion_response: Optional[Any], start_time, end_time
    ):
        """
        Update RPM usage for a deployment
        """
        deployment_name = kwargs["litellm_params"]["metadata"].get(
            "deployment", None
        )  # handles wildcard routes - by giving the original name sent to `litellm.completion`
        model_group = kwargs["litellm_params"]["metadata"].get("model_group", None)
        model_info = kwargs["litellm_params"].get("model_info", {}) or {}
        id = model_info.get("id", None)
        if model_group is None or id is None:
            return
        elif isinstance(id, int):
            id = str(id)
        parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)

        dt = get_utc_datetime()
        current_minute = dt.strftime(
            "%H-%M"
        )  # use the same timezone regardless of system clock

        ## RPM
        rpm_key = RouterCacheEnum.RPM.value.format(
            id=id, current_minute=current_minute, model=deployment_name
        )
        await self.cache.async_increment_cache(
            key=rpm_key,
            value=1,
            parent_otel_span=parent_otel_span,
            ttl=RoutingArgs.ttl.value,
        )

    def log_retry(self, kwargs: dict, e: Exception) -> dict:
        """
        When a retry or fallback happens, log the details of the just failed model call - similar to Sentry breadcrumbing
        """
        try:
            # Log failed model as the previous model
            previous_model = {
                "exception_type": type(e).__name__,
                "exception_string": str(e),
            }
            for (
                k,
                v,
            ) in (
                kwargs.items()
            ):  # log everything in kwargs except the old previous_models value - prevent nesting
                if k not in ["metadata", "messages", "original_function"]:
                    previous_model[k] = v
                elif k == "metadata" and isinstance(v, dict):
                    previous_model["metadata"] = {}  # type: ignore
                    for metadata_k, metadata_v in kwargs["metadata"].items():
                        if metadata_k != "previous_models":
                            previous_model[k][metadata_k] = metadata_v  # type: ignore

            # check current size of self.previous_models, if it's larger than 3, remove the first element
            if len(self.previous_models) > 3:
                self.previous_models.pop(0)

            self.previous_models.append(previous_model)
            kwargs["metadata"]["previous_models"] = self.previous_models
            return kwargs
        except Exception as e:
            raise e

    def _update_usage(
        self, deployment_id: str, parent_otel_span: Optional[Span]
    ) -> int:
        """
        Update deployment rpm for that minute

        Returns:
        - int: request count
        """
        rpm_key = deployment_id

        request_count = self.cache.get_cache(
            key=rpm_key, parent_otel_span=parent_otel_span, local_only=True
        )
        if request_count is None:
            request_count = 1
            self.cache.set_cache(
                key=rpm_key, value=request_count, local_only=True, ttl=60
            )  # only store for 60s
        else:
            request_count += 1
            self.cache.set_cache(
                key=rpm_key, value=request_count, local_only=True
            )  # don't change existing ttl

        return request_count

    def _has_default_fallbacks(self) -> bool:
        if self.fallbacks is None:
            return False
        for fallback in self.fallbacks:
            if isinstance(fallback, dict):
                if "*" in fallback:
                    return True
        return False

    def _should_raise_content_policy_error(
        self, model: str, response: ModelResponse, kwargs: dict
    ) -> bool:
        """
        Determines if a content policy error should be raised.

        Only raised if a fallback is available.

        Else, original response is returned.
        """
        if response.choices and len(response.choices) > 0:
            if response.choices[0].finish_reason != "content_filter":
                return False

        content_policy_fallbacks = kwargs.get(
            "content_policy_fallbacks", self.content_policy_fallbacks
        )

        ### ONLY RAISE ERROR IF CP FALLBACK AVAILABLE ###
        if content_policy_fallbacks is not None:
            fallback_model_group = None
            for item in content_policy_fallbacks:  # [{"gpt-3.5-turbo": ["gpt-4"]}]
                if list(item.keys())[0] == model:
                    fallback_model_group = item[model]
                    break

            if fallback_model_group is not None:
                return True
        elif self._has_default_fallbacks():  # default fallbacks set
            return True

        verbose_router_logger.info(
            "Content Policy Error occurred. No available fallbacks. Returning original response. model={}, content_policy_fallbacks={}".format(
                model, content_policy_fallbacks
            )
        )
        return False

    def _get_healthy_deployments(self, model: str, parent_otel_span: Optional[Span]):
        _all_deployments: list = []
        try:
            _, _all_deployments = self._common_checks_available_deployment(  # type: ignore
                model=model,
            )
            if isinstance(_all_deployments, dict):
                return []
        except Exception:
            pass

        unhealthy_deployments = _get_cooldown_deployments(
            litellm_router_instance=self, parent_otel_span=parent_otel_span
        )
        healthy_deployments: list = []
        for deployment in _all_deployments:
            if deployment["model_info"]["id"] in unhealthy_deployments:
                continue
            else:
                healthy_deployments.append(deployment)

        return healthy_deployments, _all_deployments

    async def _async_get_healthy_deployments(
        self, model: str, parent_otel_span: Optional[Span]
    ) -> Tuple[List[Dict], List[Dict]]:
        """
        Returns Tuple of:
        - Tuple[List[Dict], List[Dict]]:
            1. healthy_deployments: list of healthy deployments
            2. all_deployments: list of all deployments
        """
        _all_deployments: list = []
        try:
            _, _all_deployments = self._common_checks_available_deployment(  # type: ignore
                model=model,
            )
            if isinstance(_all_deployments, dict):
                return [], _all_deployments
        except Exception:
            pass

        unhealthy_deployments = await _async_get_cooldown_deployments(
            litellm_router_instance=self, parent_otel_span=parent_otel_span
        )
        healthy_deployments: list = []
        for deployment in _all_deployments:
            if deployment["model_info"]["id"] in unhealthy_deployments:
                continue
            else:
                healthy_deployments.append(deployment)
        return healthy_deployments, _all_deployments

    def routing_strategy_pre_call_checks(self, deployment: dict):
        """
        Mimics 'async_routing_strategy_pre_call_checks'

        Ensures consistent update rpm implementation for 'usage-based-routing-v2'

        Returns:
        - None

        Raises:
        - Rate Limit Exception - If the deployment is over it's tpm/rpm limits
        """
        for _callback in litellm.callbacks:
            if isinstance(_callback, CustomLogger):
                _callback.pre_call_check(deployment)

    async def async_routing_strategy_pre_call_checks(
        self,
        deployment: dict,
        parent_otel_span: Optional[Span],
        logging_obj: Optional[LiteLLMLogging] = None,
    ):
        """
        For usage-based-routing-v2, enables running rpm checks before the call is made, inside the semaphore.

        -> makes the calls concurrency-safe, when rpm limits are set for a deployment

        Returns:
        - None

        Raises:
        - Rate Limit Exception - If the deployment is over it's tpm/rpm limits
        """
        for _callback in litellm.callbacks:
            if isinstance(_callback, CustomLogger):
                try:
                    await _callback.async_pre_call_check(deployment, parent_otel_span)
                except litellm.RateLimitError as e:
                    ## LOG FAILURE EVENT
                    if logging_obj is not None:
                        asyncio.create_task(
                            logging_obj.async_failure_handler(
                                exception=e,
                                traceback_exception=traceback.format_exc(),
                                end_time=time.time(),
                            )
                        )
                        ## LOGGING
                        threading.Thread(
                            target=logging_obj.failure_handler,
                            args=(e, traceback.format_exc()),
                        ).start()  # log response
                    _set_cooldown_deployments(
                        litellm_router_instance=self,
                        exception_status=e.status_code,
                        original_exception=e,
                        deployment=deployment["model_info"]["id"],
                        time_to_cooldown=self.cooldown_time,
                    )
                    raise e
                except Exception as e:
                    ## LOG FAILURE EVENT
                    if logging_obj is not None:
                        asyncio.create_task(
                            logging_obj.async_failure_handler(
                                exception=e,
                                traceback_exception=traceback.format_exc(),
                                end_time=time.time(),
                            )
                        )
                        ## LOGGING
                        threading.Thread(
                            target=logging_obj.failure_handler,
                            args=(e, traceback.format_exc()),
                        ).start()  # log response
                    raise e

    async def async_callback_filter_deployments(
        self,
        model: str,
        healthy_deployments: List[dict],
        messages: Optional[List[AllMessageValues]],
        parent_otel_span: Optional[Span],
        request_kwargs: Optional[dict] = None,
        logging_obj: Optional[LiteLLMLogging] = None,
    ):
        """
        For usage-based-routing-v2, enables running rpm checks before the call is made, inside the semaphore.

        -> makes the calls concurrency-safe, when rpm limits are set for a deployment

        Returns:
        - None

        Raises:
        - Rate Limit Exception - If the deployment is over it's tpm/rpm limits
        """
        returned_healthy_deployments = healthy_deployments
        for _callback in litellm.callbacks:
            if isinstance(_callback, CustomLogger):
                try:
                    returned_healthy_deployments = (
                        await _callback.async_filter_deployments(
                            model=model,
                            healthy_deployments=returned_healthy_deployments,
                            messages=messages,
                            request_kwargs=request_kwargs,
                            parent_otel_span=parent_otel_span,
                        )
                    )
                except Exception as e:
                    ## LOG FAILURE EVENT
                    if logging_obj is not None:
                        asyncio.create_task(
                            logging_obj.async_failure_handler(
                                exception=e,
                                traceback_exception=traceback.format_exc(),
                                end_time=time.time(),
                            )
                        )
                        ## LOGGING
                        threading.Thread(
                            target=logging_obj.failure_handler,
                            args=(e, traceback.format_exc()),
                        ).start()  # log response
                    raise e
        return returned_healthy_deployments

    def _generate_model_id(self, model_group: str, litellm_params: dict):
        """
        Helper function to consistently generate the same id for a deployment

        - create a string from all the litellm params
        - hash
        - use hash as id
        """
        concat_str = model_group
        for k, v in litellm_params.items():
            if isinstance(k, str):
                concat_str += k
            elif isinstance(k, dict):
                concat_str += json.dumps(k)
            else:
                concat_str += str(k)

            if isinstance(v, str):
                concat_str += v
            elif isinstance(v, dict):
                concat_str += json.dumps(v)
            else:
                concat_str += str(v)

        hash_object = hashlib.sha256(concat_str.encode())

        return hash_object.hexdigest()

    def _create_deployment(
        self,
        deployment_info: dict,
        _model_name: str,
        _litellm_params: dict,
        _model_info: dict,
    ) -> Optional[Deployment]:
        """
        Create a deployment object and add it to the model list

        If the deployment is not active for the current environment, it is ignored

        Returns:
        - Deployment: The deployment object
        - None: If the deployment is not active for the current environment (if 'supported_environments' is set in litellm_params)
        """
        deployment = Deployment(
            **deployment_info,
            model_name=_model_name,
            litellm_params=LiteLLM_Params(**_litellm_params),
            model_info=_model_info,
        )

        ## REGISTER MODEL INFO IN LITELLM MODEL COST MAP
        _model_name = deployment.litellm_params.model
        if deployment.litellm_params.custom_llm_provider is not None:
            _model_name = (
                deployment.litellm_params.custom_llm_provider + "/" + _model_name
            )

        litellm.register_model(
            model_cost={
                _model_name: _model_info,
            }
        )

        ## Check if LLM Deployment is allowed for this deployment
        if self.deployment_is_active_for_environment(deployment=deployment) is not True:
            verbose_router_logger.warning(
                f"Ignoring deployment {deployment.model_name} as it is not active for environment {deployment.model_info['supported_environments']}"
            )
            return None

        deployment = self._add_deployment(deployment=deployment)

        model = deployment.to_json(exclude_none=True)

        self.model_list.append(model)
        return deployment

    def deployment_is_active_for_environment(self, deployment: Deployment) -> bool:
        """
        Function to check if a llm deployment is active for a given environment. Allows using the same config.yaml across multople environments

        Requires `LITELLM_ENVIRONMENT` to be set in .env. Valid values for environment:
            - development
            - staging
            - production

        Raises:
        - ValueError: If LITELLM_ENVIRONMENT is not set in .env or not one of the valid values
        - ValueError: If supported_environments is not set in model_info or not one of the valid values
        """
        if (
            deployment.model_info is None
            or "supported_environments" not in deployment.model_info
            or deployment.model_info["supported_environments"] is None
        ):
            return True
        litellm_environment = get_secret_str(secret_name="LITELLM_ENVIRONMENT")
        if litellm_environment is None:
            raise ValueError(
                "Set 'supported_environments' for model but not 'LITELLM_ENVIRONMENT' set in .env"
            )

        if litellm_environment not in VALID_LITELLM_ENVIRONMENTS:
            raise ValueError(
                f"LITELLM_ENVIRONMENT must be one of {VALID_LITELLM_ENVIRONMENTS}. but set as: {litellm_environment}"
            )

        for _env in deployment.model_info["supported_environments"]:
            if _env not in VALID_LITELLM_ENVIRONMENTS:
                raise ValueError(
                    f"supported_environments must be one of {VALID_LITELLM_ENVIRONMENTS}. but set as: {_env} for deployment: {deployment}"
                )

        if litellm_environment in deployment.model_info["supported_environments"]:
            return True
        return False

    def set_model_list(self, model_list: list):
        original_model_list = copy.deepcopy(model_list)
        self.model_list = []
        # we add api_base/api_key each model so load balancing between azure/gpt on api_base1 and api_base2 works

        for model in original_model_list:
            _model_name = model.pop("model_name")
            _litellm_params = model.pop("litellm_params")
            ## check if litellm params in os.environ
            if isinstance(_litellm_params, dict):
                for k, v in _litellm_params.items():
                    if isinstance(v, str) and v.startswith("os.environ/"):
                        _litellm_params[k] = get_secret(v)

            _model_info: dict = model.pop("model_info", {})

            # check if model info has id
            if "id" not in _model_info:
                _id = self._generate_model_id(_model_name, _litellm_params)
                _model_info["id"] = _id

            if _litellm_params.get("organization", None) is not None and isinstance(
                _litellm_params["organization"], list
            ):  # Addresses https://github.com/BerriAI/litellm/issues/3949
                for org in _litellm_params["organization"]:
                    _litellm_params["organization"] = org
                    self._create_deployment(
                        deployment_info=model,
                        _model_name=_model_name,
                        _litellm_params=_litellm_params,
                        _model_info=_model_info,
                    )
            else:
                self._create_deployment(
                    deployment_info=model,
                    _model_name=_model_name,
                    _litellm_params=_litellm_params,
                    _model_info=_model_info,
                )

        verbose_router_logger.debug(
            f"\nInitialized Model List {self.get_model_names()}"
        )
        self.model_names = [m["model_name"] for m in model_list]

    def _add_deployment(self, deployment: Deployment) -> Deployment:
        import os

        #### DEPLOYMENT NAMES INIT ########
        self.deployment_names.append(deployment.litellm_params.model)
        ############ Users can either pass tpm/rpm as a litellm_param or a router param ###########
        # for get_available_deployment, we use the litellm_param["rpm"]
        # in this snippet we also set rpm to be a litellm_param
        if (
            deployment.litellm_params.rpm is None
            and getattr(deployment, "rpm", None) is not None
        ):
            deployment.litellm_params.rpm = getattr(deployment, "rpm")

        if (
            deployment.litellm_params.tpm is None
            and getattr(deployment, "tpm", None) is not None
        ):
            deployment.litellm_params.tpm = getattr(deployment, "tpm")

        #### VALIDATE MODEL ########
        # check if model provider in supported providers
        (
            _model,
            custom_llm_provider,
            dynamic_api_key,
            api_base,
        ) = litellm.get_llm_provider(
            model=deployment.litellm_params.model,
            custom_llm_provider=deployment.litellm_params.get(
                "custom_llm_provider", None
            ),
        )

        # Check if user is trying to use model_name == "*"
        # this is a catch all model for their specific api key
        # if deployment.model_name == "*":
        #     if deployment.litellm_params.model == "*":
        #         # user wants to pass through all requests to litellm.acompletion for unknown deployments
        #         self.router_general_settings.pass_through_all_models = True
        #     else:
        #         self.default_deployment = deployment.to_json(exclude_none=True)
        # Check if user is using provider specific wildcard routing
        # example model_name = "databricks/*" or model_name = "anthropic/*"
        if "*" in deployment.model_name:
            # store this as a regex pattern - all deployments matching this pattern will be sent to this deployment
            # Store deployment.model_name as a regex pattern
            self.pattern_router.add_pattern(
                deployment.model_name, deployment.to_json(exclude_none=True)
            )
            if deployment.model_info.id:
                self.provider_default_deployment_ids.append(deployment.model_info.id)

        # Azure GPT-Vision Enhancements, users can pass os.environ/
        data_sources = deployment.litellm_params.get("dataSources", []) or []

        for data_source in data_sources:
            params = data_source.get("parameters", {})
            for param_key in ["endpoint", "key"]:
                # if endpoint or key set for Azure GPT Vision Enhancements, check if it's an env var
                if param_key in params and params[param_key].startswith("os.environ/"):
                    env_name = params[param_key].replace("os.environ/", "")
                    params[param_key] = os.environ.get(env_name, "")

        # done reading model["litellm_params"]
        if custom_llm_provider not in litellm.provider_list:
            raise Exception(f"Unsupported provider - {custom_llm_provider}")

        # # init OpenAI, Azure clients
        # InitalizeOpenAISDKClient.set_client(
        #     litellm_router_instance=self, model=deployment.to_json(exclude_none=True)
        # )

        self._initialize_deployment_for_pass_through(
            deployment=deployment,
            custom_llm_provider=custom_llm_provider,
            model=deployment.litellm_params.model,
        )

        return deployment

    def _initialize_deployment_for_pass_through(
        self, deployment: Deployment, custom_llm_provider: str, model: str
    ):
        """
        Optional: Initialize deployment for pass-through endpoints if `deployment.litellm_params.use_in_pass_through` is True

        Each provider uses diff .env vars for pass-through endpoints, this helper uses the deployment credentials to set the .env vars for pass-through endpoints
        """
        if deployment.litellm_params.use_in_pass_through is True:
            if custom_llm_provider == "vertex_ai":
                from litellm.proxy.vertex_ai_endpoints.vertex_endpoints import (
                    vertex_pass_through_router,
                )

                if (
                    deployment.litellm_params.vertex_project is None
                    or deployment.litellm_params.vertex_location is None
                    or deployment.litellm_params.vertex_credentials is None
                ):
                    raise ValueError(
                        "vertex_project, vertex_location, and vertex_credentials must be set in litellm_params for pass-through endpoints"
                    )
                vertex_pass_through_router.add_vertex_credentials(
                    project_id=deployment.litellm_params.vertex_project,
                    location=deployment.litellm_params.vertex_location,
                    vertex_credentials=deployment.litellm_params.vertex_credentials,
                )
            else:
                from litellm.proxy.pass_through_endpoints.llm_passthrough_endpoints import (
                    passthrough_endpoint_router,
                )

                passthrough_endpoint_router.set_pass_through_credentials(
                    custom_llm_provider=custom_llm_provider,
                    api_base=deployment.litellm_params.api_base,
                    api_key=deployment.litellm_params.api_key,
                )
            pass
        pass

    def add_deployment(self, deployment: Deployment) -> Optional[Deployment]:
        """
        Parameters:
        - deployment: Deployment - the deployment to be added to the Router

        Returns:
        - The added deployment
        - OR None (if deployment already exists)
        """
        # check if deployment already exists

        if deployment.model_info.id in self.get_model_ids():
            return None

        # add to model list
        _deployment = deployment.to_json(exclude_none=True)
        self.model_list.append(_deployment)

        # initialize client
        self._add_deployment(deployment=deployment)

        # add to model names
        self.model_names.append(deployment.model_name)
        return deployment

    def upsert_deployment(self, deployment: Deployment) -> Optional[Deployment]:
        """
        Add or update deployment
        Parameters:
        - deployment: Deployment - the deployment to be added to the Router

        Returns:
        - The added/updated deployment
        """
        # check if deployment already exists
        _deployment_model_id = deployment.model_info.id or ""

        _deployment_on_router: Optional[Deployment] = self.get_deployment(
            model_id=_deployment_model_id
        )
        if _deployment_on_router is not None:
            # deployment with this model_id exists on the router
            if deployment.litellm_params == _deployment_on_router.litellm_params:
                # No need to update
                return None

            # if there is a new litellm param -> then update the deployment
            # remove the previous deployment
            removal_idx: Optional[int] = None
            for idx, model in enumerate(self.model_list):
                if model["model_info"]["id"] == deployment.model_info.id:
                    removal_idx = idx

            if removal_idx is not None:
                self.model_list.pop(removal_idx)

        # if the model_id is not in router
        self.add_deployment(deployment=deployment)
        return deployment

    def delete_deployment(self, id: str) -> Optional[Deployment]:
        """
        Parameters:
        - id: str - the id of the deployment to be deleted

        Returns:
        - The deleted deployment
        - OR None (if deleted deployment not found)
        """
        deployment_idx = None
        for idx, m in enumerate(self.model_list):
            if m["model_info"]["id"] == id:
                deployment_idx = idx

        try:
            if deployment_idx is not None:
                item = self.model_list.pop(deployment_idx)
                return item
            else:
                return None
        except Exception:
            return None

    def get_deployment(self, model_id: str) -> Optional[Deployment]:
        """
        Returns -> Deployment or None

        Raise Exception -> if model found in invalid format
        """
        for model in self.model_list:
            if "model_info" in model and "id" in model["model_info"]:
                if model_id == model["model_info"]["id"]:
                    if isinstance(model, dict):
                        return Deployment(**model)
                    elif isinstance(model, Deployment):
                        return model
                    else:
                        raise Exception("Model invalid format - {}".format(type(model)))
        return None

    def get_deployment_credentials(self, model_id: str) -> Optional[dict]:
        """
        Returns -> dict of credentials for a given model id
        """
        deployment = self.get_deployment(model_id=model_id)
        if deployment is None:
            return None
        return CredentialLiteLLMParams(
            **deployment.litellm_params.model_dump(exclude_none=True)
        ).model_dump(exclude_none=True)

    def get_deployment_by_model_group_name(
        self, model_group_name: str
    ) -> Optional[Deployment]:
        """
        Returns -> Deployment or None

        Raise Exception -> if model found in invalid format
        """
        for model in self.model_list:
            if model["model_name"] == model_group_name:
                if isinstance(model, dict):
                    return Deployment(**model)
                elif isinstance(model, Deployment):
                    return model
                else:
                    raise Exception("Model Name invalid - {}".format(type(model)))
        return None

    @overload
    def get_router_model_info(
        self, deployment: dict, received_model_name: str, id: None = None
    ) -> ModelMapInfo:
        pass

    @overload
    def get_router_model_info(
        self, deployment: None, received_model_name: str, id: str
    ) -> ModelMapInfo:
        pass

    def get_router_model_info(
        self,
        deployment: Optional[dict],
        received_model_name: str,
        id: Optional[str] = None,
    ) -> ModelMapInfo:
        """
        For a given model id, return the model info (max tokens, input cost, output cost, etc.).

        Augment litellm info with additional params set in `model_info`.

        For azure models, ignore the `model:`. Only set max tokens, cost values if base_model is set.

        Returns
        - ModelInfo - If found -> typed dict with max tokens, input cost, etc.

        Raises:
        - ValueError -> If model is not mapped yet
        """
        if id is not None:
            _deployment = self.get_deployment(model_id=id)
            if _deployment is not None:
                deployment = _deployment.model_dump(exclude_none=True)

        if deployment is None:
            raise ValueError("Deployment not found")

        ## GET BASE MODEL
        base_model = deployment.get("model_info", {}).get("base_model", None)
        if base_model is None:
            base_model = deployment.get("litellm_params", {}).get("base_model", None)

        model = base_model

        ## GET PROVIDER
        _model, custom_llm_provider, _, _ = litellm.get_llm_provider(
            model=deployment.get("litellm_params", {}).get("model", ""),
            litellm_params=LiteLLM_Params(**deployment.get("litellm_params", {})),
        )

        ## SET MODEL TO 'model=' - if base_model is None + not azure
        if custom_llm_provider == "azure" and base_model is None:
            verbose_router_logger.error(
                "Could not identify azure model. Set azure 'base_model' for accurate max tokens, cost tracking, etc.- https://docs.litellm.ai/docs/proxy/cost_tracking#spend-tracking-for-azure-openai-models"
            )
        elif custom_llm_provider != "azure":
            model = _model

            potential_models = self.pattern_router.route(received_model_name)
            if "*" in model and potential_models is not None:  # if wildcard route
                for potential_model in potential_models:
                    try:
                        if potential_model.get("model_info", {}).get(
                            "id"
                        ) == deployment.get("model_info", {}).get("id"):
                            model = potential_model.get("litellm_params", {}).get(
                                "model"
                            )
                            break
                    except Exception:
                        pass

        ## GET LITELLM MODEL INFO - raises exception, if model is not mapped
        if not model.startswith("{}/".format(custom_llm_provider)):
            model_info_name = "{}/{}".format(custom_llm_provider, model)
        else:
            model_info_name = model

        model_info = litellm.get_model_info(model=model_info_name)

        ## CHECK USER SET MODEL INFO
        user_model_info = deployment.get("model_info", {})

        model_info.update(user_model_info)

        return model_info

    def get_model_info(self, id: str) -> Optional[dict]:
        """
        For a given model id, return the model info

        Returns
        - dict: the model in list with 'model_name', 'litellm_params', Optional['model_info']
        - None: could not find deployment in list
        """
        for model in self.model_list:
            if "model_info" in model and "id" in model["model_info"]:
                if id == model["model_info"]["id"]:
                    return model
        return None

    def get_model_group(self, id: str) -> Optional[List]:
        """
        Return list of all models in the same model group as that model id
        """

        model_info = self.get_model_info(id=id)
        if model_info is None:
            return None

        model_name = model_info["model_name"]
        return self.get_model_list(model_name=model_name)

    def _set_model_group_info(  # noqa: PLR0915
        self, model_group: str, user_facing_model_group_name: str
    ) -> Optional[ModelGroupInfo]:
        """
        For a given model group name, return the combined model info

        Returns:
        - ModelGroupInfo if able to construct a model group
        - None if error constructing model group info
        """
        model_group_info: Optional[ModelGroupInfo] = None

        total_tpm: Optional[int] = None
        total_rpm: Optional[int] = None
        configurable_clientside_auth_params: CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS = None
        model_list = self.get_model_list(model_name=model_group)
        if model_list is None:
            return None
        for model in model_list:
            is_match = False
            if (
                "model_name" in model and model["model_name"] == model_group
            ):  # exact match
                is_match = True
            elif (
                "model_name" in model
                and self.pattern_router.route(model_group) is not None
            ):  # wildcard model
                is_match = True

            if not is_match:
                continue
            # model in model group found #
            litellm_params = LiteLLM_Params(**model["litellm_params"])  # type: ignore
            # get configurable clientside auth params
            configurable_clientside_auth_params = (
                litellm_params.configurable_clientside_auth_params
            )
            # get model tpm
            _deployment_tpm: Optional[int] = None
            if _deployment_tpm is None:
                _deployment_tpm = model.get("tpm", None)  # type: ignore
            if _deployment_tpm is None:
                _deployment_tpm = model.get("litellm_params", {}).get("tpm", None)  # type: ignore
            if _deployment_tpm is None:
                _deployment_tpm = model.get("model_info", {}).get("tpm", None)  # type: ignore

            # get model rpm
            _deployment_rpm: Optional[int] = None
            if _deployment_rpm is None:
                _deployment_rpm = model.get("rpm", None)  # type: ignore
            if _deployment_rpm is None:
                _deployment_rpm = model.get("litellm_params", {}).get("rpm", None)  # type: ignore
            if _deployment_rpm is None:
                _deployment_rpm = model.get("model_info", {}).get("rpm", None)  # type: ignore

            # get model info
            try:
                model_info = litellm.get_model_info(model=litellm_params.model)
            except Exception:
                model_info = None
            # get llm provider
            litellm_model, llm_provider = "", ""
            try:
                litellm_model, llm_provider, _, _ = litellm.get_llm_provider(
                    model=litellm_params.model,
                    custom_llm_provider=litellm_params.custom_llm_provider,
                )
            except litellm.exceptions.BadRequestError as e:
                verbose_router_logger.error(
                    "litellm.router.py::get_model_group_info() - {}".format(str(e))
                )

            if model_info is None:
                supported_openai_params = litellm.get_supported_openai_params(
                    model=litellm_model, custom_llm_provider=llm_provider
                )
                if supported_openai_params is None:
                    supported_openai_params = []
                model_info = ModelMapInfo(
                    key=model_group,
                    max_tokens=None,
                    max_input_tokens=None,
                    max_output_tokens=None,
                    input_cost_per_token=0,
                    output_cost_per_token=0,
                    litellm_provider=llm_provider,
                    mode="chat",
                    supported_openai_params=supported_openai_params,
                    supports_system_messages=None,
                )

            if model_group_info is None:
                model_group_info = ModelGroupInfo(
                    model_group=user_facing_model_group_name, providers=[llm_provider], **model_info  # type: ignore
                )
            else:
                # if max_input_tokens > curr
                # if max_output_tokens > curr
                # if input_cost_per_token > curr
                # if output_cost_per_token > curr
                # supports_parallel_function_calling == True
                # supports_vision == True
                # supports_function_calling == True
                if llm_provider not in model_group_info.providers:
                    model_group_info.providers.append(llm_provider)
                if (
                    model_info.get("max_input_tokens", None) is not None
                    and model_info["max_input_tokens"] is not None
                    and (
                        model_group_info.max_input_tokens is None
                        or model_info["max_input_tokens"]
                        > model_group_info.max_input_tokens
                    )
                ):
                    model_group_info.max_input_tokens = model_info["max_input_tokens"]
                if (
                    model_info.get("max_output_tokens", None) is not None
                    and model_info["max_output_tokens"] is not None
                    and (
                        model_group_info.max_output_tokens is None
                        or model_info["max_output_tokens"]
                        > model_group_info.max_output_tokens
                    )
                ):
                    model_group_info.max_output_tokens = model_info["max_output_tokens"]
                if model_info.get("input_cost_per_token", None) is not None and (
                    model_group_info.input_cost_per_token is None
                    or model_info["input_cost_per_token"]
                    > model_group_info.input_cost_per_token
                ):
                    model_group_info.input_cost_per_token = model_info[
                        "input_cost_per_token"
                    ]
                if model_info.get("output_cost_per_token", None) is not None and (
                    model_group_info.output_cost_per_token is None
                    or model_info["output_cost_per_token"]
                    > model_group_info.output_cost_per_token
                ):
                    model_group_info.output_cost_per_token = model_info[
                        "output_cost_per_token"
                    ]
                if (
                    model_info.get("supports_parallel_function_calling", None)
                    is not None
                    and model_info["supports_parallel_function_calling"] is True  # type: ignore
                ):
                    model_group_info.supports_parallel_function_calling = True
                if (
                    model_info.get("supports_vision", None) is not None
                    and model_info["supports_vision"] is True  # type: ignore
                ):
                    model_group_info.supports_vision = True
                if (
                    model_info.get("supports_function_calling", None) is not None
                    and model_info["supports_function_calling"] is True  # type: ignore
                ):
                    model_group_info.supports_function_calling = True
                if (
                    model_info.get("supported_openai_params", None) is not None
                    and model_info["supported_openai_params"] is not None
                ):
                    model_group_info.supported_openai_params = model_info[
                        "supported_openai_params"
                    ]
                if model_info.get("tpm", None) is not None and _deployment_tpm is None:
                    _deployment_tpm = model_info.get("tpm")
                if model_info.get("rpm", None) is not None and _deployment_rpm is None:
                    _deployment_rpm = model_info.get("rpm")

            if _deployment_tpm is not None:
                if total_tpm is None:
                    total_tpm = 0
                total_tpm += _deployment_tpm  # type: ignore

            if _deployment_rpm is not None:
                if total_rpm is None:
                    total_rpm = 0
                total_rpm += _deployment_rpm  # type: ignore
        if model_group_info is not None:
            ## UPDATE WITH TOTAL TPM/RPM FOR MODEL GROUP
            if total_tpm is not None:
                model_group_info.tpm = total_tpm

            if total_rpm is not None:
                model_group_info.rpm = total_rpm

            ## UPDATE WITH CONFIGURABLE CLIENTSIDE AUTH PARAMS FOR MODEL GROUP
            if configurable_clientside_auth_params is not None:
                model_group_info.configurable_clientside_auth_params = (
                    configurable_clientside_auth_params
                )

        return model_group_info

    def get_model_group_info(self, model_group: str) -> Optional[ModelGroupInfo]:
        """
        For a given model group name, return the combined model info

        Returns:
        - ModelGroupInfo if able to construct a model group
        - None if error constructing model group info or hidden model group
        """
        ## Check if model group alias
        if model_group in self.model_group_alias:
            item = self.model_group_alias[model_group]
            if isinstance(item, str):
                _router_model_group = item
            elif isinstance(item, dict):
                if item["hidden"] is True:
                    return None
                else:
                    _router_model_group = item["model"]
            else:
                return None

            return self._set_model_group_info(
                model_group=_router_model_group,
                user_facing_model_group_name=model_group,
            )

        ## Check if actual model
        return self._set_model_group_info(
            model_group=model_group, user_facing_model_group_name=model_group
        )

    async def get_model_group_usage(
        self, model_group: str
    ) -> Tuple[Optional[int], Optional[int]]:
        """
        Returns current tpm/rpm usage for model group

        Parameters:
        - model_group: str - the received model name from the user (can be a wildcard route).

        Returns:
        - usage: Tuple[tpm, rpm]
        """
        dt = get_utc_datetime()
        current_minute = dt.strftime(
            "%H-%M"
        )  # use the same timezone regardless of system clock
        tpm_keys: List[str] = []
        rpm_keys: List[str] = []

        model_list = self.get_model_list(model_name=model_group)
        if model_list is None:  # no matching deployments
            return None, None

        for model in model_list:
            id: Optional[str] = model.get("model_info", {}).get("id")  # type: ignore
            litellm_model: Optional[str] = model["litellm_params"].get(
                "model"
            )  # USE THE MODEL SENT TO litellm.completion() - consistent with how global_router cache is written.
            if id is None or litellm_model is None:
                continue
            tpm_keys.append(
                RouterCacheEnum.TPM.value.format(
                    id=id,
                    model=litellm_model,
                    current_minute=current_minute,
                )
            )
            rpm_keys.append(
                RouterCacheEnum.RPM.value.format(
                    id=id,
                    model=litellm_model,
                    current_minute=current_minute,
                )
            )
        combined_tpm_rpm_keys = tpm_keys + rpm_keys

        combined_tpm_rpm_values = await self.cache.async_batch_get_cache(
            keys=combined_tpm_rpm_keys
        )
        if combined_tpm_rpm_values is None:
            return None, None

        tpm_usage_list: Optional[List] = combined_tpm_rpm_values[: len(tpm_keys)]
        rpm_usage_list: Optional[List] = combined_tpm_rpm_values[len(tpm_keys) :]

        ## TPM
        tpm_usage: Optional[int] = None
        if tpm_usage_list is not None:
            for t in tpm_usage_list:
                if isinstance(t, int):
                    if tpm_usage is None:
                        tpm_usage = 0
                    tpm_usage += t
        ## RPM
        rpm_usage: Optional[int] = None
        if rpm_usage_list is not None:
            for t in rpm_usage_list:
                if isinstance(t, int):
                    if rpm_usage is None:
                        rpm_usage = 0
                    rpm_usage += t
        return tpm_usage, rpm_usage

    @lru_cache(maxsize=64)
    def _cached_get_model_group_info(
        self, model_group: str
    ) -> Optional[ModelGroupInfo]:
        """
        Cached version of get_model_group_info, uses @lru_cache wrapper

        This is a speed optimization, since set_response_headers makes a call to get_model_group_info on every request
        """
        return self.get_model_group_info(model_group)

    async def get_remaining_model_group_usage(self, model_group: str) -> Dict[str, int]:
        model_group_info = self._cached_get_model_group_info(model_group)

        if model_group_info is not None and model_group_info.tpm is not None:
            tpm_limit = model_group_info.tpm
        else:
            tpm_limit = None

        if model_group_info is not None and model_group_info.rpm is not None:
            rpm_limit = model_group_info.rpm
        else:
            rpm_limit = None

        if tpm_limit is None and rpm_limit is None:
            return {}

        current_tpm, current_rpm = await self.get_model_group_usage(model_group)

        returned_dict = {}
        if tpm_limit is not None:
            returned_dict["x-ratelimit-remaining-tokens"] = tpm_limit - (
                current_tpm or 0
            )
            returned_dict["x-ratelimit-limit-tokens"] = tpm_limit
        if rpm_limit is not None:
            returned_dict["x-ratelimit-remaining-requests"] = rpm_limit - (
                current_rpm or 0
            )
            returned_dict["x-ratelimit-limit-requests"] = rpm_limit

        return returned_dict

    async def set_response_headers(
        self, response: Any, model_group: Optional[str] = None
    ) -> Any:
        """
        Add the most accurate rate limit headers for a given model response.

        ## TODO: add model group rate limit headers
        # - if healthy_deployments > 1, return model group rate limit headers
        # - else return the model's rate limit headers
        """
        if (
            isinstance(response, BaseModel)
            and hasattr(response, "_hidden_params")
            and isinstance(response._hidden_params, dict)  # type: ignore
        ):
            response._hidden_params.setdefault("additional_headers", {})  # type: ignore
            response._hidden_params["additional_headers"][  # type: ignore
                "x-litellm-model-group"
            ] = model_group

            additional_headers = response._hidden_params["additional_headers"]  # type: ignore

            if (
                "x-ratelimit-remaining-tokens" not in additional_headers
                and "x-ratelimit-remaining-requests" not in additional_headers
                and model_group is not None
            ):
                remaining_usage = await self.get_remaining_model_group_usage(
                    model_group
                )

                for header, value in remaining_usage.items():
                    if value is not None:
                        additional_headers[header] = value
        return response

    def get_model_ids(self, model_name: Optional[str] = None) -> List[str]:
        """
        if 'model_name' is none, returns all.

        Returns list of model id's.
        """
        ids = []
        for model in self.model_list:
            if "model_info" in model and "id" in model["model_info"]:
                id = model["model_info"]["id"]
                if model_name is not None and model["model_name"] == model_name:
                    ids.append(id)
                elif model_name is None:
                    ids.append(id)
        return ids

    def _get_all_deployments(
        self, model_name: str, model_alias: Optional[str] = None
    ) -> List[DeploymentTypedDict]:
        """
        Return all deployments of a model name

        Used for accurate 'get_model_list'.
        """
        returned_models: List[DeploymentTypedDict] = []
        for model in self.model_list:
            if model_name is not None and model["model_name"] == model_name:
                if model_alias is not None:
                    alias_model = copy.deepcopy(model)
                    alias_model["model_name"] = model_alias
                    returned_models.append(alias_model)
                else:
                    returned_models.append(model)

        return returned_models

    def get_model_names(self, team_id: Optional[str] = None) -> List[str]:
        """
        Returns all possible model names for the router, including models defined via model_group_alias.

        If a team_id is provided, only deployments configured with that team_id (i.e. team‐specific models)
        will yield their team public name.
        """
        deployments = self.get_model_list() or []
        model_names = []

        for deployment in deployments:
            model_info = deployment.get("model_info")
            if self._is_team_specific_model(model_info):
                team_model_name = self._get_team_specific_model(
                    deployment=deployment, team_id=team_id
                )
                if team_model_name:
                    model_names.append(team_model_name)
            else:
                model_names.append(deployment.get("model_name", ""))

        return model_names

    def _get_team_specific_model(
        self, deployment: DeploymentTypedDict, team_id: Optional[str] = None
    ) -> Optional[str]:
        """
        Get the team-specific model name if team_id matches the deployment.

        Args:
            deployment: DeploymentTypedDict - The model deployment
            team_id: Optional[str] - If passed, will return router models set with a `team_id` matching the passed `team_id`.

        Returns:
            str: The `team_public_model_name` if team_id matches
            None: If team_id doesn't match or no team info exists
        """
        model_info: Optional[Dict] = deployment.get("model_info") or {}
        if model_info is None:
            return None
        if team_id == model_info.get("team_id"):
            return model_info.get("team_public_model_name")
        return None

    def _is_team_specific_model(self, model_info: Optional[Dict]) -> bool:
        """
        Check if model info contains team-specific configuration.

        Args:
            model_info: Model information dictionary

        Returns:
            bool: True if model has team-specific configuration
        """
        return bool(model_info and model_info.get("team_id"))

    def get_model_list_from_model_alias(
        self, model_name: Optional[str] = None
    ) -> List[DeploymentTypedDict]:
        """
        Helper function to get model list from model alias.

        Used by `.get_model_list` to get model list from model alias.
        """
        returned_models: List[DeploymentTypedDict] = []
        for model_alias, model_value in self.model_group_alias.items():
            if model_name is not None and model_alias != model_name:
                continue
            if isinstance(model_value, str):
                _router_model_name: str = model_value
            elif isinstance(model_value, dict):
                _model_value = RouterModelGroupAliasItem(**model_value)  # type: ignore
                if _model_value["hidden"] is True:
                    continue
                else:
                    _router_model_name = _model_value["model"]
            else:
                continue

            returned_models.extend(
                self._get_all_deployments(
                    model_name=_router_model_name, model_alias=model_alias
                )
            )

        return returned_models

    def get_model_list(
        self, model_name: Optional[str] = None
    ) -> Optional[List[DeploymentTypedDict]]:
        """
        Includes router model_group_alias'es as well
        """
        if hasattr(self, "model_list"):
            returned_models: List[DeploymentTypedDict] = []

            if model_name is not None:
                returned_models.extend(self._get_all_deployments(model_name=model_name))

            if hasattr(self, "model_group_alias"):
                returned_models.extend(
                    self.get_model_list_from_model_alias(model_name=model_name)
                )

            if len(returned_models) == 0:  # check if wildcard route
                potential_wildcard_models = self.pattern_router.route(model_name)
                if potential_wildcard_models is not None:
                    returned_models.extend(
                        [DeploymentTypedDict(**m) for m in potential_wildcard_models]  # type: ignore
                    )

            if model_name is None:
                returned_models += self.model_list

                return returned_models

            return returned_models
        return None

    def get_model_access_groups(
        self, model_name: Optional[str] = None, model_access_group: Optional[str] = None
    ) -> Dict[str, List[str]]:
        """
        If model_name is provided, only return access groups for that model.

        Parameters:
        - model_name: Optional[str] - the received model name from the user (can be a wildcard route). If set, will only return access groups for that model.
        - model_access_group: Optional[str] - the received model access group from the user. If set, will only return models for that access group.
        """
        from collections import defaultdict

        access_groups = defaultdict(list)

        model_list = self.get_model_list(model_name=model_name)
        if model_list:
            for m in model_list:
                _model_info = m.get("model_info")
                if _model_info:
                    for group in _model_info.get("access_groups", []) or []:
                        if model_access_group is not None:
                            if group == model_access_group:
                                model_name = m["model_name"]
                                access_groups[group].append(model_name)
                        else:
                            model_name = m["model_name"]
                            access_groups[group].append(model_name)

        return access_groups

    def _is_model_access_group_for_wildcard_route(
        self, model_access_group: str
    ) -> bool:
        """
        Return True if model access group is a wildcard route
        """
        # GET ACCESS GROUPS
        access_groups = self.get_model_access_groups(
            model_access_group=model_access_group
        )

        if len(access_groups) == 0:
            return False

        models = access_groups.get(model_access_group, [])

        for model in models:
            # CHECK IF MODEL ACCESS GROUP IS A WILDCARD ROUTE
            if self.pattern_router.route(request=model) is not None:
                return True

        return False

    def get_settings(self):
        """
        Get router settings method, returns a dictionary of the settings and their values.
        For example get the set values for routing_strategy_args, routing_strategy, allowed_fails, cooldown_time, num_retries, timeout, max_retries, retry_after
        """
        _all_vars = vars(self)
        _settings_to_return = {}
        vars_to_include = [
            "routing_strategy_args",
            "routing_strategy",
            "allowed_fails",
            "cooldown_time",
            "num_retries",
            "timeout",
            "max_retries",
            "retry_after",
            "fallbacks",
            "context_window_fallbacks",
            "model_group_retry_policy",
        ]

        for var in vars_to_include:
            if var in _all_vars:
                _settings_to_return[var] = _all_vars[var]
            if (
                var == "routing_strategy_args"
                and self.routing_strategy == "latency-based-routing"
            ):
                _settings_to_return[var] = self.lowestlatency_logger.routing_args.json()
        return _settings_to_return

    def update_settings(self, **kwargs):
        """
        Update the router settings.
        """
        # only the following settings are allowed to be configured
        _allowed_settings = [
            "routing_strategy_args",
            "routing_strategy",
            "allowed_fails",
            "cooldown_time",
            "num_retries",
            "timeout",
            "max_retries",
            "retry_after",
            "fallbacks",
            "context_window_fallbacks",
            "model_group_retry_policy",
        ]

        _int_settings = [
            "timeout",
            "num_retries",
            "retry_after",
            "allowed_fails",
            "cooldown_time",
        ]

        _existing_router_settings = self.get_settings()
        for var in kwargs:
            if var in _allowed_settings:
                if var in _int_settings:
                    _casted_value = int(kwargs[var])
                    setattr(self, var, _casted_value)
                else:
                    # only run routing strategy init if it has changed
                    if (
                        var == "routing_strategy"
                        and _existing_router_settings["routing_strategy"] != kwargs[var]
                    ):
                        self.routing_strategy_init(
                            routing_strategy=kwargs[var],
                            routing_strategy_args=kwargs.get(
                                "routing_strategy_args", {}
                            ),
                        )
                    setattr(self, var, kwargs[var])
            else:
                verbose_router_logger.debug("Setting {} is not allowed".format(var))
        verbose_router_logger.debug(f"Updated Router settings: {self.get_settings()}")

    def _get_client(self, deployment, kwargs, client_type=None):
        """
        Returns the appropriate client based on the given deployment, kwargs, and client_type.

        Parameters:
            deployment (dict): The deployment dictionary containing the clients.
            kwargs (dict): The keyword arguments passed to the function.
            client_type (str): The type of client to return.

        Returns:
            The appropriate client based on the given client_type and kwargs.
        """
        model_id = deployment["model_info"]["id"]
        parent_otel_span: Optional[Span] = _get_parent_otel_span_from_kwargs(kwargs)
        if client_type == "max_parallel_requests":
            cache_key = "{}_max_parallel_requests_client".format(model_id)
            client = self.cache.get_cache(
                key=cache_key, local_only=True, parent_otel_span=parent_otel_span
            )
            if client is None:
                InitalizeCachedClient.set_max_parallel_requests_client(
                    litellm_router_instance=self, model=deployment
                )
                client = self.cache.get_cache(
                    key=cache_key, local_only=True, parent_otel_span=parent_otel_span
                )
            return client
        elif client_type == "async":
            if kwargs.get("stream") is True:
                cache_key = f"{model_id}_stream_async_client"
                client = self.cache.get_cache(
                    key=cache_key, local_only=True, parent_otel_span=parent_otel_span
                )
                return client
            else:
                cache_key = f"{model_id}_async_client"
                client = self.cache.get_cache(
                    key=cache_key, local_only=True, parent_otel_span=parent_otel_span
                )
                return client
        else:
            if kwargs.get("stream") is True:
                cache_key = f"{model_id}_stream_client"
                client = self.cache.get_cache(
                    key=cache_key, parent_otel_span=parent_otel_span
                )
                return client
            else:
                cache_key = f"{model_id}_client"
                client = self.cache.get_cache(
                    key=cache_key, parent_otel_span=parent_otel_span
                )
                return client

    def _pre_call_checks(  # noqa: PLR0915
        self,
        model: str,
        healthy_deployments: List,
        messages: List[Dict[str, str]],
        request_kwargs: Optional[dict] = None,
    ):
        """
        Filter out model in model group, if:

        - model context window < message length. For azure openai models, requires 'base_model' is set. - https://docs.litellm.ai/docs/proxy/cost_tracking#spend-tracking-for-azure-openai-models
        - filter models above rpm limits
        - if region given, filter out models not in that region / unknown region
        - [TODO] function call and model doesn't support function calling
        """

        verbose_router_logger.debug(
            f"Starting Pre-call checks for deployments in model={model}"
        )

        _returned_deployments = copy.deepcopy(healthy_deployments)

        invalid_model_indices = []

        try:
            input_tokens = litellm.token_counter(messages=messages)
        except Exception as e:
            verbose_router_logger.error(
                "litellm.router.py::_pre_call_checks: failed to count tokens. Returning initial list of deployments. Got - {}".format(
                    str(e)
                )
            )
            return _returned_deployments

        _context_window_error = False
        _potential_error_str = ""
        _rate_limit_error = False
        parent_otel_span = _get_parent_otel_span_from_kwargs(request_kwargs)

        ## get model group RPM ##
        dt = get_utc_datetime()
        current_minute = dt.strftime("%H-%M")
        rpm_key = f"{model}:rpm:{current_minute}"
        model_group_cache = (
            self.cache.get_cache(
                key=rpm_key, local_only=True, parent_otel_span=parent_otel_span
            )
            or {}
        )  # check the in-memory cache used by lowest_latency and usage-based routing. Only check the local cache.
        for idx, deployment in enumerate(_returned_deployments):
            # see if we have the info for this model
            try:
                base_model = deployment.get("model_info", {}).get("base_model", None)
                if base_model is None:
                    base_model = deployment.get("litellm_params", {}).get(
                        "base_model", None
                    )
                model_info = self.get_router_model_info(
                    deployment=deployment, received_model_name=model
                )
                model = base_model or deployment.get("litellm_params", {}).get(
                    "model", None
                )

                if (
                    isinstance(model_info, dict)
                    and model_info.get("max_input_tokens", None) is not None
                ):
                    if (
                        isinstance(model_info["max_input_tokens"], int)
                        and input_tokens > model_info["max_input_tokens"]
                    ):
                        invalid_model_indices.append(idx)
                        _context_window_error = True
                        _potential_error_str += (
                            "Model={}, Max Input Tokens={}, Got={}".format(
                                model, model_info["max_input_tokens"], input_tokens
                            )
                        )
                        continue
            except Exception as e:
                verbose_router_logger.exception("An error occurs - {}".format(str(e)))

            _litellm_params = deployment.get("litellm_params", {})
            model_id = deployment.get("model_info", {}).get("id", "")
            ## RPM CHECK ##
            ### get local router cache ###
            current_request_cache_local = (
                self.cache.get_cache(
                    key=model_id, local_only=True, parent_otel_span=parent_otel_span
                )
                or 0
            )
            ### get usage based cache ###
            if (
                isinstance(model_group_cache, dict)
                and self.routing_strategy != "usage-based-routing-v2"
            ):
                model_group_cache[model_id] = model_group_cache.get(model_id, 0)

                current_request = max(
                    current_request_cache_local, model_group_cache[model_id]
                )

                if (
                    isinstance(_litellm_params, dict)
                    and _litellm_params.get("rpm", None) is not None
                ):
                    if (
                        isinstance(_litellm_params["rpm"], int)
                        and _litellm_params["rpm"] <= current_request
                    ):
                        invalid_model_indices.append(idx)
                        _rate_limit_error = True
                        continue

            ## REGION CHECK ##
            if (
                request_kwargs is not None
                and request_kwargs.get("allowed_model_region") is not None
            ):
                allowed_model_region = request_kwargs.get("allowed_model_region")

                if allowed_model_region is not None:
                    if not is_region_allowed(
                        litellm_params=LiteLLM_Params(**_litellm_params),
                        allowed_model_region=allowed_model_region,
                    ):
                        invalid_model_indices.append(idx)
                        continue

            ## INVALID PARAMS ## -> catch 'gpt-3.5-turbo-16k' not supporting 'response_format' param
            if request_kwargs is not None and litellm.drop_params is False:
                # get supported params
                model, custom_llm_provider, _, _ = litellm.get_llm_provider(
                    model=model, litellm_params=LiteLLM_Params(**_litellm_params)
                )

                supported_openai_params = litellm.get_supported_openai_params(
                    model=model, custom_llm_provider=custom_llm_provider
                )

                if supported_openai_params is None:
                    continue
                else:
                    # check the non-default openai params in request kwargs
                    non_default_params = litellm.utils.get_non_default_params(
                        passed_params=request_kwargs
                    )
                    special_params = ["response_format"]
                    # check if all params are supported
                    for k, v in non_default_params.items():
                        if k not in supported_openai_params and k in special_params:
                            # if not -> invalid model
                            verbose_router_logger.debug(
                                f"INVALID MODEL INDEX @ REQUEST KWARG FILTERING, k={k}"
                            )
                            invalid_model_indices.append(idx)

        if len(invalid_model_indices) == len(_returned_deployments):
            """
            - no healthy deployments available b/c context window checks or rate limit error

            - First check for rate limit errors (if this is true, it means the model passed the context window check but failed the rate limit check)
            """

            if _rate_limit_error is True:  # allow generic fallback logic to take place
                raise RouterRateLimitErrorBasic(
                    model=model,
                )

            elif _context_window_error is True:
                raise litellm.ContextWindowExceededError(
                    message="litellm._pre_call_checks: Context Window exceeded for given call. No models have context window large enough for this call.\n{}".format(
                        _potential_error_str
                    ),
                    model=model,
                    llm_provider="",
                )
        if len(invalid_model_indices) > 0:
            for idx in reversed(invalid_model_indices):
                _returned_deployments.pop(idx)

        ## ORDER FILTERING ## -> if user set 'order' in deployments, return deployments with lowest order (e.g. order=1 > order=2)
        if len(_returned_deployments) > 0:
            _returned_deployments = litellm.utils._get_order_filtered_deployments(
                _returned_deployments
            )

        return _returned_deployments

    def _get_model_from_alias(self, model: str) -> Optional[str]:
        """
        Get the model from the alias.

        Returns:
        - str, the litellm model name
        - None, if model is not in model group alias
        """
        if model not in self.model_group_alias:
            return None

        _item = self.model_group_alias[model]
        if isinstance(_item, str):
            model = _item
        else:
            model = _item["model"]

        return model

    def _get_deployment_by_litellm_model(self, model: str) -> List:
        """
        Get the deployment by litellm model.
        """
        return [m for m in self.model_list if m["litellm_params"]["model"] == model]

    def _common_checks_available_deployment(
        self,
        model: str,
        messages: Optional[List[Dict[str, str]]] = None,
        input: Optional[Union[str, List]] = None,
        specific_deployment: Optional[bool] = False,
    ) -> Tuple[str, Union[List, Dict]]:
        """
        Common checks for 'get_available_deployment' across sync + async call.

        If 'healthy_deployments' returned is None, this means the user chose a specific deployment

        Returns
        - str, the litellm model name
        - List, if multiple models chosen
        - Dict, if specific model chosen
        """
        # check if aliases set on litellm model alias map
        if specific_deployment is True:
            return model, self._get_deployment_by_litellm_model(model=model)
        elif model in self.get_model_ids():
            deployment = self.get_deployment(model_id=model)
            if deployment is not None:
                deployment_model = deployment.litellm_params.model
                return deployment_model, deployment.model_dump(exclude_none=True)
            raise ValueError(
                f"LiteLLM Router: Trying to call specific deployment, but Model ID :{model} does not exist in \
                    Model ID List: {self.get_model_ids}"
            )

        _model_from_alias = self._get_model_from_alias(model=model)
        if _model_from_alias is not None:
            model = _model_from_alias

        if model not in self.model_names:
            # check if provider/ specific wildcard routing use pattern matching
            pattern_deployments = self.pattern_router.get_deployments_by_pattern(
                model=model,
            )
            if pattern_deployments:
                return model, pattern_deployments

            # check if default deployment is set
            if self.default_deployment is not None:
                updated_deployment = copy.deepcopy(
                    self.default_deployment
                )  # self.default_deployment
                updated_deployment["litellm_params"]["model"] = model
                return model, updated_deployment

        ## get healthy deployments
        ### get all deployments
        healthy_deployments = self._get_all_deployments(model_name=model)

        if len(healthy_deployments) == 0:
            # check if the user sent in a deployment name instead
            healthy_deployments = self._get_deployment_by_litellm_model(model=model)

        verbose_router_logger.debug(
            f"initial list of deployments: {healthy_deployments}"
        )

        if len(healthy_deployments) == 0:
            raise litellm.BadRequestError(
                message="You passed in model={}. There is no 'model_name' with this string ".format(
                    model
                ),
                model=model,
                llm_provider="",
            )

        if litellm.model_alias_map and model in litellm.model_alias_map:
            model = litellm.model_alias_map[
                model
            ]  # update the model to the actual value if an alias has been passed in

        return model, healthy_deployments

    async def async_get_available_deployment(
        self,
        model: str,
        request_kwargs: Dict,
        messages: Optional[List[Dict[str, str]]] = None,
        input: Optional[Union[str, List]] = None,
        specific_deployment: Optional[bool] = False,
    ):
        """
        Async implementation of 'get_available_deployments'.

        Allows all cache calls to be made async => 10x perf impact (8rps -> 100 rps).
        """
        if (
            self.routing_strategy != "usage-based-routing-v2"
            and self.routing_strategy != "simple-shuffle"
            and self.routing_strategy != "cost-based-routing"
            and self.routing_strategy != "latency-based-routing"
            and self.routing_strategy != "least-busy"
        ):  # prevent regressions for other routing strategies, that don't have async get available deployments implemented.
            return self.get_available_deployment(
                model=model,
                messages=messages,
                input=input,
                specific_deployment=specific_deployment,
                request_kwargs=request_kwargs,
            )
        try:
            parent_otel_span = _get_parent_otel_span_from_kwargs(request_kwargs)
            model, healthy_deployments = self._common_checks_available_deployment(
                model=model,
                messages=messages,
                input=input,
                specific_deployment=specific_deployment,
            )  # type: ignore
            if isinstance(healthy_deployments, dict):
                return healthy_deployments

            cooldown_deployments = await _async_get_cooldown_deployments(
                litellm_router_instance=self, parent_otel_span=parent_otel_span
            )
            verbose_router_logger.debug(
                f"async cooldown deployments: {cooldown_deployments}"
            )
            verbose_router_logger.debug(f"cooldown_deployments: {cooldown_deployments}")
            healthy_deployments = self._filter_cooldown_deployments(
                healthy_deployments=healthy_deployments,
                cooldown_deployments=cooldown_deployments,
            )

            healthy_deployments = await self.async_callback_filter_deployments(
                model=model,
                healthy_deployments=healthy_deployments,
                messages=(
                    cast(List[AllMessageValues], messages)
                    if messages is not None
                    else None
                ),
                request_kwargs=request_kwargs,
                parent_otel_span=parent_otel_span,
            )

            if self.enable_pre_call_checks and messages is not None:
                healthy_deployments = self._pre_call_checks(
                    model=model,
                    healthy_deployments=cast(List[Dict], healthy_deployments),
                    messages=messages,
                    request_kwargs=request_kwargs,
                )
            # check if user wants to do tag based routing
            healthy_deployments = await get_deployments_for_tag(  # type: ignore
                llm_router_instance=self,
                model=model,
                request_kwargs=request_kwargs,
                healthy_deployments=healthy_deployments,
            )

            if len(healthy_deployments) == 0:
                exception = await async_raise_no_deployment_exception(
                    litellm_router_instance=self,
                    model=model,
                    parent_otel_span=parent_otel_span,
                )
                raise exception
            start_time = time.time()
            if (
                self.routing_strategy == "usage-based-routing-v2"
                and self.lowesttpm_logger_v2 is not None
            ):
                deployment = (
                    await self.lowesttpm_logger_v2.async_get_available_deployments(
                        model_group=model,
                        healthy_deployments=healthy_deployments,  # type: ignore
                        messages=messages,
                        input=input,
                    )
                )
            elif (
                self.routing_strategy == "cost-based-routing"
                and self.lowestcost_logger is not None
            ):
                deployment = (
                    await self.lowestcost_logger.async_get_available_deployments(
                        model_group=model,
                        healthy_deployments=healthy_deployments,  # type: ignore
                        messages=messages,
                        input=input,
                    )
                )
            elif (
                self.routing_strategy == "latency-based-routing"
                and self.lowestlatency_logger is not None
            ):
                deployment = (
                    await self.lowestlatency_logger.async_get_available_deployments(
                        model_group=model,
                        healthy_deployments=healthy_deployments,  # type: ignore
                        messages=messages,
                        input=input,
                        request_kwargs=request_kwargs,
                    )
                )
            elif self.routing_strategy == "simple-shuffle":
                return simple_shuffle(
                    llm_router_instance=self,
                    healthy_deployments=healthy_deployments,
                    model=model,
                )
            elif (
                self.routing_strategy == "least-busy"
                and self.leastbusy_logger is not None
            ):
                deployment = (
                    await self.leastbusy_logger.async_get_available_deployments(
                        model_group=model,
                        healthy_deployments=healthy_deployments,  # type: ignore
                    )
                )
            else:
                deployment = None
            if deployment is None:
                exception = await async_raise_no_deployment_exception(
                    litellm_router_instance=self,
                    model=model,
                    parent_otel_span=parent_otel_span,
                )
                raise exception
            verbose_router_logger.info(
                f"get_available_deployment for model: {model}, Selected deployment: {self.print_deployment(deployment)} for model: {model}"
            )

            end_time = time.time()
            _duration = end_time - start_time
            asyncio.create_task(
                self.service_logger_obj.async_service_success_hook(
                    service=ServiceTypes.ROUTER,
                    duration=_duration,
                    call_type="<routing_strategy>.async_get_available_deployments",
                    parent_otel_span=parent_otel_span,
                    start_time=start_time,
                    end_time=end_time,
                )
            )

            return deployment
        except Exception as e:
            traceback_exception = traceback.format_exc()
            # if router rejects call -> log to langfuse/otel/etc.
            if request_kwargs is not None:
                logging_obj = request_kwargs.get("litellm_logging_obj", None)

                if logging_obj is not None:
                    ## LOGGING
                    threading.Thread(
                        target=logging_obj.failure_handler,
                        args=(e, traceback_exception),
                    ).start()  # log response
                    # Handle any exceptions that might occur during streaming
                    asyncio.create_task(
                        logging_obj.async_failure_handler(e, traceback_exception)  # type: ignore
                    )
            raise e

    def get_available_deployment(
        self,
        model: str,
        messages: Optional[List[Dict[str, str]]] = None,
        input: Optional[Union[str, List]] = None,
        specific_deployment: Optional[bool] = False,
        request_kwargs: Optional[Dict] = None,
    ):
        """
        Returns the deployment based on routing strategy
        """
        # users need to explicitly call a specific deployment, by setting `specific_deployment = True` as completion()/embedding() kwarg
        # When this was no explicit we had several issues with fallbacks timing out

        model, healthy_deployments = self._common_checks_available_deployment(
            model=model,
            messages=messages,
            input=input,
            specific_deployment=specific_deployment,
        )

        if isinstance(healthy_deployments, dict):
            return healthy_deployments

        parent_otel_span: Optional[Span] = _get_parent_otel_span_from_kwargs(
            request_kwargs
        )
        cooldown_deployments = _get_cooldown_deployments(
            litellm_router_instance=self, parent_otel_span=parent_otel_span
        )
        healthy_deployments = self._filter_cooldown_deployments(
            healthy_deployments=healthy_deployments,
            cooldown_deployments=cooldown_deployments,
        )

        # filter pre-call checks
        if self.enable_pre_call_checks and messages is not None:
            healthy_deployments = self._pre_call_checks(
                model=model,
                healthy_deployments=healthy_deployments,
                messages=messages,
                request_kwargs=request_kwargs,
            )

        if len(healthy_deployments) == 0:
            model_ids = self.get_model_ids(model_name=model)
            _cooldown_time = self.cooldown_cache.get_min_cooldown(
                model_ids=model_ids, parent_otel_span=parent_otel_span
            )
            _cooldown_list = _get_cooldown_deployments(
                litellm_router_instance=self, parent_otel_span=parent_otel_span
            )
            raise RouterRateLimitError(
                model=model,
                cooldown_time=_cooldown_time,
                enable_pre_call_checks=self.enable_pre_call_checks,
                cooldown_list=_cooldown_list,
            )

        if self.routing_strategy == "least-busy" and self.leastbusy_logger is not None:
            deployment = self.leastbusy_logger.get_available_deployments(
                model_group=model, healthy_deployments=healthy_deployments  # type: ignore
            )
        elif self.routing_strategy == "simple-shuffle":
            # if users pass rpm or tpm, we do a random weighted pick - based on rpm/tpm
            ############## Check 'weight' param set for weighted pick #################
            return simple_shuffle(
                llm_router_instance=self,
                healthy_deployments=healthy_deployments,
                model=model,
            )
        elif (
            self.routing_strategy == "latency-based-routing"
            and self.lowestlatency_logger is not None
        ):
            deployment = self.lowestlatency_logger.get_available_deployments(
                model_group=model,
                healthy_deployments=healthy_deployments,  # type: ignore
                request_kwargs=request_kwargs,
            )
        elif (
            self.routing_strategy == "usage-based-routing"
            and self.lowesttpm_logger is not None
        ):
            deployment = self.lowesttpm_logger.get_available_deployments(
                model_group=model,
                healthy_deployments=healthy_deployments,  # type: ignore
                messages=messages,
                input=input,
            )
        elif (
            self.routing_strategy == "usage-based-routing-v2"
            and self.lowesttpm_logger_v2 is not None
        ):
            deployment = self.lowesttpm_logger_v2.get_available_deployments(
                model_group=model,
                healthy_deployments=healthy_deployments,  # type: ignore
                messages=messages,
                input=input,
            )
        else:
            deployment = None

        if deployment is None:
            verbose_router_logger.info(
                f"get_available_deployment for model: {model}, No deployment available"
            )
            model_ids = self.get_model_ids(model_name=model)
            _cooldown_time = self.cooldown_cache.get_min_cooldown(
                model_ids=model_ids, parent_otel_span=parent_otel_span
            )
            _cooldown_list = _get_cooldown_deployments(
                litellm_router_instance=self, parent_otel_span=parent_otel_span
            )
            raise RouterRateLimitError(
                model=model,
                cooldown_time=_cooldown_time,
                enable_pre_call_checks=self.enable_pre_call_checks,
                cooldown_list=_cooldown_list,
            )
        verbose_router_logger.info(
            f"get_available_deployment for model: {model}, Selected deployment: {self.print_deployment(deployment)} for model: {model}"
        )
        return deployment

    def _filter_cooldown_deployments(
        self, healthy_deployments: List[Dict], cooldown_deployments: List[str]
    ) -> List[Dict]:
        """
        Filters out the deployments currently cooling down from the list of healthy deployments

        Args:
            healthy_deployments: List of healthy deployments
            cooldown_deployments: List of model_ids cooling down. cooldown_deployments is a list of model_id's cooling down, cooldown_deployments = ["16700539-b3cd-42f4-b426-6a12a1bb706a", "16700539-b3cd-42f4-b426-7899"]

        Returns:
            List of healthy deployments
        """
        # filter out the deployments currently cooling down
        deployments_to_remove = []
        verbose_router_logger.debug(f"cooldown deployments: {cooldown_deployments}")
        # Find deployments in model_list whose model_id is cooling down
        for deployment in healthy_deployments:
            deployment_id = deployment["model_info"]["id"]
            if deployment_id in cooldown_deployments:
                deployments_to_remove.append(deployment)

        # remove unhealthy deployments from healthy deployments
        for deployment in deployments_to_remove:
            healthy_deployments.remove(deployment)
        return healthy_deployments

    def _track_deployment_metrics(
        self, deployment, parent_otel_span: Optional[Span], response=None
    ):
        """
        Tracks successful requests rpm usage.
        """
        try:
            model_id = deployment.get("model_info", {}).get("id", None)
            if response is None:

                # update self.deployment_stats
                if model_id is not None:
                    self._update_usage(
                        model_id, parent_otel_span
                    )  # update in-memory cache for tracking
        except Exception as e:
            verbose_router_logger.error(f"Error in _track_deployment_metrics: {str(e)}")

    def get_num_retries_from_retry_policy(
        self, exception: Exception, model_group: Optional[str] = None
    ):
        return _get_num_retries_from_retry_policy(
            exception=exception,
            model_group=model_group,
            model_group_retry_policy=self.model_group_retry_policy,
            retry_policy=self.retry_policy,
        )

    def get_allowed_fails_from_policy(self, exception: Exception):
        """
        BadRequestErrorRetries: Optional[int] = None
        AuthenticationErrorRetries: Optional[int] = None
        TimeoutErrorRetries: Optional[int] = None
        RateLimitErrorRetries: Optional[int] = None
        ContentPolicyViolationErrorRetries: Optional[int] = None
        """
        # if we can find the exception then in the retry policy -> return the number of retries
        allowed_fails_policy: Optional[AllowedFailsPolicy] = self.allowed_fails_policy

        if allowed_fails_policy is None:
            return None

        if (
            isinstance(exception, litellm.BadRequestError)
            and allowed_fails_policy.BadRequestErrorAllowedFails is not None
        ):
            return allowed_fails_policy.BadRequestErrorAllowedFails
        if (
            isinstance(exception, litellm.AuthenticationError)
            and allowed_fails_policy.AuthenticationErrorAllowedFails is not None
        ):
            return allowed_fails_policy.AuthenticationErrorAllowedFails
        if (
            isinstance(exception, litellm.Timeout)
            and allowed_fails_policy.TimeoutErrorAllowedFails is not None
        ):
            return allowed_fails_policy.TimeoutErrorAllowedFails
        if (
            isinstance(exception, litellm.RateLimitError)
            and allowed_fails_policy.RateLimitErrorAllowedFails is not None
        ):
            return allowed_fails_policy.RateLimitErrorAllowedFails
        if (
            isinstance(exception, litellm.ContentPolicyViolationError)
            and allowed_fails_policy.ContentPolicyViolationErrorAllowedFails is not None
        ):
            return allowed_fails_policy.ContentPolicyViolationErrorAllowedFails

    def _initialize_alerting(self):
        from litellm.integrations.SlackAlerting.slack_alerting import SlackAlerting

        if self.alerting_config is None:
            return

        router_alerting_config: AlertingConfig = self.alerting_config

        _slack_alerting_logger = SlackAlerting(
            alerting_threshold=router_alerting_config.alerting_threshold,
            alerting=["slack"],
            default_webhook_url=router_alerting_config.webhook_url,
        )

        self.slack_alerting_logger = _slack_alerting_logger

        litellm.logging_callback_manager.add_litellm_callback(_slack_alerting_logger)  # type: ignore
        litellm.logging_callback_manager.add_litellm_success_callback(
            _slack_alerting_logger.response_taking_too_long_callback
        )
        verbose_router_logger.info(
            "\033[94m\nInitialized Alerting for litellm.Router\033[0m\n"
        )

    def set_custom_routing_strategy(
        self, CustomRoutingStrategy: CustomRoutingStrategyBase
    ):
        """
        Sets get_available_deployment and async_get_available_deployment on an instanced of litellm.Router

        Use this to set your custom routing strategy

        Args:
            CustomRoutingStrategy: litellm.router.CustomRoutingStrategyBase
        """

        setattr(
            self,
            "get_available_deployment",
            CustomRoutingStrategy.get_available_deployment,
        )
        setattr(
            self,
            "async_get_available_deployment",
            CustomRoutingStrategy.async_get_available_deployment,
        )

    def flush_cache(self):
        litellm.cache = None
        self.cache.flush_cache()

    def reset(self):
        ## clean up on close
        litellm.success_callback = []
        litellm._async_success_callback = []
        litellm.failure_callback = []
        litellm._async_failure_callback = []
        self.retry_policy = None
        self.flush_cache()