aboutsummaryrefslogtreecommitdiff
######################################################################

#                          /v1/files Endpoints

# Equivalent of https://platform.openai.com/docs/api-reference/files
######################################################################

import asyncio
import traceback
from typing import Optional

import httpx
from fastapi import (
    APIRouter,
    Depends,
    File,
    Form,
    HTTPException,
    Request,
    Response,
    UploadFile,
    status,
)

import litellm
from litellm import CreateFileRequest, get_secret_str
from litellm._logging import verbose_proxy_logger
from litellm.proxy._types import *
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing
from litellm.proxy.common_utils.openai_endpoint_utils import (
    get_custom_llm_provider_from_request_body,
)
from litellm.router import Router

router = APIRouter()

files_config = None


def set_files_config(config):
    global files_config
    if config is None:
        return

    if not isinstance(config, list):
        raise ValueError("invalid files config, expected a list is not a list")

    for element in config:
        if isinstance(element, dict):
            for key, value in element.items():
                if isinstance(value, str) and value.startswith("os.environ/"):
                    element[key] = get_secret_str(value)

    files_config = config


def get_files_provider_config(
    custom_llm_provider: str,
):
    global files_config
    if custom_llm_provider == "vertex_ai":
        return None
    if files_config is None:
        raise ValueError("files_config is not set, set it on your config.yaml file.")
    for setting in files_config:
        if setting.get("custom_llm_provider") == custom_llm_provider:
            return setting
    return None


def get_first_json_object(file_content_bytes: bytes) -> Optional[dict]:
    try:
        # Decode the bytes to a string and split into lines
        file_content = file_content_bytes.decode("utf-8")
        first_line = file_content.splitlines()[0].strip()

        # Parse the JSON object from the first line
        json_object = json.loads(first_line)
        return json_object
    except (json.JSONDecodeError, UnicodeDecodeError):
        return None


def get_model_from_json_obj(json_object: dict) -> Optional[str]:
    body = json_object.get("body", {}) or {}
    model = body.get("model")

    return model


def is_known_model(model: Optional[str], llm_router: Optional[Router]) -> bool:
    """
    Returns True if the model is in the llm_router model names
    """
    if model is None or llm_router is None:
        return False
    model_names = llm_router.get_model_names()

    is_in_list = False
    if model in model_names:
        is_in_list = True

    return is_in_list


@router.post(
    "/{provider}/v1/files",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
@router.post(
    "/v1/files",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
@router.post(
    "/files",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
async def create_file(
    request: Request,
    fastapi_response: Response,
    purpose: str = Form(...),
    provider: Optional[str] = None,
    custom_llm_provider: str = Form(default="openai"),
    file: UploadFile = File(...),
    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
    """
    Upload a file that can be used across - Assistants API, Batch API 
    This is the equivalent of POST https://api.openai.com/v1/files

    Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/create

    Example Curl
    ```
    curl http://localhost:4000/v1/files \
        -H "Authorization: Bearer sk-1234" \
        -F purpose="batch" \
        -F file="@mydata.jsonl"

    ```
    """
    from litellm.proxy.proxy_server import (
        add_litellm_data_to_request,
        general_settings,
        llm_router,
        proxy_config,
        proxy_logging_obj,
        version,
    )

    data: Dict = {}
    try:
        # Use orjson to parse JSON data, orjson speeds up requests significantly
        # Read the file content
        file_content = await file.read()
        custom_llm_provider = (
            provider
            or await get_custom_llm_provider_from_request_body(request=request)
            or "openai"
        )
        # Prepare the data for forwarding

        data = {"purpose": purpose}

        # Include original request and headers in the data
        data = await add_litellm_data_to_request(
            data=data,
            request=request,
            general_settings=general_settings,
            user_api_key_dict=user_api_key_dict,
            version=version,
            proxy_config=proxy_config,
        )

        # Prepare the file data according to FileTypes
        file_data = (file.filename, file_content, file.content_type)

        ## check if model is a loadbalanced model
        router_model: Optional[str] = None
        is_router_model = False
        if litellm.enable_loadbalancing_on_batch_endpoints is True:
            json_obj = get_first_json_object(file_content_bytes=file_content)
            if json_obj:
                router_model = get_model_from_json_obj(json_object=json_obj)
                is_router_model = is_known_model(
                    model=router_model, llm_router=llm_router
                )

        _create_file_request = CreateFileRequest(file=file_data, **data)

        if (
            litellm.enable_loadbalancing_on_batch_endpoints is True
            and is_router_model
            and router_model is not None
        ):
            if llm_router is None:
                raise HTTPException(
                    status_code=500,
                    detail={
                        "error": "LLM Router not initialized. Ensure models added to proxy."
                    },
                )

            response = await llm_router.acreate_file(
                model=router_model, **_create_file_request
            )
        else:
            # get configs for custom_llm_provider
            llm_provider_config = get_files_provider_config(
                custom_llm_provider=custom_llm_provider
            )
            if llm_provider_config is not None:
                # add llm_provider_config to data
                _create_file_request.update(llm_provider_config)
            _create_file_request.pop("custom_llm_provider", None)  # type: ignore
            # for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch
            response = await litellm.acreate_file(**_create_file_request, custom_llm_provider=custom_llm_provider)  # type: ignore

        ### ALERTING ###
        asyncio.create_task(
            proxy_logging_obj.update_request_status(
                litellm_call_id=data.get("litellm_call_id", ""), status="success"
            )
        )

        ### RESPONSE HEADERS ###
        hidden_params = getattr(response, "_hidden_params", {}) or {}
        model_id = hidden_params.get("model_id", None) or ""
        cache_key = hidden_params.get("cache_key", None) or ""
        api_base = hidden_params.get("api_base", None) or ""

        fastapi_response.headers.update(
            ProxyBaseLLMRequestProcessing.get_custom_headers(
                user_api_key_dict=user_api_key_dict,
                model_id=model_id,
                cache_key=cache_key,
                api_base=api_base,
                version=version,
                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
            )
        )
        return response
    except Exception as e:
        await proxy_logging_obj.post_call_failure_hook(
            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
        )
        verbose_proxy_logger.error(
            "litellm.proxy.proxy_server.create_file(): Exception occured - {}".format(
                str(e)
            )
        )
        verbose_proxy_logger.debug(traceback.format_exc())
        if isinstance(e, HTTPException):
            raise ProxyException(
                message=getattr(e, "message", str(e.detail)),
                type=getattr(e, "type", "None"),
                param=getattr(e, "param", "None"),
                code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
            )
        else:
            error_msg = f"{str(e)}"
            raise ProxyException(
                message=getattr(e, "message", error_msg),
                type=getattr(e, "type", "None"),
                param=getattr(e, "param", "None"),
                code=getattr(e, "status_code", 500),
            )


@router.get(
    "/{provider}/v1/files/{file_id:path}/content",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
@router.get(
    "/v1/files/{file_id:path}/content",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
@router.get(
    "/files/{file_id:path}/content",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
async def get_file_content(
    request: Request,
    fastapi_response: Response,
    file_id: str,
    provider: Optional[str] = None,
    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
    """
    Returns information about a specific file. that can be used across - Assistants API, Batch API 
    This is the equivalent of GET https://api.openai.com/v1/files/{file_id}/content

    Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/retrieve-contents

    Example Curl
    ```
    curl http://localhost:4000/v1/files/file-abc123/content \
        -H "Authorization: Bearer sk-1234"

    ```
    """
    from litellm.proxy.proxy_server import (
        add_litellm_data_to_request,
        general_settings,
        proxy_config,
        proxy_logging_obj,
        version,
    )

    data: Dict = {}
    try:

        # Include original request and headers in the data
        data = await add_litellm_data_to_request(
            data=data,
            request=request,
            general_settings=general_settings,
            user_api_key_dict=user_api_key_dict,
            version=version,
            proxy_config=proxy_config,
        )

        custom_llm_provider = (
            provider
            or await get_custom_llm_provider_from_request_body(request=request)
            or "openai"
        )
        response = await litellm.afile_content(
            custom_llm_provider=custom_llm_provider, file_id=file_id, **data  # type: ignore
        )

        ### ALERTING ###
        asyncio.create_task(
            proxy_logging_obj.update_request_status(
                litellm_call_id=data.get("litellm_call_id", ""), status="success"
            )
        )

        ### RESPONSE HEADERS ###
        hidden_params = getattr(response, "_hidden_params", {}) or {}
        model_id = hidden_params.get("model_id", None) or ""
        cache_key = hidden_params.get("cache_key", None) or ""
        api_base = hidden_params.get("api_base", None) or ""

        fastapi_response.headers.update(
            ProxyBaseLLMRequestProcessing.get_custom_headers(
                user_api_key_dict=user_api_key_dict,
                model_id=model_id,
                cache_key=cache_key,
                api_base=api_base,
                version=version,
                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
            )
        )
        httpx_response: Optional[httpx.Response] = getattr(response, "response", None)
        if httpx_response is None:
            raise ValueError(
                f"Invalid response - response.response is None - got {response}"
            )

        return Response(
            content=httpx_response.content,
            status_code=httpx_response.status_code,
            headers=httpx_response.headers,
        )

    except Exception as e:
        await proxy_logging_obj.post_call_failure_hook(
            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
        )
        verbose_proxy_logger.error(
            "litellm.proxy.proxy_server.retrieve_file_content(): Exception occured - {}".format(
                str(e)
            )
        )
        verbose_proxy_logger.debug(traceback.format_exc())
        if isinstance(e, HTTPException):
            raise ProxyException(
                message=getattr(e, "message", str(e.detail)),
                type=getattr(e, "type", "None"),
                param=getattr(e, "param", "None"),
                code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
            )
        else:
            error_msg = f"{str(e)}"
            raise ProxyException(
                message=getattr(e, "message", error_msg),
                type=getattr(e, "type", "None"),
                param=getattr(e, "param", "None"),
                code=getattr(e, "status_code", 500),
            )


@router.get(
    "/{provider}/v1/files/{file_id:path}",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
@router.get(
    "/v1/files/{file_id:path}",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
@router.get(
    "/files/{file_id:path}",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
async def get_file(
    request: Request,
    fastapi_response: Response,
    file_id: str,
    provider: Optional[str] = None,
    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
    """
    Returns information about a specific file. that can be used across - Assistants API, Batch API 
    This is the equivalent of GET https://api.openai.com/v1/files/{file_id}

    Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/retrieve

    Example Curl
    ```
    curl http://localhost:4000/v1/files/file-abc123 \
        -H "Authorization: Bearer sk-1234"

    ```
    """
    from litellm.proxy.proxy_server import (
        add_litellm_data_to_request,
        general_settings,
        proxy_config,
        proxy_logging_obj,
        version,
    )

    data: Dict = {}
    try:
        custom_llm_provider = (
            provider
            or await get_custom_llm_provider_from_request_body(request=request)
            or "openai"
        )
        # Include original request and headers in the data
        data = await add_litellm_data_to_request(
            data=data,
            request=request,
            general_settings=general_settings,
            user_api_key_dict=user_api_key_dict,
            version=version,
            proxy_config=proxy_config,
        )
        response = await litellm.afile_retrieve(
            custom_llm_provider=custom_llm_provider, file_id=file_id, **data  # type: ignore
        )

        ### ALERTING ###
        asyncio.create_task(
            proxy_logging_obj.update_request_status(
                litellm_call_id=data.get("litellm_call_id", ""), status="success"
            )
        )

        ### RESPONSE HEADERS ###
        hidden_params = getattr(response, "_hidden_params", {}) or {}
        model_id = hidden_params.get("model_id", None) or ""
        cache_key = hidden_params.get("cache_key", None) or ""
        api_base = hidden_params.get("api_base", None) or ""

        fastapi_response.headers.update(
            ProxyBaseLLMRequestProcessing.get_custom_headers(
                user_api_key_dict=user_api_key_dict,
                model_id=model_id,
                cache_key=cache_key,
                api_base=api_base,
                version=version,
                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
            )
        )
        return response

    except Exception as e:
        await proxy_logging_obj.post_call_failure_hook(
            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
        )
        verbose_proxy_logger.error(
            "litellm.proxy.proxy_server.retrieve_file(): Exception occured - {}".format(
                str(e)
            )
        )
        verbose_proxy_logger.debug(traceback.format_exc())
        if isinstance(e, HTTPException):
            raise ProxyException(
                message=getattr(e, "message", str(e.detail)),
                type=getattr(e, "type", "None"),
                param=getattr(e, "param", "None"),
                code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
            )
        else:
            error_msg = f"{str(e)}"
            raise ProxyException(
                message=getattr(e, "message", error_msg),
                type=getattr(e, "type", "None"),
                param=getattr(e, "param", "None"),
                code=getattr(e, "status_code", 500),
            )


@router.delete(
    "/{provider}/v1/files/{file_id:path}",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
@router.delete(
    "/v1/files/{file_id:path}",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
@router.delete(
    "/files/{file_id:path}",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
async def delete_file(
    request: Request,
    fastapi_response: Response,
    file_id: str,
    provider: Optional[str] = None,
    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
    """
    Deletes a specified file. that can be used across - Assistants API, Batch API 
    This is the equivalent of DELETE https://api.openai.com/v1/files/{file_id}

    Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/delete

    Example Curl
    ```
    curl http://localhost:4000/v1/files/file-abc123 \
    -X DELETE \
    -H "Authorization: Bearer $OPENAI_API_KEY"

    ```
    """
    from litellm.proxy.proxy_server import (
        add_litellm_data_to_request,
        general_settings,
        proxy_config,
        proxy_logging_obj,
        version,
    )

    data: Dict = {}
    try:
        custom_llm_provider = (
            provider
            or await get_custom_llm_provider_from_request_body(request=request)
            or "openai"
        )
        # Include original request and headers in the data
        data = await add_litellm_data_to_request(
            data=data,
            request=request,
            general_settings=general_settings,
            user_api_key_dict=user_api_key_dict,
            version=version,
            proxy_config=proxy_config,
        )

        response = await litellm.afile_delete(
            custom_llm_provider=custom_llm_provider, file_id=file_id, **data  # type: ignore
        )

        ### ALERTING ###
        asyncio.create_task(
            proxy_logging_obj.update_request_status(
                litellm_call_id=data.get("litellm_call_id", ""), status="success"
            )
        )

        ### RESPONSE HEADERS ###
        hidden_params = getattr(response, "_hidden_params", {}) or {}
        model_id = hidden_params.get("model_id", None) or ""
        cache_key = hidden_params.get("cache_key", None) or ""
        api_base = hidden_params.get("api_base", None) or ""

        fastapi_response.headers.update(
            ProxyBaseLLMRequestProcessing.get_custom_headers(
                user_api_key_dict=user_api_key_dict,
                model_id=model_id,
                cache_key=cache_key,
                api_base=api_base,
                version=version,
                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
            )
        )
        return response

    except Exception as e:
        await proxy_logging_obj.post_call_failure_hook(
            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
        )
        verbose_proxy_logger.error(
            "litellm.proxy.proxy_server.retrieve_file(): Exception occured - {}".format(
                str(e)
            )
        )
        verbose_proxy_logger.debug(traceback.format_exc())
        if isinstance(e, HTTPException):
            raise ProxyException(
                message=getattr(e, "message", str(e.detail)),
                type=getattr(e, "type", "None"),
                param=getattr(e, "param", "None"),
                code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
            )
        else:
            error_msg = f"{str(e)}"
            raise ProxyException(
                message=getattr(e, "message", error_msg),
                type=getattr(e, "type", "None"),
                param=getattr(e, "param", "None"),
                code=getattr(e, "status_code", 500),
            )


@router.get(
    "/{provider}/v1/files",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
@router.get(
    "/v1/files",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
@router.get(
    "/files",
    dependencies=[Depends(user_api_key_auth)],
    tags=["files"],
)
async def list_files(
    request: Request,
    fastapi_response: Response,
    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
    provider: Optional[str] = None,
    purpose: Optional[str] = None,
):
    """
    Returns information about a specific file. that can be used across - Assistants API, Batch API 
    This is the equivalent of GET https://api.openai.com/v1/files/

    Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/list

    Example Curl
    ```
    curl http://localhost:4000/v1/files\
        -H "Authorization: Bearer sk-1234"

    ```
    """
    from litellm.proxy.proxy_server import (
        add_litellm_data_to_request,
        general_settings,
        proxy_config,
        proxy_logging_obj,
        version,
    )

    data: Dict = {}
    try:
        custom_llm_provider = (
            provider
            or await get_custom_llm_provider_from_request_body(request=request)
            or "openai"
        )
        # Include original request and headers in the data
        data = await add_litellm_data_to_request(
            data=data,
            request=request,
            general_settings=general_settings,
            user_api_key_dict=user_api_key_dict,
            version=version,
            proxy_config=proxy_config,
        )

        response = await litellm.afile_list(
            custom_llm_provider=custom_llm_provider, purpose=purpose, **data  # type: ignore
        )

        ### ALERTING ###
        asyncio.create_task(
            proxy_logging_obj.update_request_status(
                litellm_call_id=data.get("litellm_call_id", ""), status="success"
            )
        )

        ### RESPONSE HEADERS ###
        hidden_params = getattr(response, "_hidden_params", {}) or {}
        model_id = hidden_params.get("model_id", None) or ""
        cache_key = hidden_params.get("cache_key", None) or ""
        api_base = hidden_params.get("api_base", None) or ""

        fastapi_response.headers.update(
            ProxyBaseLLMRequestProcessing.get_custom_headers(
                user_api_key_dict=user_api_key_dict,
                model_id=model_id,
                cache_key=cache_key,
                api_base=api_base,
                version=version,
                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
            )
        )
        return response

    except Exception as e:
        await proxy_logging_obj.post_call_failure_hook(
            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
        )
        verbose_proxy_logger.error(
            "litellm.proxy.proxy_server.list_files(): Exception occured - {}".format(
                str(e)
            )
        )
        verbose_proxy_logger.debug(traceback.format_exc())
        if isinstance(e, HTTPException):
            raise ProxyException(
                message=getattr(e, "message", str(e.detail)),
                type=getattr(e, "type", "None"),
                param=getattr(e, "param", "None"),
                code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
            )
        else:
            error_msg = f"{str(e)}"
            raise ProxyException(
                message=getattr(e, "message", error_msg),
                type=getattr(e, "type", "None"),
                param=getattr(e, "param", "None"),
                code=getattr(e, "status_code", 500),
            )