import inspect
import json
import traceback
from concurrent.futures import Future, ThreadPoolExecutor
from typing import Any, Generic, Type, TypeVar, cast, overload
from warnings import warn
from pydantic import BaseModel, StrictStr
from hatchet_sdk.clients.events import EventClient
from hatchet_sdk.clients.rest.tenacity_utils import tenacity_retry
from hatchet_sdk.clients.rest_client import RestApi
from hatchet_sdk.clients.run_event_listener import RunEventListenerClient
from hatchet_sdk.clients.workflow_listener import PooledWorkflowRunListener
from hatchet_sdk.context.worker_context import WorkerContext
from hatchet_sdk.contracts.dispatcher_pb2 import OverridesData
from hatchet_sdk.contracts.workflows_pb2 import (
BulkTriggerWorkflowRequest,
TriggerWorkflowRequest,
)
from hatchet_sdk.utils.types import WorkflowValidator
from hatchet_sdk.utils.typing import is_basemodel_subclass
from hatchet_sdk.workflow_run import WorkflowRunRef
from ..clients.admin import (
AdminClient,
ChildTriggerWorkflowOptions,
ChildWorkflowRunDict,
TriggerWorkflowOptions,
WorkflowRunDict,
)
from ..clients.dispatcher.dispatcher import ( # type: ignore[attr-defined]
Action,
DispatcherClient,
)
from ..logger import logger
DEFAULT_WORKFLOW_POLLING_INTERVAL = 5 # Seconds
T = TypeVar("T", bound=BaseModel)
def get_caller_file_path() -> str:
caller_frame = inspect.stack()[2]
return caller_frame.filename
class BaseContext:
action: Action
spawn_index: int
def _prepare_workflow_options(
self,
key: str | None = None,
options: ChildTriggerWorkflowOptions | None = None,
worker_id: str | None = None,
) -> TriggerWorkflowOptions:
workflow_run_id = self.action.workflow_run_id
step_run_id = self.action.step_run_id
desired_worker_id = None
if options is not None and "sticky" in options and options["sticky"] == True:
desired_worker_id = worker_id
meta = None
if options is not None and "additional_metadata" in options:
meta = options["additional_metadata"]
## TODO: Pydantic here to simplify this
trigger_options: TriggerWorkflowOptions = {
"parent_id": workflow_run_id,
"parent_step_run_id": step_run_id,
"child_key": key,
"child_index": self.spawn_index,
"additional_metadata": meta,
"desired_worker_id": desired_worker_id,
}
self.spawn_index += 1
return trigger_options
class ContextAioImpl(BaseContext):
def __init__(
self,
action: Action,
dispatcher_client: DispatcherClient,
admin_client: AdminClient,
event_client: EventClient,
rest_client: RestApi,
workflow_listener: PooledWorkflowRunListener,
workflow_run_event_listener: RunEventListenerClient,
worker: WorkerContext,
namespace: str = "",
):
self.action = action
self.dispatcher_client = dispatcher_client
self.admin_client = admin_client
self.event_client = event_client
self.rest_client = rest_client
self.workflow_listener = workflow_listener
self.workflow_run_event_listener = workflow_run_event_listener
self.namespace = namespace
self.spawn_index = -1
self.worker = worker
@tenacity_retry
async def spawn_workflow(
self,
workflow_name: str,
input: dict[str, Any] = {},
key: str | None = None,
options: ChildTriggerWorkflowOptions | None = None,
) -> WorkflowRunRef:
worker_id = self.worker.id()
# if (
# options is not None
# and "sticky" in options
# and options["sticky"] == True
# and not self.worker.has_workflow(workflow_name)
# ):
# raise Exception(
# f"cannot run with sticky: workflow {workflow_name} is not registered on the worker"
# )
trigger_options = self._prepare_workflow_options(key, options, worker_id)
return await self.admin_client.aio.run_workflow(
workflow_name, input, trigger_options
)
@tenacity_retry
async def spawn_workflows(
self, child_workflow_runs: list[ChildWorkflowRunDict]
) -> list[WorkflowRunRef]:
if len(child_workflow_runs) == 0:
raise Exception("no child workflows to spawn")
worker_id = self.worker.id()
bulk_trigger_workflow_runs: list[WorkflowRunDict] = []
for child_workflow_run in child_workflow_runs:
workflow_name = child_workflow_run["workflow_name"]
input = child_workflow_run["input"]
key = child_workflow_run.get("key")
options = child_workflow_run.get("options", {})
trigger_options = self._prepare_workflow_options(key, options, worker_id)
bulk_trigger_workflow_runs.append(
WorkflowRunDict(
workflow_name=workflow_name, input=input, options=trigger_options
)
)
return await self.admin_client.aio.run_workflows(bulk_trigger_workflow_runs)
class Context(BaseContext):
spawn_index = -1
worker: WorkerContext
def __init__(
self,
action: Action,
dispatcher_client: DispatcherClient,
admin_client: AdminClient,
event_client: EventClient,
rest_client: RestApi,
workflow_listener: PooledWorkflowRunListener,
workflow_run_event_listener: RunEventListenerClient,
worker: WorkerContext,
namespace: str = "",
validator_registry: dict[str, WorkflowValidator] = {},
):
self.worker = worker
self.validator_registry = validator_registry
self.aio = ContextAioImpl(
action,
dispatcher_client,
admin_client,
event_client,
rest_client,
workflow_listener,
workflow_run_event_listener,
worker,
namespace,
)
# Check the type of action.action_payload before attempting to load it as JSON
if isinstance(action.action_payload, (str, bytes, bytearray)):
try:
self.data = cast(dict[str, Any], json.loads(action.action_payload))
except Exception as e:
logger.error(f"Error parsing action payload: {e}")
# Assign an empty dictionary if parsing fails
self.data: dict[str, Any] = {} # type: ignore[no-redef]
else:
# Directly assign the payload to self.data if it's already a dict
self.data = (
action.action_payload if isinstance(action.action_payload, dict) else {}
)
self.action = action
# FIXME: stepRunId is a legacy field, we should remove it
self.stepRunId = action.step_run_id
self.step_run_id = action.step_run_id
self.exit_flag = False
self.dispatcher_client = dispatcher_client
self.admin_client = admin_client
self.event_client = event_client
self.rest_client = rest_client
self.workflow_listener = workflow_listener
self.workflow_run_event_listener = workflow_run_event_listener
self.namespace = namespace
# FIXME: this limits the number of concurrent log requests to 1, which means we can do about
# 100 log lines per second but this depends on network.
self.logger_thread_pool = ThreadPoolExecutor(max_workers=1)
self.stream_event_thread_pool = ThreadPoolExecutor(max_workers=1)
# store each key in the overrides field in a lookup table
# overrides_data is a dictionary of key-value pairs
self.overrides_data = self.data.get("overrides", {})
if action.get_group_key_run_id != "":
self.input = self.data
else:
self.input = self.data.get("input", {})
def step_output(self, step: str) -> dict[str, Any] | BaseModel:
workflow_validator = next(
(v for k, v in self.validator_registry.items() if k.split(":")[-1] == step),
None,
)
try:
parent_step_data = cast(dict[str, Any], self.data["parents"][step])
except KeyError:
raise ValueError(f"Step output for '{step}' not found")
if workflow_validator and (v := workflow_validator.step_output):
return v.model_validate(parent_step_data)
return parent_step_data
def triggered_by_event(self) -> bool:
return cast(str, self.data.get("triggered_by", "")) == "event"
def workflow_input(self) -> dict[str, Any] | T:
if (r := self.validator_registry.get(self.action.action_id)) and (
i := r.workflow_input
):
return cast(
T,
i.model_validate(self.input),
)
return self.input
def workflow_run_id(self) -> str:
return self.action.workflow_run_id
def cancel(self) -> None:
logger.debug("cancelling step...")
self.exit_flag = True
# done returns true if the context has been cancelled
def done(self) -> bool:
return self.exit_flag
def playground(self, name: str, default: str | None = None) -> str | None:
# if the key exists in the overrides_data field, return the value
if name in self.overrides_data:
warn(
"Use of `overrides_data` is deprecated.",
DeprecationWarning,
stacklevel=1,
)
return str(self.overrides_data[name])
caller_file = get_caller_file_path()
self.dispatcher_client.put_overrides_data(
OverridesData(
stepRunId=self.stepRunId,
path=name,
value=json.dumps(default),
callerFilename=caller_file,
)
)
return default
def _log(self, line: str) -> tuple[bool, Exception | None]:
try:
self.event_client.log(message=line, step_run_id=self.stepRunId)
return True, None
except Exception as e:
# we don't want to raise an exception here, as it will kill the log thread
return False, e
def log(self, line: Any, raise_on_error: bool = False) -> None:
if self.stepRunId == "":
return
if not isinstance(line, str):
try:
line = json.dumps(line)
except Exception:
line = str(line)
future = self.logger_thread_pool.submit(self._log, line)
def handle_result(future: Future[tuple[bool, Exception | None]]) -> None:
success, exception = future.result()
if not success and exception:
if raise_on_error:
raise exception
else:
thread_trace = "".join(
traceback.format_exception(
type(exception), exception, exception.__traceback__
)
)
call_site_trace = "".join(traceback.format_stack())
logger.error(
f"Error in log thread: {exception}\n{thread_trace}\nCalled from:\n{call_site_trace}"
)
future.add_done_callback(handle_result)
def release_slot(self) -> None:
return self.dispatcher_client.release_slot(self.stepRunId)
def _put_stream(self, data: str | bytes) -> None:
try:
self.event_client.stream(data=data, step_run_id=self.stepRunId)
except Exception as e:
logger.error(f"Error putting stream event: {e}")
def put_stream(self, data: str | bytes) -> None:
if self.stepRunId == "":
return
self.stream_event_thread_pool.submit(self._put_stream, data)
def refresh_timeout(self, increment_by: str) -> None:
try:
return self.dispatcher_client.refresh_timeout(
step_run_id=self.stepRunId, increment_by=increment_by
)
except Exception as e:
logger.error(f"Error refreshing timeout: {e}")
def retry_count(self) -> int:
return self.action.retry_count
def additional_metadata(self) -> dict[str, Any] | None:
return self.action.additional_metadata
def child_index(self) -> int | None:
return self.action.child_workflow_index
def child_key(self) -> str | None:
return self.action.child_workflow_key
def parent_workflow_run_id(self) -> str | None:
return self.action.parent_workflow_run_id
def step_run_errors(self) -> dict[str, str]:
errors = cast(dict[str, str], self.data.get("step_run_errors", {}))
if not errors:
logger.error(
"No step run errors found. `context.step_run_errors` is intended to be run in an on-failure step, and will only work on engine versions more recent than v0.53.10"
)
return errors
def fetch_run_failures(self) -> list[dict[str, StrictStr]]:
data = self.rest_client.workflow_run_get(self.action.workflow_run_id)
other_job_runs = [
run for run in (data.job_runs or []) if run.job_id != self.action.job_id
]
# TODO: Parse Step Runs using a Pydantic Model rather than a hand crafted dictionary
return [
{
"step_id": step_run.step_id,
"step_run_action_name": step_run.step.action,
"error": step_run.error,
}
for job_run in other_job_runs
if job_run.step_runs
for step_run in job_run.step_runs
if step_run.error and step_run.step
]
@tenacity_retry
def spawn_workflow(
self,
workflow_name: str,
input: dict[str, Any] = {},
key: str | None = None,
options: ChildTriggerWorkflowOptions | None = None,
) -> WorkflowRunRef:
worker_id = self.worker.id()
trigger_options = self._prepare_workflow_options(key, options, worker_id)
return self.admin_client.run_workflow(workflow_name, input, trigger_options)
@tenacity_retry
def spawn_workflows(
self, child_workflow_runs: list[ChildWorkflowRunDict]
) -> list[WorkflowRunRef]:
if len(child_workflow_runs) == 0:
raise Exception("no child workflows to spawn")
worker_id = self.worker.id()
bulk_trigger_workflow_runs: list[WorkflowRunDict] = []
for child_workflow_run in child_workflow_runs:
workflow_name = child_workflow_run["workflow_name"]
input = child_workflow_run["input"]
key = child_workflow_run.get("key")
options = child_workflow_run.get("options", {})
trigger_options = self._prepare_workflow_options(key, options, worker_id)
bulk_trigger_workflow_runs.append(
WorkflowRunDict(
workflow_name=workflow_name, input=input, options=trigger_options
)
)
return self.admin_client.run_workflows(bulk_trigger_workflow_runs)