# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code generated by the Google Gen AI SDK generator DO NOT EDIT.
import logging
from typing import AsyncIterator, Iterator, Optional, Union
from urllib.parse import urlencode
from . import _common
from . import _extra_utils
from . import _transformers as t
from . import types
from ._api_client import ApiClient, HttpOptionsDict
from ._common import get_value_by_path as getv
from ._common import set_value_by_path as setv
from .pagers import AsyncPager, Pager
def _Part_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['video_metadata']) is not None:
raise ValueError('video_metadata parameter is not supported in Google AI.')
if getv(from_object, ['thought']) is not None:
setv(to_object, ['thought'], getv(from_object, ['thought']))
if getv(from_object, ['code_execution_result']) is not None:
setv(
to_object,
['codeExecutionResult'],
getv(from_object, ['code_execution_result']),
)
if getv(from_object, ['executable_code']) is not None:
setv(to_object, ['executableCode'], getv(from_object, ['executable_code']))
if getv(from_object, ['file_data']) is not None:
setv(to_object, ['fileData'], getv(from_object, ['file_data']))
if getv(from_object, ['function_call']) is not None:
setv(to_object, ['functionCall'], getv(from_object, ['function_call']))
if getv(from_object, ['function_response']) is not None:
setv(
to_object,
['functionResponse'],
getv(from_object, ['function_response']),
)
if getv(from_object, ['inline_data']) is not None:
setv(to_object, ['inlineData'], getv(from_object, ['inline_data']))
if getv(from_object, ['text']) is not None:
setv(to_object, ['text'], getv(from_object, ['text']))
return to_object
def _Part_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['video_metadata']) is not None:
setv(to_object, ['videoMetadata'], getv(from_object, ['video_metadata']))
if getv(from_object, ['thought']) is not None:
setv(to_object, ['thought'], getv(from_object, ['thought']))
if getv(from_object, ['code_execution_result']) is not None:
setv(
to_object,
['codeExecutionResult'],
getv(from_object, ['code_execution_result']),
)
if getv(from_object, ['executable_code']) is not None:
setv(to_object, ['executableCode'], getv(from_object, ['executable_code']))
if getv(from_object, ['file_data']) is not None:
setv(to_object, ['fileData'], getv(from_object, ['file_data']))
if getv(from_object, ['function_call']) is not None:
setv(to_object, ['functionCall'], getv(from_object, ['function_call']))
if getv(from_object, ['function_response']) is not None:
setv(
to_object,
['functionResponse'],
getv(from_object, ['function_response']),
)
if getv(from_object, ['inline_data']) is not None:
setv(to_object, ['inlineData'], getv(from_object, ['inline_data']))
if getv(from_object, ['text']) is not None:
setv(to_object, ['text'], getv(from_object, ['text']))
return to_object
def _Content_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['parts']) is not None:
setv(
to_object,
['parts'],
[
_Part_to_mldev(api_client, item, to_object)
for item in getv(from_object, ['parts'])
],
)
if getv(from_object, ['role']) is not None:
setv(to_object, ['role'], getv(from_object, ['role']))
return to_object
def _Content_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['parts']) is not None:
setv(
to_object,
['parts'],
[
_Part_to_vertex(api_client, item, to_object)
for item in getv(from_object, ['parts'])
],
)
if getv(from_object, ['role']) is not None:
setv(to_object, ['role'], getv(from_object, ['role']))
return to_object
def _Schema_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['min_items']) is not None:
raise ValueError('min_items parameter is not supported in Google AI.')
if getv(from_object, ['example']) is not None:
raise ValueError('example parameter is not supported in Google AI.')
if getv(from_object, ['property_ordering']) is not None:
raise ValueError(
'property_ordering parameter is not supported in Google AI.'
)
if getv(from_object, ['pattern']) is not None:
raise ValueError('pattern parameter is not supported in Google AI.')
if getv(from_object, ['minimum']) is not None:
raise ValueError('minimum parameter is not supported in Google AI.')
if getv(from_object, ['default']) is not None:
raise ValueError('default parameter is not supported in Google AI.')
if getv(from_object, ['any_of']) is not None:
raise ValueError('any_of parameter is not supported in Google AI.')
if getv(from_object, ['max_length']) is not None:
raise ValueError('max_length parameter is not supported in Google AI.')
if getv(from_object, ['title']) is not None:
raise ValueError('title parameter is not supported in Google AI.')
if getv(from_object, ['min_length']) is not None:
raise ValueError('min_length parameter is not supported in Google AI.')
if getv(from_object, ['min_properties']) is not None:
raise ValueError('min_properties parameter is not supported in Google AI.')
if getv(from_object, ['max_items']) is not None:
raise ValueError('max_items parameter is not supported in Google AI.')
if getv(from_object, ['maximum']) is not None:
raise ValueError('maximum parameter is not supported in Google AI.')
if getv(from_object, ['nullable']) is not None:
raise ValueError('nullable parameter is not supported in Google AI.')
if getv(from_object, ['max_properties']) is not None:
raise ValueError('max_properties parameter is not supported in Google AI.')
if getv(from_object, ['type']) is not None:
setv(to_object, ['type'], getv(from_object, ['type']))
if getv(from_object, ['description']) is not None:
setv(to_object, ['description'], getv(from_object, ['description']))
if getv(from_object, ['enum']) is not None:
setv(to_object, ['enum'], getv(from_object, ['enum']))
if getv(from_object, ['format']) is not None:
setv(to_object, ['format'], getv(from_object, ['format']))
if getv(from_object, ['items']) is not None:
setv(to_object, ['items'], getv(from_object, ['items']))
if getv(from_object, ['properties']) is not None:
setv(to_object, ['properties'], getv(from_object, ['properties']))
if getv(from_object, ['required']) is not None:
setv(to_object, ['required'], getv(from_object, ['required']))
return to_object
def _Schema_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['min_items']) is not None:
setv(to_object, ['minItems'], getv(from_object, ['min_items']))
if getv(from_object, ['example']) is not None:
setv(to_object, ['example'], getv(from_object, ['example']))
if getv(from_object, ['property_ordering']) is not None:
setv(
to_object,
['propertyOrdering'],
getv(from_object, ['property_ordering']),
)
if getv(from_object, ['pattern']) is not None:
setv(to_object, ['pattern'], getv(from_object, ['pattern']))
if getv(from_object, ['minimum']) is not None:
setv(to_object, ['minimum'], getv(from_object, ['minimum']))
if getv(from_object, ['default']) is not None:
setv(to_object, ['default'], getv(from_object, ['default']))
if getv(from_object, ['any_of']) is not None:
setv(to_object, ['anyOf'], getv(from_object, ['any_of']))
if getv(from_object, ['max_length']) is not None:
setv(to_object, ['maxLength'], getv(from_object, ['max_length']))
if getv(from_object, ['title']) is not None:
setv(to_object, ['title'], getv(from_object, ['title']))
if getv(from_object, ['min_length']) is not None:
setv(to_object, ['minLength'], getv(from_object, ['min_length']))
if getv(from_object, ['min_properties']) is not None:
setv(to_object, ['minProperties'], getv(from_object, ['min_properties']))
if getv(from_object, ['max_items']) is not None:
setv(to_object, ['maxItems'], getv(from_object, ['max_items']))
if getv(from_object, ['maximum']) is not None:
setv(to_object, ['maximum'], getv(from_object, ['maximum']))
if getv(from_object, ['nullable']) is not None:
setv(to_object, ['nullable'], getv(from_object, ['nullable']))
if getv(from_object, ['max_properties']) is not None:
setv(to_object, ['maxProperties'], getv(from_object, ['max_properties']))
if getv(from_object, ['type']) is not None:
setv(to_object, ['type'], getv(from_object, ['type']))
if getv(from_object, ['description']) is not None:
setv(to_object, ['description'], getv(from_object, ['description']))
if getv(from_object, ['enum']) is not None:
setv(to_object, ['enum'], getv(from_object, ['enum']))
if getv(from_object, ['format']) is not None:
setv(to_object, ['format'], getv(from_object, ['format']))
if getv(from_object, ['items']) is not None:
setv(to_object, ['items'], getv(from_object, ['items']))
if getv(from_object, ['properties']) is not None:
setv(to_object, ['properties'], getv(from_object, ['properties']))
if getv(from_object, ['required']) is not None:
setv(to_object, ['required'], getv(from_object, ['required']))
return to_object
def _SafetySetting_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['method']) is not None:
raise ValueError('method parameter is not supported in Google AI.')
if getv(from_object, ['category']) is not None:
setv(to_object, ['category'], getv(from_object, ['category']))
if getv(from_object, ['threshold']) is not None:
setv(to_object, ['threshold'], getv(from_object, ['threshold']))
return to_object
def _SafetySetting_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['method']) is not None:
setv(to_object, ['method'], getv(from_object, ['method']))
if getv(from_object, ['category']) is not None:
setv(to_object, ['category'], getv(from_object, ['category']))
if getv(from_object, ['threshold']) is not None:
setv(to_object, ['threshold'], getv(from_object, ['threshold']))
return to_object
def _FunctionDeclaration_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['response']) is not None:
raise ValueError('response parameter is not supported in Google AI.')
if getv(from_object, ['description']) is not None:
setv(to_object, ['description'], getv(from_object, ['description']))
if getv(from_object, ['name']) is not None:
setv(to_object, ['name'], getv(from_object, ['name']))
if getv(from_object, ['parameters']) is not None:
setv(to_object, ['parameters'], getv(from_object, ['parameters']))
return to_object
def _FunctionDeclaration_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['response']) is not None:
setv(
to_object,
['response'],
_Schema_to_vertex(
api_client, getv(from_object, ['response']), to_object
),
)
if getv(from_object, ['description']) is not None:
setv(to_object, ['description'], getv(from_object, ['description']))
if getv(from_object, ['name']) is not None:
setv(to_object, ['name'], getv(from_object, ['name']))
if getv(from_object, ['parameters']) is not None:
setv(to_object, ['parameters'], getv(from_object, ['parameters']))
return to_object
def _GoogleSearch_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
return to_object
def _GoogleSearch_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
return to_object
def _DynamicRetrievalConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['mode']) is not None:
setv(to_object, ['mode'], getv(from_object, ['mode']))
if getv(from_object, ['dynamic_threshold']) is not None:
setv(
to_object,
['dynamicThreshold'],
getv(from_object, ['dynamic_threshold']),
)
return to_object
def _DynamicRetrievalConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['mode']) is not None:
setv(to_object, ['mode'], getv(from_object, ['mode']))
if getv(from_object, ['dynamic_threshold']) is not None:
setv(
to_object,
['dynamicThreshold'],
getv(from_object, ['dynamic_threshold']),
)
return to_object
def _GoogleSearchRetrieval_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['dynamic_retrieval_config']) is not None:
setv(
to_object,
['dynamicRetrievalConfig'],
_DynamicRetrievalConfig_to_mldev(
api_client,
getv(from_object, ['dynamic_retrieval_config']),
to_object,
),
)
return to_object
def _GoogleSearchRetrieval_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['dynamic_retrieval_config']) is not None:
setv(
to_object,
['dynamicRetrievalConfig'],
_DynamicRetrievalConfig_to_vertex(
api_client,
getv(from_object, ['dynamic_retrieval_config']),
to_object,
),
)
return to_object
def _Tool_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['function_declarations']) is not None:
setv(
to_object,
['functionDeclarations'],
[
_FunctionDeclaration_to_mldev(api_client, item, to_object)
for item in getv(from_object, ['function_declarations'])
],
)
if getv(from_object, ['retrieval']) is not None:
raise ValueError('retrieval parameter is not supported in Google AI.')
if getv(from_object, ['google_search']) is not None:
setv(
to_object,
['googleSearch'],
_GoogleSearch_to_mldev(
api_client, getv(from_object, ['google_search']), to_object
),
)
if getv(from_object, ['google_search_retrieval']) is not None:
setv(
to_object,
['googleSearchRetrieval'],
_GoogleSearchRetrieval_to_mldev(
api_client,
getv(from_object, ['google_search_retrieval']),
to_object,
),
)
if getv(from_object, ['code_execution']) is not None:
setv(to_object, ['codeExecution'], getv(from_object, ['code_execution']))
return to_object
def _Tool_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['function_declarations']) is not None:
setv(
to_object,
['functionDeclarations'],
[
_FunctionDeclaration_to_vertex(api_client, item, to_object)
for item in getv(from_object, ['function_declarations'])
],
)
if getv(from_object, ['retrieval']) is not None:
setv(to_object, ['retrieval'], getv(from_object, ['retrieval']))
if getv(from_object, ['google_search']) is not None:
setv(
to_object,
['googleSearch'],
_GoogleSearch_to_vertex(
api_client, getv(from_object, ['google_search']), to_object
),
)
if getv(from_object, ['google_search_retrieval']) is not None:
setv(
to_object,
['googleSearchRetrieval'],
_GoogleSearchRetrieval_to_vertex(
api_client,
getv(from_object, ['google_search_retrieval']),
to_object,
),
)
if getv(from_object, ['code_execution']) is not None:
setv(to_object, ['codeExecution'], getv(from_object, ['code_execution']))
return to_object
def _FunctionCallingConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['mode']) is not None:
setv(to_object, ['mode'], getv(from_object, ['mode']))
if getv(from_object, ['allowed_function_names']) is not None:
setv(
to_object,
['allowedFunctionNames'],
getv(from_object, ['allowed_function_names']),
)
return to_object
def _FunctionCallingConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['mode']) is not None:
setv(to_object, ['mode'], getv(from_object, ['mode']))
if getv(from_object, ['allowed_function_names']) is not None:
setv(
to_object,
['allowedFunctionNames'],
getv(from_object, ['allowed_function_names']),
)
return to_object
def _ToolConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['function_calling_config']) is not None:
setv(
to_object,
['functionCallingConfig'],
_FunctionCallingConfig_to_mldev(
api_client,
getv(from_object, ['function_calling_config']),
to_object,
),
)
return to_object
def _ToolConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['function_calling_config']) is not None:
setv(
to_object,
['functionCallingConfig'],
_FunctionCallingConfig_to_vertex(
api_client,
getv(from_object, ['function_calling_config']),
to_object,
),
)
return to_object
def _PrebuiltVoiceConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['voice_name']) is not None:
setv(to_object, ['voiceName'], getv(from_object, ['voice_name']))
return to_object
def _PrebuiltVoiceConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['voice_name']) is not None:
setv(to_object, ['voiceName'], getv(from_object, ['voice_name']))
return to_object
def _VoiceConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['prebuilt_voice_config']) is not None:
setv(
to_object,
['prebuiltVoiceConfig'],
_PrebuiltVoiceConfig_to_mldev(
api_client, getv(from_object, ['prebuilt_voice_config']), to_object
),
)
return to_object
def _VoiceConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['prebuilt_voice_config']) is not None:
setv(
to_object,
['prebuiltVoiceConfig'],
_PrebuiltVoiceConfig_to_vertex(
api_client, getv(from_object, ['prebuilt_voice_config']), to_object
),
)
return to_object
def _SpeechConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['voice_config']) is not None:
setv(
to_object,
['voiceConfig'],
_VoiceConfig_to_mldev(
api_client, getv(from_object, ['voice_config']), to_object
),
)
return to_object
def _SpeechConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['voice_config']) is not None:
setv(
to_object,
['voiceConfig'],
_VoiceConfig_to_vertex(
api_client, getv(from_object, ['voice_config']), to_object
),
)
return to_object
def _ThinkingConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['include_thoughts']) is not None:
setv(
to_object, ['includeThoughts'], getv(from_object, ['include_thoughts'])
)
return to_object
def _ThinkingConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['include_thoughts']) is not None:
setv(
to_object, ['includeThoughts'], getv(from_object, ['include_thoughts'])
)
return to_object
def _GenerateContentConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['system_instruction']) is not None:
setv(
parent_object,
['systemInstruction'],
_Content_to_mldev(
api_client,
t.t_content(api_client, getv(from_object, ['system_instruction'])),
to_object,
),
)
if getv(from_object, ['temperature']) is not None:
setv(to_object, ['temperature'], getv(from_object, ['temperature']))
if getv(from_object, ['top_p']) is not None:
setv(to_object, ['topP'], getv(from_object, ['top_p']))
if getv(from_object, ['top_k']) is not None:
setv(to_object, ['topK'], getv(from_object, ['top_k']))
if getv(from_object, ['candidate_count']) is not None:
setv(to_object, ['candidateCount'], getv(from_object, ['candidate_count']))
if getv(from_object, ['max_output_tokens']) is not None:
setv(
to_object, ['maxOutputTokens'], getv(from_object, ['max_output_tokens'])
)
if getv(from_object, ['stop_sequences']) is not None:
setv(to_object, ['stopSequences'], getv(from_object, ['stop_sequences']))
if getv(from_object, ['response_logprobs']) is not None:
setv(
to_object,
['responseLogprobs'],
getv(from_object, ['response_logprobs']),
)
if getv(from_object, ['logprobs']) is not None:
setv(to_object, ['logprobs'], getv(from_object, ['logprobs']))
if getv(from_object, ['presence_penalty']) is not None:
setv(
to_object, ['presencePenalty'], getv(from_object, ['presence_penalty'])
)
if getv(from_object, ['frequency_penalty']) is not None:
setv(
to_object,
['frequencyPenalty'],
getv(from_object, ['frequency_penalty']),
)
if getv(from_object, ['seed']) is not None:
setv(to_object, ['seed'], getv(from_object, ['seed']))
if getv(from_object, ['response_mime_type']) is not None:
setv(
to_object,
['responseMimeType'],
getv(from_object, ['response_mime_type']),
)
if getv(from_object, ['response_schema']) is not None:
setv(
to_object,
['responseSchema'],
_Schema_to_mldev(
api_client,
t.t_schema(api_client, getv(from_object, ['response_schema'])),
to_object,
),
)
if getv(from_object, ['routing_config']) is not None:
raise ValueError('routing_config parameter is not supported in Google AI.')
if getv(from_object, ['safety_settings']) is not None:
setv(
parent_object,
['safetySettings'],
[
_SafetySetting_to_mldev(api_client, item, to_object)
for item in getv(from_object, ['safety_settings'])
],
)
if getv(from_object, ['tools']) is not None:
setv(
parent_object,
['tools'],
[
_Tool_to_mldev(api_client, t.t_tool(api_client, item), to_object)
for item in t.t_tools(api_client, getv(from_object, ['tools']))
],
)
if getv(from_object, ['tool_config']) is not None:
setv(
parent_object,
['toolConfig'],
_ToolConfig_to_mldev(
api_client, getv(from_object, ['tool_config']), to_object
),
)
if getv(from_object, ['cached_content']) is not None:
setv(
parent_object,
['cachedContent'],
t.t_cached_content_name(
api_client, getv(from_object, ['cached_content'])
),
)
if getv(from_object, ['response_modalities']) is not None:
setv(
to_object,
['responseModalities'],
getv(from_object, ['response_modalities']),
)
if getv(from_object, ['media_resolution']) is not None:
raise ValueError(
'media_resolution parameter is not supported in Google AI.'
)
if getv(from_object, ['speech_config']) is not None:
setv(
to_object,
['speechConfig'],
_SpeechConfig_to_mldev(
api_client,
t.t_speech_config(api_client, getv(from_object, ['speech_config'])),
to_object,
),
)
if getv(from_object, ['audio_timestamp']) is not None:
raise ValueError('audio_timestamp parameter is not supported in Google AI.')
if getv(from_object, ['thinking_config']) is not None:
setv(
to_object,
['thinkingConfig'],
_ThinkingConfig_to_mldev(
api_client, getv(from_object, ['thinking_config']), to_object
),
)
return to_object
def _GenerateContentConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['system_instruction']) is not None:
setv(
parent_object,
['systemInstruction'],
_Content_to_vertex(
api_client,
t.t_content(api_client, getv(from_object, ['system_instruction'])),
to_object,
),
)
if getv(from_object, ['temperature']) is not None:
setv(to_object, ['temperature'], getv(from_object, ['temperature']))
if getv(from_object, ['top_p']) is not None:
setv(to_object, ['topP'], getv(from_object, ['top_p']))
if getv(from_object, ['top_k']) is not None:
setv(to_object, ['topK'], getv(from_object, ['top_k']))
if getv(from_object, ['candidate_count']) is not None:
setv(to_object, ['candidateCount'], getv(from_object, ['candidate_count']))
if getv(from_object, ['max_output_tokens']) is not None:
setv(
to_object, ['maxOutputTokens'], getv(from_object, ['max_output_tokens'])
)
if getv(from_object, ['stop_sequences']) is not None:
setv(to_object, ['stopSequences'], getv(from_object, ['stop_sequences']))
if getv(from_object, ['response_logprobs']) is not None:
setv(
to_object,
['responseLogprobs'],
getv(from_object, ['response_logprobs']),
)
if getv(from_object, ['logprobs']) is not None:
setv(to_object, ['logprobs'], getv(from_object, ['logprobs']))
if getv(from_object, ['presence_penalty']) is not None:
setv(
to_object, ['presencePenalty'], getv(from_object, ['presence_penalty'])
)
if getv(from_object, ['frequency_penalty']) is not None:
setv(
to_object,
['frequencyPenalty'],
getv(from_object, ['frequency_penalty']),
)
if getv(from_object, ['seed']) is not None:
setv(to_object, ['seed'], getv(from_object, ['seed']))
if getv(from_object, ['response_mime_type']) is not None:
setv(
to_object,
['responseMimeType'],
getv(from_object, ['response_mime_type']),
)
if getv(from_object, ['response_schema']) is not None:
setv(
to_object,
['responseSchema'],
_Schema_to_vertex(
api_client,
t.t_schema(api_client, getv(from_object, ['response_schema'])),
to_object,
),
)
if getv(from_object, ['routing_config']) is not None:
setv(to_object, ['routingConfig'], getv(from_object, ['routing_config']))
if getv(from_object, ['safety_settings']) is not None:
setv(
parent_object,
['safetySettings'],
[
_SafetySetting_to_vertex(api_client, item, to_object)
for item in getv(from_object, ['safety_settings'])
],
)
if getv(from_object, ['tools']) is not None:
setv(
parent_object,
['tools'],
[
_Tool_to_vertex(api_client, t.t_tool(api_client, item), to_object)
for item in t.t_tools(api_client, getv(from_object, ['tools']))
],
)
if getv(from_object, ['tool_config']) is not None:
setv(
parent_object,
['toolConfig'],
_ToolConfig_to_vertex(
api_client, getv(from_object, ['tool_config']), to_object
),
)
if getv(from_object, ['cached_content']) is not None:
setv(
parent_object,
['cachedContent'],
t.t_cached_content_name(
api_client, getv(from_object, ['cached_content'])
),
)
if getv(from_object, ['response_modalities']) is not None:
setv(
to_object,
['responseModalities'],
getv(from_object, ['response_modalities']),
)
if getv(from_object, ['media_resolution']) is not None:
setv(
to_object, ['mediaResolution'], getv(from_object, ['media_resolution'])
)
if getv(from_object, ['speech_config']) is not None:
setv(
to_object,
['speechConfig'],
_SpeechConfig_to_vertex(
api_client,
t.t_speech_config(api_client, getv(from_object, ['speech_config'])),
to_object,
),
)
if getv(from_object, ['audio_timestamp']) is not None:
setv(to_object, ['audioTimestamp'], getv(from_object, ['audio_timestamp']))
if getv(from_object, ['thinking_config']) is not None:
setv(
to_object,
['thinkingConfig'],
_ThinkingConfig_to_vertex(
api_client, getv(from_object, ['thinking_config']), to_object
),
)
return to_object
def _GenerateContentParameters_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['contents']) is not None:
setv(
to_object,
['contents'],
[
_Content_to_mldev(api_client, item, to_object)
for item in t.t_contents(
api_client, getv(from_object, ['contents'])
)
],
)
if getv(from_object, ['config']) is not None:
setv(
to_object,
['generationConfig'],
_GenerateContentConfig_to_mldev(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _GenerateContentParameters_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['contents']) is not None:
setv(
to_object,
['contents'],
[
_Content_to_vertex(api_client, item, to_object)
for item in t.t_contents(
api_client, getv(from_object, ['contents'])
)
],
)
if getv(from_object, ['config']) is not None:
setv(
to_object,
['generationConfig'],
_GenerateContentConfig_to_vertex(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _EmbedContentConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['http_options']) is not None:
setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
if getv(from_object, ['task_type']) is not None:
setv(
parent_object,
['requests[]', 'taskType'],
getv(from_object, ['task_type']),
)
if getv(from_object, ['title']) is not None:
setv(parent_object, ['requests[]', 'title'], getv(from_object, ['title']))
if getv(from_object, ['output_dimensionality']) is not None:
setv(
parent_object,
['requests[]', 'outputDimensionality'],
getv(from_object, ['output_dimensionality']),
)
if getv(from_object, ['mime_type']) is not None:
raise ValueError('mime_type parameter is not supported in Google AI.')
if getv(from_object, ['auto_truncate']) is not None:
raise ValueError('auto_truncate parameter is not supported in Google AI.')
return to_object
def _EmbedContentConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['http_options']) is not None:
setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
if getv(from_object, ['task_type']) is not None:
setv(
parent_object,
['instances[]', 'task_type'],
getv(from_object, ['task_type']),
)
if getv(from_object, ['title']) is not None:
setv(parent_object, ['instances[]', 'title'], getv(from_object, ['title']))
if getv(from_object, ['output_dimensionality']) is not None:
setv(
parent_object,
['parameters', 'outputDimensionality'],
getv(from_object, ['output_dimensionality']),
)
if getv(from_object, ['mime_type']) is not None:
setv(
parent_object,
['instances[]', 'mimeType'],
getv(from_object, ['mime_type']),
)
if getv(from_object, ['auto_truncate']) is not None:
setv(
parent_object,
['parameters', 'autoTruncate'],
getv(from_object, ['auto_truncate']),
)
return to_object
def _EmbedContentParameters_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['contents']) is not None:
setv(
to_object,
['requests[]', 'content'],
t.t_contents_for_embed(api_client, getv(from_object, ['contents'])),
)
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_EmbedContentConfig_to_mldev(
api_client, getv(from_object, ['config']), to_object
),
)
setv(
to_object,
['requests[]', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
return to_object
def _EmbedContentParameters_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['contents']) is not None:
setv(
to_object,
['instances[]', 'content'],
t.t_contents_for_embed(api_client, getv(from_object, ['contents'])),
)
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_EmbedContentConfig_to_vertex(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _GenerateImageConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['http_options']) is not None:
setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
if getv(from_object, ['output_gcs_uri']) is not None:
raise ValueError('output_gcs_uri parameter is not supported in Google AI.')
if getv(from_object, ['negative_prompt']) is not None:
setv(
parent_object,
['parameters', 'negativePrompt'],
getv(from_object, ['negative_prompt']),
)
if getv(from_object, ['number_of_images']) is not None:
setv(
parent_object,
['parameters', 'sampleCount'],
getv(from_object, ['number_of_images']),
)
if getv(from_object, ['guidance_scale']) is not None:
setv(
parent_object,
['parameters', 'guidanceScale'],
getv(from_object, ['guidance_scale']),
)
if getv(from_object, ['seed']) is not None:
raise ValueError('seed parameter is not supported in Google AI.')
if getv(from_object, ['safety_filter_level']) is not None:
setv(
parent_object,
['parameters', 'safetySetting'],
getv(from_object, ['safety_filter_level']),
)
if getv(from_object, ['person_generation']) is not None:
setv(
parent_object,
['parameters', 'personGeneration'],
getv(from_object, ['person_generation']),
)
if getv(from_object, ['include_safety_attributes']) is not None:
setv(
parent_object,
['parameters', 'includeSafetyAttributes'],
getv(from_object, ['include_safety_attributes']),
)
if getv(from_object, ['include_rai_reason']) is not None:
setv(
parent_object,
['parameters', 'includeRaiReason'],
getv(from_object, ['include_rai_reason']),
)
if getv(from_object, ['language']) is not None:
setv(
parent_object,
['parameters', 'language'],
getv(from_object, ['language']),
)
if getv(from_object, ['output_mime_type']) is not None:
setv(
parent_object,
['parameters', 'outputOptions', 'mimeType'],
getv(from_object, ['output_mime_type']),
)
if getv(from_object, ['output_compression_quality']) is not None:
setv(
parent_object,
['parameters', 'outputOptions', 'compressionQuality'],
getv(from_object, ['output_compression_quality']),
)
if getv(from_object, ['add_watermark']) is not None:
raise ValueError('add_watermark parameter is not supported in Google AI.')
if getv(from_object, ['aspect_ratio']) is not None:
setv(
parent_object,
['parameters', 'aspectRatio'],
getv(from_object, ['aspect_ratio']),
)
return to_object
def _GenerateImageConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['http_options']) is not None:
setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
if getv(from_object, ['output_gcs_uri']) is not None:
setv(
parent_object,
['parameters', 'storageUri'],
getv(from_object, ['output_gcs_uri']),
)
if getv(from_object, ['negative_prompt']) is not None:
setv(
parent_object,
['parameters', 'negativePrompt'],
getv(from_object, ['negative_prompt']),
)
if getv(from_object, ['number_of_images']) is not None:
setv(
parent_object,
['parameters', 'sampleCount'],
getv(from_object, ['number_of_images']),
)
if getv(from_object, ['guidance_scale']) is not None:
setv(
parent_object,
['parameters', 'guidanceScale'],
getv(from_object, ['guidance_scale']),
)
if getv(from_object, ['seed']) is not None:
setv(parent_object, ['parameters', 'seed'], getv(from_object, ['seed']))
if getv(from_object, ['safety_filter_level']) is not None:
setv(
parent_object,
['parameters', 'safetySetting'],
getv(from_object, ['safety_filter_level']),
)
if getv(from_object, ['person_generation']) is not None:
setv(
parent_object,
['parameters', 'personGeneration'],
getv(from_object, ['person_generation']),
)
if getv(from_object, ['include_safety_attributes']) is not None:
setv(
parent_object,
['parameters', 'includeSafetyAttributes'],
getv(from_object, ['include_safety_attributes']),
)
if getv(from_object, ['include_rai_reason']) is not None:
setv(
parent_object,
['parameters', 'includeRaiReason'],
getv(from_object, ['include_rai_reason']),
)
if getv(from_object, ['language']) is not None:
setv(
parent_object,
['parameters', 'language'],
getv(from_object, ['language']),
)
if getv(from_object, ['output_mime_type']) is not None:
setv(
parent_object,
['parameters', 'outputOptions', 'mimeType'],
getv(from_object, ['output_mime_type']),
)
if getv(from_object, ['output_compression_quality']) is not None:
setv(
parent_object,
['parameters', 'outputOptions', 'compressionQuality'],
getv(from_object, ['output_compression_quality']),
)
if getv(from_object, ['add_watermark']) is not None:
setv(
parent_object,
['parameters', 'addWatermark'],
getv(from_object, ['add_watermark']),
)
if getv(from_object, ['aspect_ratio']) is not None:
setv(
parent_object,
['parameters', 'aspectRatio'],
getv(from_object, ['aspect_ratio']),
)
return to_object
def _GenerateImageParameters_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['prompt']) is not None:
setv(to_object, ['instances', 'prompt'], getv(from_object, ['prompt']))
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_GenerateImageConfig_to_mldev(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _GenerateImageParameters_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['prompt']) is not None:
setv(to_object, ['instances', 'prompt'], getv(from_object, ['prompt']))
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_GenerateImageConfig_to_vertex(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _Image_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['gcs_uri']) is not None:
raise ValueError('gcs_uri parameter is not supported in Google AI.')
if getv(from_object, ['image_bytes']) is not None:
setv(
to_object,
['bytesBase64Encoded'],
t.t_bytes(api_client, getv(from_object, ['image_bytes'])),
)
return to_object
def _Image_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['gcs_uri']) is not None:
setv(to_object, ['gcsUri'], getv(from_object, ['gcs_uri']))
if getv(from_object, ['image_bytes']) is not None:
setv(
to_object,
['bytesBase64Encoded'],
t.t_bytes(api_client, getv(from_object, ['image_bytes'])),
)
return to_object
def _MaskReferenceConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['mask_mode']) is not None:
raise ValueError('mask_mode parameter is not supported in Google AI.')
if getv(from_object, ['segmentation_classes']) is not None:
raise ValueError(
'segmentation_classes parameter is not supported in Google AI.'
)
if getv(from_object, ['mask_dilation']) is not None:
raise ValueError('mask_dilation parameter is not supported in Google AI.')
return to_object
def _MaskReferenceConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['mask_mode']) is not None:
setv(to_object, ['maskMode'], getv(from_object, ['mask_mode']))
if getv(from_object, ['segmentation_classes']) is not None:
setv(
to_object, ['maskClasses'], getv(from_object, ['segmentation_classes'])
)
if getv(from_object, ['mask_dilation']) is not None:
setv(to_object, ['dilation'], getv(from_object, ['mask_dilation']))
return to_object
def _ControlReferenceConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['control_type']) is not None:
raise ValueError('control_type parameter is not supported in Google AI.')
if getv(from_object, ['enable_control_image_computation']) is not None:
raise ValueError(
'enable_control_image_computation parameter is not supported in'
' Google AI.'
)
return to_object
def _ControlReferenceConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['control_type']) is not None:
setv(to_object, ['controlType'], getv(from_object, ['control_type']))
if getv(from_object, ['enable_control_image_computation']) is not None:
setv(
to_object,
['computeControl'],
getv(from_object, ['enable_control_image_computation']),
)
return to_object
def _StyleReferenceConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['style_description']) is not None:
raise ValueError(
'style_description parameter is not supported in Google AI.'
)
return to_object
def _StyleReferenceConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['style_description']) is not None:
setv(
to_object,
['styleDescription'],
getv(from_object, ['style_description']),
)
return to_object
def _SubjectReferenceConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['subject_type']) is not None:
raise ValueError('subject_type parameter is not supported in Google AI.')
if getv(from_object, ['subject_description']) is not None:
raise ValueError(
'subject_description parameter is not supported in Google AI.'
)
return to_object
def _SubjectReferenceConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['subject_type']) is not None:
setv(to_object, ['subjectType'], getv(from_object, ['subject_type']))
if getv(from_object, ['subject_description']) is not None:
setv(
to_object,
['subjectDescription'],
getv(from_object, ['subject_description']),
)
return to_object
def _ReferenceImageAPI_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['reference_image']) is not None:
raise ValueError('reference_image parameter is not supported in Google AI.')
if getv(from_object, ['reference_id']) is not None:
raise ValueError('reference_id parameter is not supported in Google AI.')
if getv(from_object, ['reference_type']) is not None:
raise ValueError('reference_type parameter is not supported in Google AI.')
if getv(from_object, ['mask_image_config']) is not None:
raise ValueError(
'mask_image_config parameter is not supported in Google AI.'
)
if getv(from_object, ['control_image_config']) is not None:
raise ValueError(
'control_image_config parameter is not supported in Google AI.'
)
if getv(from_object, ['style_image_config']) is not None:
raise ValueError(
'style_image_config parameter is not supported in Google AI.'
)
if getv(from_object, ['subject_image_config']) is not None:
raise ValueError(
'subject_image_config parameter is not supported in Google AI.'
)
return to_object
def _ReferenceImageAPI_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['reference_image']) is not None:
setv(
to_object,
['referenceImage'],
_Image_to_vertex(
api_client, getv(from_object, ['reference_image']), to_object
),
)
if getv(from_object, ['reference_id']) is not None:
setv(to_object, ['referenceId'], getv(from_object, ['reference_id']))
if getv(from_object, ['reference_type']) is not None:
setv(to_object, ['referenceType'], getv(from_object, ['reference_type']))
if getv(from_object, ['mask_image_config']) is not None:
setv(
to_object,
['maskImageConfig'],
_MaskReferenceConfig_to_vertex(
api_client, getv(from_object, ['mask_image_config']), to_object
),
)
if getv(from_object, ['control_image_config']) is not None:
setv(
to_object,
['controlImageConfig'],
_ControlReferenceConfig_to_vertex(
api_client, getv(from_object, ['control_image_config']), to_object
),
)
if getv(from_object, ['style_image_config']) is not None:
setv(
to_object,
['styleImageConfig'],
_StyleReferenceConfig_to_vertex(
api_client, getv(from_object, ['style_image_config']), to_object
),
)
if getv(from_object, ['subject_image_config']) is not None:
setv(
to_object,
['subjectImageConfig'],
_SubjectReferenceConfig_to_vertex(
api_client, getv(from_object, ['subject_image_config']), to_object
),
)
return to_object
def _EditImageConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['http_options']) is not None:
setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
if getv(from_object, ['output_gcs_uri']) is not None:
raise ValueError('output_gcs_uri parameter is not supported in Google AI.')
if getv(from_object, ['negative_prompt']) is not None:
setv(
parent_object,
['parameters', 'negativePrompt'],
getv(from_object, ['negative_prompt']),
)
if getv(from_object, ['number_of_images']) is not None:
setv(
parent_object,
['parameters', 'sampleCount'],
getv(from_object, ['number_of_images']),
)
if getv(from_object, ['guidance_scale']) is not None:
setv(
parent_object,
['parameters', 'guidanceScale'],
getv(from_object, ['guidance_scale']),
)
if getv(from_object, ['seed']) is not None:
raise ValueError('seed parameter is not supported in Google AI.')
if getv(from_object, ['safety_filter_level']) is not None:
setv(
parent_object,
['parameters', 'safetySetting'],
getv(from_object, ['safety_filter_level']),
)
if getv(from_object, ['person_generation']) is not None:
setv(
parent_object,
['parameters', 'personGeneration'],
getv(from_object, ['person_generation']),
)
if getv(from_object, ['include_safety_attributes']) is not None:
setv(
parent_object,
['parameters', 'includeSafetyAttributes'],
getv(from_object, ['include_safety_attributes']),
)
if getv(from_object, ['include_rai_reason']) is not None:
setv(
parent_object,
['parameters', 'includeRaiReason'],
getv(from_object, ['include_rai_reason']),
)
if getv(from_object, ['language']) is not None:
setv(
parent_object,
['parameters', 'language'],
getv(from_object, ['language']),
)
if getv(from_object, ['output_mime_type']) is not None:
setv(
parent_object,
['parameters', 'outputOptions', 'mimeType'],
getv(from_object, ['output_mime_type']),
)
if getv(from_object, ['output_compression_quality']) is not None:
setv(
parent_object,
['parameters', 'outputOptions', 'compressionQuality'],
getv(from_object, ['output_compression_quality']),
)
if getv(from_object, ['edit_mode']) is not None:
setv(
parent_object,
['parameters', 'editMode'],
getv(from_object, ['edit_mode']),
)
return to_object
def _EditImageConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['http_options']) is not None:
setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
if getv(from_object, ['output_gcs_uri']) is not None:
setv(
parent_object,
['parameters', 'storageUri'],
getv(from_object, ['output_gcs_uri']),
)
if getv(from_object, ['negative_prompt']) is not None:
setv(
parent_object,
['parameters', 'negativePrompt'],
getv(from_object, ['negative_prompt']),
)
if getv(from_object, ['number_of_images']) is not None:
setv(
parent_object,
['parameters', 'sampleCount'],
getv(from_object, ['number_of_images']),
)
if getv(from_object, ['guidance_scale']) is not None:
setv(
parent_object,
['parameters', 'guidanceScale'],
getv(from_object, ['guidance_scale']),
)
if getv(from_object, ['seed']) is not None:
setv(parent_object, ['parameters', 'seed'], getv(from_object, ['seed']))
if getv(from_object, ['safety_filter_level']) is not None:
setv(
parent_object,
['parameters', 'safetySetting'],
getv(from_object, ['safety_filter_level']),
)
if getv(from_object, ['person_generation']) is not None:
setv(
parent_object,
['parameters', 'personGeneration'],
getv(from_object, ['person_generation']),
)
if getv(from_object, ['include_safety_attributes']) is not None:
setv(
parent_object,
['parameters', 'includeSafetyAttributes'],
getv(from_object, ['include_safety_attributes']),
)
if getv(from_object, ['include_rai_reason']) is not None:
setv(
parent_object,
['parameters', 'includeRaiReason'],
getv(from_object, ['include_rai_reason']),
)
if getv(from_object, ['language']) is not None:
setv(
parent_object,
['parameters', 'language'],
getv(from_object, ['language']),
)
if getv(from_object, ['output_mime_type']) is not None:
setv(
parent_object,
['parameters', 'outputOptions', 'mimeType'],
getv(from_object, ['output_mime_type']),
)
if getv(from_object, ['output_compression_quality']) is not None:
setv(
parent_object,
['parameters', 'outputOptions', 'compressionQuality'],
getv(from_object, ['output_compression_quality']),
)
if getv(from_object, ['edit_mode']) is not None:
setv(
parent_object,
['parameters', 'editMode'],
getv(from_object, ['edit_mode']),
)
return to_object
def _EditImageParameters_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['prompt']) is not None:
setv(to_object, ['instances', 'prompt'], getv(from_object, ['prompt']))
if getv(from_object, ['reference_images']) is not None:
setv(
to_object,
['instances', 'referenceImages'],
[
_ReferenceImageAPI_to_mldev(api_client, item, to_object)
for item in getv(from_object, ['reference_images'])
],
)
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_EditImageConfig_to_mldev(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _EditImageParameters_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['prompt']) is not None:
setv(to_object, ['instances', 'prompt'], getv(from_object, ['prompt']))
if getv(from_object, ['reference_images']) is not None:
setv(
to_object,
['instances', 'referenceImages'],
[
_ReferenceImageAPI_to_vertex(api_client, item, to_object)
for item in getv(from_object, ['reference_images'])
],
)
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_EditImageConfig_to_vertex(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _UpscaleImageAPIConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['http_options']) is not None:
setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
if getv(from_object, ['include_rai_reason']) is not None:
setv(
parent_object,
['parameters', 'includeRaiReason'],
getv(from_object, ['include_rai_reason']),
)
if getv(from_object, ['output_mime_type']) is not None:
setv(
parent_object,
['parameters', 'outputOptions', 'mimeType'],
getv(from_object, ['output_mime_type']),
)
if getv(from_object, ['output_compression_quality']) is not None:
setv(
parent_object,
['parameters', 'outputOptions', 'compressionQuality'],
getv(from_object, ['output_compression_quality']),
)
if getv(from_object, ['number_of_images']) is not None:
setv(
parent_object,
['parameters', 'sampleCount'],
getv(from_object, ['number_of_images']),
)
if getv(from_object, ['mode']) is not None:
setv(parent_object, ['parameters', 'mode'], getv(from_object, ['mode']))
return to_object
def _UpscaleImageAPIConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['http_options']) is not None:
setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
if getv(from_object, ['include_rai_reason']) is not None:
setv(
parent_object,
['parameters', 'includeRaiReason'],
getv(from_object, ['include_rai_reason']),
)
if getv(from_object, ['output_mime_type']) is not None:
setv(
parent_object,
['parameters', 'outputOptions', 'mimeType'],
getv(from_object, ['output_mime_type']),
)
if getv(from_object, ['output_compression_quality']) is not None:
setv(
parent_object,
['parameters', 'outputOptions', 'compressionQuality'],
getv(from_object, ['output_compression_quality']),
)
if getv(from_object, ['number_of_images']) is not None:
setv(
parent_object,
['parameters', 'sampleCount'],
getv(from_object, ['number_of_images']),
)
if getv(from_object, ['mode']) is not None:
setv(parent_object, ['parameters', 'mode'], getv(from_object, ['mode']))
return to_object
def _UpscaleImageAPIParameters_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['image']) is not None:
setv(
to_object,
['instances', 'image'],
_Image_to_mldev(api_client, getv(from_object, ['image']), to_object),
)
if getv(from_object, ['upscale_factor']) is not None:
setv(
to_object,
['parameters', 'upscaleConfig', 'upscaleFactor'],
getv(from_object, ['upscale_factor']),
)
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_UpscaleImageAPIConfig_to_mldev(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _UpscaleImageAPIParameters_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['image']) is not None:
setv(
to_object,
['instances', 'image'],
_Image_to_vertex(api_client, getv(from_object, ['image']), to_object),
)
if getv(from_object, ['upscale_factor']) is not None:
setv(
to_object,
['parameters', 'upscaleConfig', 'upscaleFactor'],
getv(from_object, ['upscale_factor']),
)
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_UpscaleImageAPIConfig_to_vertex(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _GetModelParameters_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'name'],
t.t_model(api_client, getv(from_object, ['model'])),
)
return to_object
def _GetModelParameters_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'name'],
t.t_model(api_client, getv(from_object, ['model'])),
)
return to_object
def _ListModelsConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['http_options']) is not None:
setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
if getv(from_object, ['page_size']) is not None:
setv(
parent_object, ['_query', 'pageSize'], getv(from_object, ['page_size'])
)
if getv(from_object, ['page_token']) is not None:
setv(
parent_object,
['_query', 'pageToken'],
getv(from_object, ['page_token']),
)
if getv(from_object, ['filter']) is not None:
setv(parent_object, ['_query', 'filter'], getv(from_object, ['filter']))
if getv(from_object, ['query_base']) is not None:
setv(
parent_object,
['_url', 'models_url'],
t.t_models_url(api_client, getv(from_object, ['query_base'])),
)
return to_object
def _ListModelsConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['http_options']) is not None:
setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
if getv(from_object, ['page_size']) is not None:
setv(
parent_object, ['_query', 'pageSize'], getv(from_object, ['page_size'])
)
if getv(from_object, ['page_token']) is not None:
setv(
parent_object,
['_query', 'pageToken'],
getv(from_object, ['page_token']),
)
if getv(from_object, ['filter']) is not None:
setv(parent_object, ['_query', 'filter'], getv(from_object, ['filter']))
if getv(from_object, ['query_base']) is not None:
setv(
parent_object,
['_url', 'models_url'],
t.t_models_url(api_client, getv(from_object, ['query_base'])),
)
return to_object
def _ListModelsParameters_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_ListModelsConfig_to_mldev(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _ListModelsParameters_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_ListModelsConfig_to_vertex(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _UpdateModelConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['display_name']) is not None:
setv(parent_object, ['displayName'], getv(from_object, ['display_name']))
if getv(from_object, ['description']) is not None:
setv(parent_object, ['description'], getv(from_object, ['description']))
return to_object
def _UpdateModelConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['display_name']) is not None:
setv(parent_object, ['displayName'], getv(from_object, ['display_name']))
if getv(from_object, ['description']) is not None:
setv(parent_object, ['description'], getv(from_object, ['description']))
return to_object
def _UpdateModelParameters_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'name'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_UpdateModelConfig_to_mldev(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _UpdateModelParameters_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_UpdateModelConfig_to_vertex(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _DeleteModelParameters_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'name'],
t.t_model(api_client, getv(from_object, ['model'])),
)
return to_object
def _DeleteModelParameters_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'name'],
t.t_model(api_client, getv(from_object, ['model'])),
)
return to_object
def _CountTokensConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['http_options']) is not None:
setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
if getv(from_object, ['system_instruction']) is not None:
setv(
parent_object,
['generateContentRequest', 'systemInstruction'],
_Content_to_mldev(
api_client,
t.t_content(api_client, getv(from_object, ['system_instruction'])),
to_object,
),
)
if getv(from_object, ['tools']) is not None:
setv(
parent_object,
['generateContentRequest', 'tools'],
[
_Tool_to_mldev(api_client, item, to_object)
for item in getv(from_object, ['tools'])
],
)
if getv(from_object, ['generation_config']) is not None:
raise ValueError(
'generation_config parameter is not supported in Google AI.'
)
return to_object
def _CountTokensConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['http_options']) is not None:
setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
if getv(from_object, ['system_instruction']) is not None:
setv(
parent_object,
['systemInstruction'],
_Content_to_vertex(
api_client,
t.t_content(api_client, getv(from_object, ['system_instruction'])),
to_object,
),
)
if getv(from_object, ['tools']) is not None:
setv(
parent_object,
['tools'],
[
_Tool_to_vertex(api_client, item, to_object)
for item in getv(from_object, ['tools'])
],
)
if getv(from_object, ['generation_config']) is not None:
setv(
parent_object,
['generationConfig'],
getv(from_object, ['generation_config']),
)
return to_object
def _CountTokensParameters_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['contents']) is not None:
setv(
to_object,
['contents'],
[
_Content_to_mldev(api_client, item, to_object)
for item in t.t_contents(
api_client, getv(from_object, ['contents'])
)
],
)
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_CountTokensConfig_to_mldev(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _CountTokensParameters_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['contents']) is not None:
setv(
to_object,
['contents'],
[
_Content_to_vertex(api_client, item, to_object)
for item in t.t_contents(
api_client, getv(from_object, ['contents'])
)
],
)
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_CountTokensConfig_to_vertex(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _ComputeTokensConfig_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['http_options']) is not None:
setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
return to_object
def _ComputeTokensConfig_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['http_options']) is not None:
setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
return to_object
def _ComputeTokensParameters_to_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['contents']) is not None:
raise ValueError('contents parameter is not supported in Google AI.')
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_ComputeTokensConfig_to_mldev(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _ComputeTokensParameters_to_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['model']) is not None:
setv(
to_object,
['_url', 'model'],
t.t_model(api_client, getv(from_object, ['model'])),
)
if getv(from_object, ['contents']) is not None:
setv(
to_object,
['contents'],
[
_Content_to_vertex(api_client, item, to_object)
for item in t.t_contents(
api_client, getv(from_object, ['contents'])
)
],
)
if getv(from_object, ['config']) is not None:
setv(
to_object,
['config'],
_ComputeTokensConfig_to_vertex(
api_client, getv(from_object, ['config']), to_object
),
)
return to_object
def _Part_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['thought']) is not None:
setv(to_object, ['thought'], getv(from_object, ['thought']))
if getv(from_object, ['codeExecutionResult']) is not None:
setv(
to_object,
['code_execution_result'],
getv(from_object, ['codeExecutionResult']),
)
if getv(from_object, ['executableCode']) is not None:
setv(to_object, ['executable_code'], getv(from_object, ['executableCode']))
if getv(from_object, ['fileData']) is not None:
setv(to_object, ['file_data'], getv(from_object, ['fileData']))
if getv(from_object, ['functionCall']) is not None:
setv(to_object, ['function_call'], getv(from_object, ['functionCall']))
if getv(from_object, ['functionResponse']) is not None:
setv(
to_object,
['function_response'],
getv(from_object, ['functionResponse']),
)
if getv(from_object, ['inlineData']) is not None:
setv(to_object, ['inline_data'], getv(from_object, ['inlineData']))
if getv(from_object, ['text']) is not None:
setv(to_object, ['text'], getv(from_object, ['text']))
return to_object
def _Part_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['videoMetadata']) is not None:
setv(to_object, ['video_metadata'], getv(from_object, ['videoMetadata']))
if getv(from_object, ['thought']) is not None:
setv(to_object, ['thought'], getv(from_object, ['thought']))
if getv(from_object, ['codeExecutionResult']) is not None:
setv(
to_object,
['code_execution_result'],
getv(from_object, ['codeExecutionResult']),
)
if getv(from_object, ['executableCode']) is not None:
setv(to_object, ['executable_code'], getv(from_object, ['executableCode']))
if getv(from_object, ['fileData']) is not None:
setv(to_object, ['file_data'], getv(from_object, ['fileData']))
if getv(from_object, ['functionCall']) is not None:
setv(to_object, ['function_call'], getv(from_object, ['functionCall']))
if getv(from_object, ['functionResponse']) is not None:
setv(
to_object,
['function_response'],
getv(from_object, ['functionResponse']),
)
if getv(from_object, ['inlineData']) is not None:
setv(to_object, ['inline_data'], getv(from_object, ['inlineData']))
if getv(from_object, ['text']) is not None:
setv(to_object, ['text'], getv(from_object, ['text']))
return to_object
def _Content_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['parts']) is not None:
setv(
to_object,
['parts'],
[
_Part_from_mldev(api_client, item, to_object)
for item in getv(from_object, ['parts'])
],
)
if getv(from_object, ['role']) is not None:
setv(to_object, ['role'], getv(from_object, ['role']))
return to_object
def _Content_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['parts']) is not None:
setv(
to_object,
['parts'],
[
_Part_from_vertex(api_client, item, to_object)
for item in getv(from_object, ['parts'])
],
)
if getv(from_object, ['role']) is not None:
setv(to_object, ['role'], getv(from_object, ['role']))
return to_object
def _CitationMetadata_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['citationSources']) is not None:
setv(to_object, ['citations'], getv(from_object, ['citationSources']))
return to_object
def _CitationMetadata_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['citations']) is not None:
setv(to_object, ['citations'], getv(from_object, ['citations']))
return to_object
def _Candidate_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['content']) is not None:
setv(
to_object,
['content'],
_Content_from_mldev(
api_client, getv(from_object, ['content']), to_object
),
)
if getv(from_object, ['citationMetadata']) is not None:
setv(
to_object,
['citation_metadata'],
_CitationMetadata_from_mldev(
api_client, getv(from_object, ['citationMetadata']), to_object
),
)
if getv(from_object, ['tokenCount']) is not None:
setv(to_object, ['token_count'], getv(from_object, ['tokenCount']))
if getv(from_object, ['avgLogprobs']) is not None:
setv(to_object, ['avg_logprobs'], getv(from_object, ['avgLogprobs']))
if getv(from_object, ['finishReason']) is not None:
setv(to_object, ['finish_reason'], getv(from_object, ['finishReason']))
if getv(from_object, ['groundingMetadata']) is not None:
setv(
to_object,
['grounding_metadata'],
getv(from_object, ['groundingMetadata']),
)
if getv(from_object, ['index']) is not None:
setv(to_object, ['index'], getv(from_object, ['index']))
if getv(from_object, ['logprobsResult']) is not None:
setv(to_object, ['logprobs_result'], getv(from_object, ['logprobsResult']))
if getv(from_object, ['safetyRatings']) is not None:
setv(to_object, ['safety_ratings'], getv(from_object, ['safetyRatings']))
return to_object
def _Candidate_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['content']) is not None:
setv(
to_object,
['content'],
_Content_from_vertex(
api_client, getv(from_object, ['content']), to_object
),
)
if getv(from_object, ['citationMetadata']) is not None:
setv(
to_object,
['citation_metadata'],
_CitationMetadata_from_vertex(
api_client, getv(from_object, ['citationMetadata']), to_object
),
)
if getv(from_object, ['finishMessage']) is not None:
setv(to_object, ['finish_message'], getv(from_object, ['finishMessage']))
if getv(from_object, ['avgLogprobs']) is not None:
setv(to_object, ['avg_logprobs'], getv(from_object, ['avgLogprobs']))
if getv(from_object, ['finishReason']) is not None:
setv(to_object, ['finish_reason'], getv(from_object, ['finishReason']))
if getv(from_object, ['groundingMetadata']) is not None:
setv(
to_object,
['grounding_metadata'],
getv(from_object, ['groundingMetadata']),
)
if getv(from_object, ['index']) is not None:
setv(to_object, ['index'], getv(from_object, ['index']))
if getv(from_object, ['logprobsResult']) is not None:
setv(to_object, ['logprobs_result'], getv(from_object, ['logprobsResult']))
if getv(from_object, ['safetyRatings']) is not None:
setv(to_object, ['safety_ratings'], getv(from_object, ['safetyRatings']))
return to_object
def _GenerateContentResponse_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['candidates']) is not None:
setv(
to_object,
['candidates'],
[
_Candidate_from_mldev(api_client, item, to_object)
for item in getv(from_object, ['candidates'])
],
)
if getv(from_object, ['modelVersion']) is not None:
setv(to_object, ['model_version'], getv(from_object, ['modelVersion']))
if getv(from_object, ['promptFeedback']) is not None:
setv(to_object, ['prompt_feedback'], getv(from_object, ['promptFeedback']))
if getv(from_object, ['usageMetadata']) is not None:
setv(to_object, ['usage_metadata'], getv(from_object, ['usageMetadata']))
return to_object
def _GenerateContentResponse_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['candidates']) is not None:
setv(
to_object,
['candidates'],
[
_Candidate_from_vertex(api_client, item, to_object)
for item in getv(from_object, ['candidates'])
],
)
if getv(from_object, ['modelVersion']) is not None:
setv(to_object, ['model_version'], getv(from_object, ['modelVersion']))
if getv(from_object, ['promptFeedback']) is not None:
setv(to_object, ['prompt_feedback'], getv(from_object, ['promptFeedback']))
if getv(from_object, ['usageMetadata']) is not None:
setv(to_object, ['usage_metadata'], getv(from_object, ['usageMetadata']))
return to_object
def _ContentEmbeddingStatistics_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
return to_object
def _ContentEmbeddingStatistics_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['truncated']) is not None:
setv(to_object, ['truncated'], getv(from_object, ['truncated']))
if getv(from_object, ['token_count']) is not None:
setv(to_object, ['token_count'], getv(from_object, ['token_count']))
return to_object
def _ContentEmbedding_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['values']) is not None:
setv(to_object, ['values'], getv(from_object, ['values']))
return to_object
def _ContentEmbedding_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['values']) is not None:
setv(to_object, ['values'], getv(from_object, ['values']))
if getv(from_object, ['statistics']) is not None:
setv(
to_object,
['statistics'],
_ContentEmbeddingStatistics_from_vertex(
api_client, getv(from_object, ['statistics']), to_object
),
)
return to_object
def _EmbedContentMetadata_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
return to_object
def _EmbedContentMetadata_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['billableCharacterCount']) is not None:
setv(
to_object,
['billable_character_count'],
getv(from_object, ['billableCharacterCount']),
)
return to_object
def _EmbedContentResponse_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['embeddings']) is not None:
setv(
to_object,
['embeddings'],
[
_ContentEmbedding_from_mldev(api_client, item, to_object)
for item in getv(from_object, ['embeddings'])
],
)
if getv(from_object, ['metadata']) is not None:
setv(
to_object,
['metadata'],
_EmbedContentMetadata_from_mldev(
api_client, getv(from_object, ['metadata']), to_object
),
)
return to_object
def _EmbedContentResponse_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['predictions[]', 'embeddings']) is not None:
setv(
to_object,
['embeddings'],
[
_ContentEmbedding_from_vertex(api_client, item, to_object)
for item in getv(from_object, ['predictions[]', 'embeddings'])
],
)
if getv(from_object, ['metadata']) is not None:
setv(
to_object,
['metadata'],
_EmbedContentMetadata_from_vertex(
api_client, getv(from_object, ['metadata']), to_object
),
)
return to_object
def _Image_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['bytesBase64Encoded']) is not None:
setv(
to_object,
['image_bytes'],
t.t_bytes(api_client, getv(from_object, ['bytesBase64Encoded'])),
)
return to_object
def _Image_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['gcsUri']) is not None:
setv(to_object, ['gcs_uri'], getv(from_object, ['gcsUri']))
if getv(from_object, ['bytesBase64Encoded']) is not None:
setv(
to_object,
['image_bytes'],
t.t_bytes(api_client, getv(from_object, ['bytesBase64Encoded'])),
)
return to_object
def _GeneratedImage_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['_self']) is not None:
setv(
to_object,
['image'],
_Image_from_mldev(api_client, getv(from_object, ['_self']), to_object),
)
if getv(from_object, ['raiFilteredReason']) is not None:
setv(
to_object,
['rai_filtered_reason'],
getv(from_object, ['raiFilteredReason']),
)
return to_object
def _GeneratedImage_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['_self']) is not None:
setv(
to_object,
['image'],
_Image_from_vertex(api_client, getv(from_object, ['_self']), to_object),
)
if getv(from_object, ['raiFilteredReason']) is not None:
setv(
to_object,
['rai_filtered_reason'],
getv(from_object, ['raiFilteredReason']),
)
return to_object
def _GenerateImageResponse_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['predictions']) is not None:
setv(
to_object,
['generated_images'],
[
_GeneratedImage_from_mldev(api_client, item, to_object)
for item in getv(from_object, ['predictions'])
],
)
return to_object
def _GenerateImageResponse_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['predictions']) is not None:
setv(
to_object,
['generated_images'],
[
_GeneratedImage_from_vertex(api_client, item, to_object)
for item in getv(from_object, ['predictions'])
],
)
return to_object
def _EditImageResponse_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['predictions']) is not None:
setv(
to_object,
['generated_images'],
[
_GeneratedImage_from_mldev(api_client, item, to_object)
for item in getv(from_object, ['predictions'])
],
)
return to_object
def _EditImageResponse_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['predictions']) is not None:
setv(
to_object,
['generated_images'],
[
_GeneratedImage_from_vertex(api_client, item, to_object)
for item in getv(from_object, ['predictions'])
],
)
return to_object
def _UpscaleImageResponse_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['predictions']) is not None:
setv(
to_object,
['generated_images'],
[
_GeneratedImage_from_mldev(api_client, item, to_object)
for item in getv(from_object, ['predictions'])
],
)
return to_object
def _UpscaleImageResponse_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['predictions']) is not None:
setv(
to_object,
['generated_images'],
[
_GeneratedImage_from_vertex(api_client, item, to_object)
for item in getv(from_object, ['predictions'])
],
)
return to_object
def _Endpoint_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
return to_object
def _Endpoint_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['endpoint']) is not None:
setv(to_object, ['name'], getv(from_object, ['endpoint']))
if getv(from_object, ['deployedModelId']) is not None:
setv(
to_object, ['deployed_model_id'], getv(from_object, ['deployedModelId'])
)
return to_object
def _TunedModelInfo_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['baseModel']) is not None:
setv(to_object, ['base_model'], getv(from_object, ['baseModel']))
if getv(from_object, ['createTime']) is not None:
setv(to_object, ['create_time'], getv(from_object, ['createTime']))
if getv(from_object, ['updateTime']) is not None:
setv(to_object, ['update_time'], getv(from_object, ['updateTime']))
return to_object
def _TunedModelInfo_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if (
getv(from_object, ['labels', 'google-vertex-llm-tuning-base-model-id'])
is not None
):
setv(
to_object,
['base_model'],
getv(from_object, ['labels', 'google-vertex-llm-tuning-base-model-id']),
)
if getv(from_object, ['createTime']) is not None:
setv(to_object, ['create_time'], getv(from_object, ['createTime']))
if getv(from_object, ['updateTime']) is not None:
setv(to_object, ['update_time'], getv(from_object, ['updateTime']))
return to_object
def _Model_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['name']) is not None:
setv(to_object, ['name'], getv(from_object, ['name']))
if getv(from_object, ['displayName']) is not None:
setv(to_object, ['display_name'], getv(from_object, ['displayName']))
if getv(from_object, ['description']) is not None:
setv(to_object, ['description'], getv(from_object, ['description']))
if getv(from_object, ['version']) is not None:
setv(to_object, ['version'], getv(from_object, ['version']))
if getv(from_object, ['_self']) is not None:
setv(
to_object,
['tuned_model_info'],
_TunedModelInfo_from_mldev(
api_client, getv(from_object, ['_self']), to_object
),
)
if getv(from_object, ['inputTokenLimit']) is not None:
setv(
to_object, ['input_token_limit'], getv(from_object, ['inputTokenLimit'])
)
if getv(from_object, ['outputTokenLimit']) is not None:
setv(
to_object,
['output_token_limit'],
getv(from_object, ['outputTokenLimit']),
)
if getv(from_object, ['supportedGenerationMethods']) is not None:
setv(
to_object,
['supported_actions'],
getv(from_object, ['supportedGenerationMethods']),
)
return to_object
def _Model_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['name']) is not None:
setv(to_object, ['name'], getv(from_object, ['name']))
if getv(from_object, ['displayName']) is not None:
setv(to_object, ['display_name'], getv(from_object, ['displayName']))
if getv(from_object, ['description']) is not None:
setv(to_object, ['description'], getv(from_object, ['description']))
if getv(from_object, ['versionId']) is not None:
setv(to_object, ['version'], getv(from_object, ['versionId']))
if getv(from_object, ['deployedModels']) is not None:
setv(
to_object,
['endpoints'],
[
_Endpoint_from_vertex(api_client, item, to_object)
for item in getv(from_object, ['deployedModels'])
],
)
if getv(from_object, ['labels']) is not None:
setv(to_object, ['labels'], getv(from_object, ['labels']))
if getv(from_object, ['_self']) is not None:
setv(
to_object,
['tuned_model_info'],
_TunedModelInfo_from_vertex(
api_client, getv(from_object, ['_self']), to_object
),
)
return to_object
def _ListModelsResponse_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['nextPageToken']) is not None:
setv(to_object, ['next_page_token'], getv(from_object, ['nextPageToken']))
if getv(from_object, ['_self']) is not None:
setv(
to_object,
['models'],
[
_Model_from_mldev(api_client, item, to_object)
for item in t.t_extract_models(
api_client, getv(from_object, ['_self'])
)
],
)
return to_object
def _ListModelsResponse_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['nextPageToken']) is not None:
setv(to_object, ['next_page_token'], getv(from_object, ['nextPageToken']))
if getv(from_object, ['_self']) is not None:
setv(
to_object,
['models'],
[
_Model_from_vertex(api_client, item, to_object)
for item in t.t_extract_models(
api_client, getv(from_object, ['_self'])
)
],
)
return to_object
def _DeleteModelResponse_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
return to_object
def _DeleteModelResponse_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
return to_object
def _CountTokensResponse_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['totalTokens']) is not None:
setv(to_object, ['total_tokens'], getv(from_object, ['totalTokens']))
if getv(from_object, ['cachedContentTokenCount']) is not None:
setv(
to_object,
['cached_content_token_count'],
getv(from_object, ['cachedContentTokenCount']),
)
return to_object
def _CountTokensResponse_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['totalTokens']) is not None:
setv(to_object, ['total_tokens'], getv(from_object, ['totalTokens']))
return to_object
def _ComputeTokensResponse_from_mldev(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['tokensInfo']) is not None:
setv(to_object, ['tokens_info'], getv(from_object, ['tokensInfo']))
return to_object
def _ComputeTokensResponse_from_vertex(
api_client: ApiClient,
from_object: Union[dict, object],
parent_object: dict = None,
) -> dict:
to_object = {}
if getv(from_object, ['tokensInfo']) is not None:
setv(to_object, ['tokens_info'], getv(from_object, ['tokensInfo']))
return to_object
class Models(_common.BaseModule):
def _generate_content(
self,
*,
model: str,
contents: Union[types.ContentListUnion, types.ContentListUnionDict],
config: Optional[types.GenerateContentConfigOrDict] = None,
) -> types.GenerateContentResponse:
parameter_model = types._GenerateContentParameters(
model=model,
contents=contents,
config=config,
)
if self._api_client.vertexai:
request_dict = _GenerateContentParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:generateContent'.format_map(request_dict.get('_url'))
else:
request_dict = _GenerateContentParameters_to_mldev(
self._api_client, parameter_model
)
path = '{model}:generateContent'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = self._api_client.request(
'post', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _GenerateContentResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _GenerateContentResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.GenerateContentResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
def generate_content_stream(
self,
*,
model: str,
contents: Union[types.ContentListUnion, types.ContentListUnionDict],
config: Optional[types.GenerateContentConfigOrDict] = None,
) -> Iterator[types.GenerateContentResponse]:
parameter_model = types._GenerateContentParameters(
model=model,
contents=contents,
config=config,
)
if self._api_client.vertexai:
request_dict = _GenerateContentParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:streamGenerateContent?alt=sse'.format_map(
request_dict.get('_url')
)
else:
request_dict = _GenerateContentParameters_to_mldev(
self._api_client, parameter_model
)
path = '{model}:streamGenerateContent?alt=sse'.format_map(
request_dict.get('_url')
)
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
for response_dict in self._api_client.request_streamed(
'post', path, request_dict, http_options
):
if self._api_client.vertexai:
response_dict = _GenerateContentResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _GenerateContentResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.GenerateContentResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
yield return_value
def embed_content(
self,
*,
model: str,
contents: Union[types.ContentListUnion, types.ContentListUnionDict],
config: Optional[types.EmbedContentConfigOrDict] = None,
) -> types.EmbedContentResponse:
"""Calculates embeddings for the given contents(only text is supported).
Args:
model (str): The model to use.
contents (list[Content]): The contents to embed.
config (EmbedContentConfig): Optional configuration for embeddings.
Usage:
.. code-block:: python
embeddings = client.models.embed_content(
model= 'text-embedding-004',
contents=[
'What is your name?',
'What is your favorite color?',
],
config={
'output_dimensionality': 64
},
)
"""
parameter_model = types._EmbedContentParameters(
model=model,
contents=contents,
config=config,
)
if self._api_client.vertexai:
request_dict = _EmbedContentParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:predict'.format_map(request_dict.get('_url'))
else:
request_dict = _EmbedContentParameters_to_mldev(
self._api_client, parameter_model
)
path = '{model}:batchEmbedContents'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = self._api_client.request(
'post', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _EmbedContentResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _EmbedContentResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.EmbedContentResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
def generate_image(
self,
*,
model: str,
prompt: str,
config: Optional[types.GenerateImageConfigOrDict] = None,
) -> types.GenerateImageResponse:
"""Generates an image based on a text description and configuration.
Args:
model (str): The model to use.
prompt (str): A text description of the image to generate.
config (GenerateImageConfig): Configuration for generation.
Usage:
.. code-block:: python
response = client.models.generate_image(
model='imagen-3.0-generate-001',
prompt='Man with a dog',
config=types.GenerateImageConfig(
number_of_images= 1,
include_rai_reason= True,
)
)
response.generated_images[0].image.show()
# Shows a man with a dog.
"""
parameter_model = types._GenerateImageParameters(
model=model,
prompt=prompt,
config=config,
)
if self._api_client.vertexai:
request_dict = _GenerateImageParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:predict'.format_map(request_dict.get('_url'))
else:
request_dict = _GenerateImageParameters_to_mldev(
self._api_client, parameter_model
)
path = '{model}:predict'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = self._api_client.request(
'post', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _GenerateImageResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _GenerateImageResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.GenerateImageResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
def edit_image(
self,
*,
model: str,
prompt: str,
reference_images: list[types._ReferenceImageAPIOrDict],
config: Optional[types.EditImageConfigOrDict] = None,
) -> types.EditImageResponse:
"""Edits an image based on a text description and configuration.
Args:
model (str): The model to use.
prompt (str): A text description of the edit to apply to the image.
reference_images (list[Union[RawReferenceImage, MaskReferenceImage,
ControlReferenceImage, StyleReferenceImage, SubjectReferenceImage]): The
reference images for editing.
config (EditImageConfig): Configuration for editing.
Usage:
.. code-block:: python
from google.genai.types import RawReferenceImage, MaskReferenceImage
raw_ref_image = RawReferenceImage(
reference_id=1,
reference_image=types.Image.from_file(IMAGE_FILE_PATH),
)
mask_ref_image = MaskReferenceImage(
reference_id=2,
config=types.MaskReferenceConfig(
mask_mode='MASK_MODE_FOREGROUND',
mask_dilation=0.06,
),
)
response = client.models.edit_image(
model='imagen-3.0-capability-preview-0930',
prompt='man with dog',
reference_images=[raw_ref_image, mask_ref_image],
config=types.EditImageConfig(
edit_mode= "EDIT_MODE_INPAINT_INSERTION",
number_of_images= 1,
include_rai_reason= True,
)
)
response.generated_images[0].image.show()
# Shows a man with a dog instead of a cat.
"""
parameter_model = types._EditImageParameters(
model=model,
prompt=prompt,
reference_images=reference_images,
config=config,
)
if not self._api_client.vertexai:
raise ValueError('This method is only supported in the Vertex AI client.')
else:
request_dict = _EditImageParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:predict'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = self._api_client.request(
'post', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _EditImageResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _EditImageResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.EditImageResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
def _upscale_image(
self,
*,
model: str,
image: types.ImageOrDict,
upscale_factor: str,
config: Optional[types._UpscaleImageAPIConfigOrDict] = None,
) -> types.UpscaleImageResponse:
"""Upscales an image.
Args:
model (str): The model to use.
image (Image): The input image for upscaling.
upscale_factor (str): The factor to upscale the image (x2 or x4).
config (_UpscaleImageAPIConfig): Configuration for upscaling.
"""
parameter_model = types._UpscaleImageAPIParameters(
model=model,
image=image,
upscale_factor=upscale_factor,
config=config,
)
if not self._api_client.vertexai:
raise ValueError('This method is only supported in the Vertex AI client.')
else:
request_dict = _UpscaleImageAPIParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:predict'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = self._api_client.request(
'post', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _UpscaleImageResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _UpscaleImageResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.UpscaleImageResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
def get(self, *, model: str) -> types.Model:
parameter_model = types._GetModelParameters(
model=model,
)
if self._api_client.vertexai:
request_dict = _GetModelParameters_to_vertex(
self._api_client, parameter_model
)
path = '{name}'.format_map(request_dict.get('_url'))
else:
request_dict = _GetModelParameters_to_mldev(
self._api_client, parameter_model
)
path = '{name}'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = self._api_client.request(
'get', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _Model_from_vertex(self._api_client, response_dict)
else:
response_dict = _Model_from_mldev(self._api_client, response_dict)
return_value = types.Model._from_response(response_dict, parameter_model)
self._api_client._verify_response(return_value)
return return_value
def _list(
self, *, config: Optional[types.ListModelsConfigOrDict] = None
) -> types.ListModelsResponse:
parameter_model = types._ListModelsParameters(
config=config,
)
if self._api_client.vertexai:
request_dict = _ListModelsParameters_to_vertex(
self._api_client, parameter_model
)
path = '{models_url}'.format_map(request_dict.get('_url'))
else:
request_dict = _ListModelsParameters_to_mldev(
self._api_client, parameter_model
)
path = '{models_url}'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = self._api_client.request(
'get', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _ListModelsResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _ListModelsResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.ListModelsResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
def update(
self,
*,
model: str,
config: Optional[types.UpdateModelConfigOrDict] = None,
) -> types.Model:
parameter_model = types._UpdateModelParameters(
model=model,
config=config,
)
if self._api_client.vertexai:
request_dict = _UpdateModelParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}'.format_map(request_dict.get('_url'))
else:
request_dict = _UpdateModelParameters_to_mldev(
self._api_client, parameter_model
)
path = '{name}'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = self._api_client.request(
'patch', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _Model_from_vertex(self._api_client, response_dict)
else:
response_dict = _Model_from_mldev(self._api_client, response_dict)
return_value = types.Model._from_response(response_dict, parameter_model)
self._api_client._verify_response(return_value)
return return_value
def delete(self, *, model: str) -> types.DeleteModelResponse:
parameter_model = types._DeleteModelParameters(
model=model,
)
if self._api_client.vertexai:
request_dict = _DeleteModelParameters_to_vertex(
self._api_client, parameter_model
)
path = '{name}'.format_map(request_dict.get('_url'))
else:
request_dict = _DeleteModelParameters_to_mldev(
self._api_client, parameter_model
)
path = '{name}'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = self._api_client.request(
'delete', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _DeleteModelResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _DeleteModelResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.DeleteModelResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
def count_tokens(
self,
*,
model: str,
contents: Union[types.ContentListUnion, types.ContentListUnionDict],
config: Optional[types.CountTokensConfigOrDict] = None,
) -> types.CountTokensResponse:
"""Counts the number of tokens in the given content.
Args:
model (str): The model to use for counting tokens.
contents (list[types.Content]): The content to count tokens for.
Multimodal input is supported for Gemini models.
config (CountTokensConfig): The configuration for counting tokens.
Usage:
.. code-block:: python
response = client.models.count_tokens(
model='gemini-1.5-flash',
contents='What is your name?',
)
print(response)
# total_tokens=5 cached_content_token_count=None
"""
parameter_model = types._CountTokensParameters(
model=model,
contents=contents,
config=config,
)
if self._api_client.vertexai:
request_dict = _CountTokensParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:countTokens'.format_map(request_dict.get('_url'))
else:
request_dict = _CountTokensParameters_to_mldev(
self._api_client, parameter_model
)
path = '{model}:countTokens'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = self._api_client.request(
'post', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _CountTokensResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _CountTokensResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.CountTokensResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
def compute_tokens(
self,
*,
model: str,
contents: Union[types.ContentListUnion, types.ContentListUnionDict],
config: Optional[types.ComputeTokensConfigOrDict] = None,
) -> types.ComputeTokensResponse:
"""Return a list of tokens based on the input text.
This method is not supported by the Gemini Developer API.
Args:
model (str): The model to use.
contents (list[shared.Content]): The content to compute tokens for. Only
text is supported.
Usage:
.. code-block:: python
response = client.models.compute_tokens(
model='gemini-1.5-flash',
contents='What is your name?',
)
print(response)
# tokens_info=[TokensInfo(role='user', token_ids=['1841', ...],
# tokens=[b'What', b' is', b' your', b' name', b'?'])]
"""
parameter_model = types._ComputeTokensParameters(
model=model,
contents=contents,
config=config,
)
if not self._api_client.vertexai:
raise ValueError('This method is only supported in the Vertex AI client.')
else:
request_dict = _ComputeTokensParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:computeTokens'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = self._api_client.request(
'post', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _ComputeTokensResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _ComputeTokensResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.ComputeTokensResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
def generate_content(
self,
*,
model: str,
contents: Union[types.ContentListUnion, types.ContentListUnionDict],
config: Optional[types.GenerateContentConfigOrDict] = None,
) -> types.GenerateContentResponse:
"""Makes an API request to generate content using a model.
Some models support multimodal input and output.
Usage:
.. code-block:: python
from google.genai import types
from google import genai
client = genai.Client(
vertexai=True, project='my-project-id', location='us-central1'
)
response = client.models.generate_content(
model='gemini-1.5-flash-002',
contents='''What is a good name for a flower shop that specializes in
selling bouquets of dried flowers?'''
)
print(response.text)
# **Elegant & Classic:**
# * The Dried Bloom
# * Everlasting Florals
# * Timeless Petals
response = client.models.generate_content(
model='gemini-1.5-flash-002',
contents=[
types.Part.from_text('What is shown in this image?'),
types.Part.from_uri('gs://generativeai-downloads/images/scones.jpg',
'image/jpeg')
]
)
print(response.text)
# The image shows a flat lay arrangement of freshly baked blueberry
# scones.
"""
if _extra_utils.should_disable_afc(config):
return self._generate_content(
model=model, contents=contents, config=config
)
remaining_remote_calls_afc = _extra_utils.get_max_remote_calls_afc(config)
logging.info(
f'AFC is enabled with max remote calls: {remaining_remote_calls_afc}.'
)
automatic_function_calling_history = []
while remaining_remote_calls_afc > 0:
response = self._generate_content(
model=model, contents=contents, config=config
)
remaining_remote_calls_afc -= 1
if remaining_remote_calls_afc == 0:
logging.info('Reached max remote calls for automatic function calling.')
function_map = _extra_utils.get_function_map(config)
if not function_map:
break
if (
not response.candidates
or not response.candidates[0].content
or not response.candidates[0].content.parts
):
break
func_response_parts = _extra_utils.get_function_response_parts(
response, function_map
)
if not func_response_parts:
break
contents = t.t_contents(self._api_client, contents)
contents.append(response.candidates[0].content)
contents.append(
types.Content(
role='user',
parts=func_response_parts,
)
)
automatic_function_calling_history.extend(contents)
if _extra_utils.should_append_afc_history(config):
response.automatic_function_calling_history = (
automatic_function_calling_history
)
return response
def upscale_image(
self,
*,
model: str,
image: types.ImageOrDict,
upscale_factor: str,
config: Optional[types.UpscaleImageConfigOrDict] = None,
) -> types.UpscaleImageResponse:
"""Makes an API request to upscale a provided image.
Args:
model (str): The model to use.
image (Image): The input image for upscaling.
upscale_factor (str): The factor to upscale the image (x2 or x4).
config (UpscaleImageConfig): Configuration for upscaling.
Usage:
.. code-block:: python
from google.genai.types import Image
IMAGE_FILE_PATH="my-image.png"
response=client.models.upscale_image(
model='imagen-3.0-generate-001',
image=types.Image.from_file(IMAGE_FILE_PATH),
upscale_factor='x2',
)
response.generated_images[0].image.show()
# Opens my-image.png which is upscaled by a factor of 2.
"""
# Validate config.
types.UpscaleImageParameters(
model=model,
image=image,
upscale_factor=upscale_factor,
config=config,
)
# Convert to API config.
config = config or {}
config_dct = config if isinstance(config, dict) else config.dict()
api_config = types._UpscaleImageAPIConfigDict(**config_dct) # pylint: disable=protected-access
# Provide default values through API config.
api_config['mode'] = 'upscale'
api_config['number_of_images'] = 1
return self._upscale_image(
model=model,
image=image,
upscale_factor=upscale_factor,
config=api_config,
)
def list(
self,
*,
config: Optional[types.ListModelsConfigOrDict] = None,
) -> Pager[types.Model]:
"""Makes an API request to list the available models.
If `query_base` is set to True in the config, the API will return all
available base models. If set to False or not set (default), it will return
all tuned models.
Args:
config (ListModelsConfigOrDict): Configuration for retrieving models.
Usage:
.. code-block:: python
response=client.models.list(config={'page_size': 5})
print(response.page)
# [Model(name='projects/./locations/./models/123', display_name='my_model'
response=client.models.list(config={'page_size': 5, 'query_base': True})
print(response.page)
# [Model(name='publishers/google/models/gemini-2.0-flash-exp' ...
"""
config = (
types._ListModelsParameters(config=config).config
or types.ListModelsConfig()
)
if self._api_client.vertexai:
config = config.copy()
if config.query_base:
http_options = (
config.http_options if config.http_options else HttpOptionsDict()
)
http_options['skip_project_and_location_in_path'] = True
config.http_options = http_options
else:
# Filter for tuning jobs artifacts by labels.
filter_value = config.filter
config.filter = (
filter_value + '&filter=labels.tune-type:*'
if filter_value
else 'labels.tune-type:*'
)
if not config.query_base:
config.query_base = False
return Pager(
'models',
self._list,
self._list(config=config),
config,
)
class AsyncModels(_common.BaseModule):
async def _generate_content(
self,
*,
model: str,
contents: Union[types.ContentListUnion, types.ContentListUnionDict],
config: Optional[types.GenerateContentConfigOrDict] = None,
) -> types.GenerateContentResponse:
parameter_model = types._GenerateContentParameters(
model=model,
contents=contents,
config=config,
)
if self._api_client.vertexai:
request_dict = _GenerateContentParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:generateContent'.format_map(request_dict.get('_url'))
else:
request_dict = _GenerateContentParameters_to_mldev(
self._api_client, parameter_model
)
path = '{model}:generateContent'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = await self._api_client.async_request(
'post', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _GenerateContentResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _GenerateContentResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.GenerateContentResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
async def generate_content_stream(
self,
*,
model: str,
contents: Union[types.ContentListUnion, types.ContentListUnionDict],
config: Optional[types.GenerateContentConfigOrDict] = None,
) -> AsyncIterator[types.GenerateContentResponse]:
parameter_model = types._GenerateContentParameters(
model=model,
contents=contents,
config=config,
)
if self._api_client.vertexai:
request_dict = _GenerateContentParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:streamGenerateContent?alt=sse'.format_map(
request_dict.get('_url')
)
else:
request_dict = _GenerateContentParameters_to_mldev(
self._api_client, parameter_model
)
path = '{model}:streamGenerateContent?alt=sse'.format_map(
request_dict.get('_url')
)
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
async for response_dict in self._api_client.async_request_streamed(
'post', path, request_dict, http_options
):
if self._api_client.vertexai:
response_dict = _GenerateContentResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _GenerateContentResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.GenerateContentResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
yield return_value
async def embed_content(
self,
*,
model: str,
contents: Union[types.ContentListUnion, types.ContentListUnionDict],
config: Optional[types.EmbedContentConfigOrDict] = None,
) -> types.EmbedContentResponse:
"""Calculates embeddings for the given contents(only text is supported).
Args:
model (str): The model to use.
contents (list[Content]): The contents to embed.
config (EmbedContentConfig): Optional configuration for embeddings.
Usage:
.. code-block:: python
embeddings = client.models.embed_content(
model= 'text-embedding-004',
contents=[
'What is your name?',
'What is your favorite color?',
],
config={
'output_dimensionality': 64
},
)
"""
parameter_model = types._EmbedContentParameters(
model=model,
contents=contents,
config=config,
)
if self._api_client.vertexai:
request_dict = _EmbedContentParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:predict'.format_map(request_dict.get('_url'))
else:
request_dict = _EmbedContentParameters_to_mldev(
self._api_client, parameter_model
)
path = '{model}:batchEmbedContents'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = await self._api_client.async_request(
'post', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _EmbedContentResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _EmbedContentResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.EmbedContentResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
async def generate_image(
self,
*,
model: str,
prompt: str,
config: Optional[types.GenerateImageConfigOrDict] = None,
) -> types.GenerateImageResponse:
"""Generates an image based on a text description and configuration.
Args:
model (str): The model to use.
prompt (str): A text description of the image to generate.
config (GenerateImageConfig): Configuration for generation.
Usage:
.. code-block:: python
response = client.models.generate_image(
model='imagen-3.0-generate-001',
prompt='Man with a dog',
config=types.GenerateImageConfig(
number_of_images= 1,
include_rai_reason= True,
)
)
response.generated_images[0].image.show()
# Shows a man with a dog.
"""
parameter_model = types._GenerateImageParameters(
model=model,
prompt=prompt,
config=config,
)
if self._api_client.vertexai:
request_dict = _GenerateImageParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:predict'.format_map(request_dict.get('_url'))
else:
request_dict = _GenerateImageParameters_to_mldev(
self._api_client, parameter_model
)
path = '{model}:predict'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = await self._api_client.async_request(
'post', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _GenerateImageResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _GenerateImageResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.GenerateImageResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
async def edit_image(
self,
*,
model: str,
prompt: str,
reference_images: list[types._ReferenceImageAPIOrDict],
config: Optional[types.EditImageConfigOrDict] = None,
) -> types.EditImageResponse:
"""Edits an image based on a text description and configuration.
Args:
model (str): The model to use.
prompt (str): A text description of the edit to apply to the image.
reference_images (list[Union[RawReferenceImage, MaskReferenceImage,
ControlReferenceImage, StyleReferenceImage, SubjectReferenceImage]): The
reference images for editing.
config (EditImageConfig): Configuration for editing.
Usage:
.. code-block:: python
from google.genai.types import RawReferenceImage, MaskReferenceImage
raw_ref_image = RawReferenceImage(
reference_id=1,
reference_image=types.Image.from_file(IMAGE_FILE_PATH),
)
mask_ref_image = MaskReferenceImage(
reference_id=2,
config=types.MaskReferenceConfig(
mask_mode='MASK_MODE_FOREGROUND',
mask_dilation=0.06,
),
)
response = client.models.edit_image(
model='imagen-3.0-capability-preview-0930',
prompt='man with dog',
reference_images=[raw_ref_image, mask_ref_image],
config=types.EditImageConfig(
edit_mode= "EDIT_MODE_INPAINT_INSERTION",
number_of_images= 1,
include_rai_reason= True,
)
)
response.generated_images[0].image.show()
# Shows a man with a dog instead of a cat.
"""
parameter_model = types._EditImageParameters(
model=model,
prompt=prompt,
reference_images=reference_images,
config=config,
)
if not self._api_client.vertexai:
raise ValueError('This method is only supported in the Vertex AI client.')
else:
request_dict = _EditImageParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:predict'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = await self._api_client.async_request(
'post', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _EditImageResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _EditImageResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.EditImageResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
async def _upscale_image(
self,
*,
model: str,
image: types.ImageOrDict,
upscale_factor: str,
config: Optional[types._UpscaleImageAPIConfigOrDict] = None,
) -> types.UpscaleImageResponse:
"""Upscales an image.
Args:
model (str): The model to use.
image (Image): The input image for upscaling.
upscale_factor (str): The factor to upscale the image (x2 or x4).
config (_UpscaleImageAPIConfig): Configuration for upscaling.
"""
parameter_model = types._UpscaleImageAPIParameters(
model=model,
image=image,
upscale_factor=upscale_factor,
config=config,
)
if not self._api_client.vertexai:
raise ValueError('This method is only supported in the Vertex AI client.')
else:
request_dict = _UpscaleImageAPIParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:predict'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = await self._api_client.async_request(
'post', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _UpscaleImageResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _UpscaleImageResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.UpscaleImageResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
async def get(self, *, model: str) -> types.Model:
parameter_model = types._GetModelParameters(
model=model,
)
if self._api_client.vertexai:
request_dict = _GetModelParameters_to_vertex(
self._api_client, parameter_model
)
path = '{name}'.format_map(request_dict.get('_url'))
else:
request_dict = _GetModelParameters_to_mldev(
self._api_client, parameter_model
)
path = '{name}'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = await self._api_client.async_request(
'get', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _Model_from_vertex(self._api_client, response_dict)
else:
response_dict = _Model_from_mldev(self._api_client, response_dict)
return_value = types.Model._from_response(response_dict, parameter_model)
self._api_client._verify_response(return_value)
return return_value
async def _list(
self, *, config: Optional[types.ListModelsConfigOrDict] = None
) -> types.ListModelsResponse:
parameter_model = types._ListModelsParameters(
config=config,
)
if self._api_client.vertexai:
request_dict = _ListModelsParameters_to_vertex(
self._api_client, parameter_model
)
path = '{models_url}'.format_map(request_dict.get('_url'))
else:
request_dict = _ListModelsParameters_to_mldev(
self._api_client, parameter_model
)
path = '{models_url}'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = await self._api_client.async_request(
'get', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _ListModelsResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _ListModelsResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.ListModelsResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
async def update(
self,
*,
model: str,
config: Optional[types.UpdateModelConfigOrDict] = None,
) -> types.Model:
parameter_model = types._UpdateModelParameters(
model=model,
config=config,
)
if self._api_client.vertexai:
request_dict = _UpdateModelParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}'.format_map(request_dict.get('_url'))
else:
request_dict = _UpdateModelParameters_to_mldev(
self._api_client, parameter_model
)
path = '{name}'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = await self._api_client.async_request(
'patch', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _Model_from_vertex(self._api_client, response_dict)
else:
response_dict = _Model_from_mldev(self._api_client, response_dict)
return_value = types.Model._from_response(response_dict, parameter_model)
self._api_client._verify_response(return_value)
return return_value
async def delete(self, *, model: str) -> types.DeleteModelResponse:
parameter_model = types._DeleteModelParameters(
model=model,
)
if self._api_client.vertexai:
request_dict = _DeleteModelParameters_to_vertex(
self._api_client, parameter_model
)
path = '{name}'.format_map(request_dict.get('_url'))
else:
request_dict = _DeleteModelParameters_to_mldev(
self._api_client, parameter_model
)
path = '{name}'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = await self._api_client.async_request(
'delete', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _DeleteModelResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _DeleteModelResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.DeleteModelResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
async def count_tokens(
self,
*,
model: str,
contents: Union[types.ContentListUnion, types.ContentListUnionDict],
config: Optional[types.CountTokensConfigOrDict] = None,
) -> types.CountTokensResponse:
"""Counts the number of tokens in the given content.
Args:
model (str): The model to use for counting tokens.
contents (list[types.Content]): The content to count tokens for.
Multimodal input is supported for Gemini models.
config (CountTokensConfig): The configuration for counting tokens.
Usage:
.. code-block:: python
response = client.models.count_tokens(
model='gemini-1.5-flash',
contents='What is your name?',
)
print(response)
# total_tokens=5 cached_content_token_count=None
"""
parameter_model = types._CountTokensParameters(
model=model,
contents=contents,
config=config,
)
if self._api_client.vertexai:
request_dict = _CountTokensParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:countTokens'.format_map(request_dict.get('_url'))
else:
request_dict = _CountTokensParameters_to_mldev(
self._api_client, parameter_model
)
path = '{model}:countTokens'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = await self._api_client.async_request(
'post', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _CountTokensResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _CountTokensResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.CountTokensResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
async def compute_tokens(
self,
*,
model: str,
contents: Union[types.ContentListUnion, types.ContentListUnionDict],
config: Optional[types.ComputeTokensConfigOrDict] = None,
) -> types.ComputeTokensResponse:
"""Return a list of tokens based on the input text.
This method is not supported by the Gemini Developer API.
Args:
model (str): The model to use.
contents (list[shared.Content]): The content to compute tokens for. Only
text is supported.
Usage:
.. code-block:: python
response = client.models.compute_tokens(
model='gemini-1.5-flash',
contents='What is your name?',
)
print(response)
# tokens_info=[TokensInfo(role='user', token_ids=['1841', ...],
# tokens=[b'What', b' is', b' your', b' name', b'?'])]
"""
parameter_model = types._ComputeTokensParameters(
model=model,
contents=contents,
config=config,
)
if not self._api_client.vertexai:
raise ValueError('This method is only supported in the Vertex AI client.')
else:
request_dict = _ComputeTokensParameters_to_vertex(
self._api_client, parameter_model
)
path = '{model}:computeTokens'.format_map(request_dict.get('_url'))
query_params = request_dict.get('_query')
if query_params:
path = f'{path}?{urlencode(query_params)}'
# TODO: remove the hack that pops config.
config = request_dict.pop('config', None)
http_options = config.pop('httpOptions', None) if config else None
request_dict = _common.convert_to_dict(request_dict)
request_dict = _common.encode_unserializable_types(request_dict)
response_dict = await self._api_client.async_request(
'post', path, request_dict, http_options
)
if self._api_client.vertexai:
response_dict = _ComputeTokensResponse_from_vertex(
self._api_client, response_dict
)
else:
response_dict = _ComputeTokensResponse_from_mldev(
self._api_client, response_dict
)
return_value = types.ComputeTokensResponse._from_response(
response_dict, parameter_model
)
self._api_client._verify_response(return_value)
return return_value
async def generate_content(
self,
*,
model: str,
contents: Union[types.ContentListUnion, types.ContentListUnionDict],
config: Optional[types.GenerateContentConfigOrDict] = None,
) -> types.GenerateContentResponse:
"""Makes an API request to generate content using a model.
Some models support multimodal input and output.
Usage:
.. code-block:: python
from google.genai import types
from google import genai
client = genai.Client(
vertexai=True, project='my-project-id', location='us-central1'
)
response = await client.aio.models.generate_content(
model='gemini-1.5-flash-002',
contents='User input: I like bagels. Answer:',
config=types.GenerateContentConfig(
system_instruction=
[
'You are a helpful language translator.',
'Your mission is to translate text in English to French.'
]
),
)
print(response.text)
# J'aime les bagels.
"""
if _extra_utils.should_disable_afc(config):
return await self._generate_content(
model=model, contents=contents, config=config
)
remaining_remote_calls_afc = _extra_utils.get_max_remote_calls_afc(config)
logging.info(
f'AFC is enabled with max remote calls: {remaining_remote_calls_afc}.'
)
automatic_function_calling_history = []
while remaining_remote_calls_afc > 0:
response = await self._generate_content(
model=model, contents=contents, config=config
)
remaining_remote_calls_afc -= 1
if remaining_remote_calls_afc == 0:
logging.info('Reached max remote calls for automatic function calling.')
function_map = _extra_utils.get_function_map(config)
if not function_map:
break
if (
not response.candidates
or not response.candidates[0].content
or not response.candidates[0].content.parts
):
break
func_response_parts = _extra_utils.get_function_response_parts(
response, function_map
)
if not func_response_parts:
break
contents = t.t_contents(self._api_client, contents)
contents.append(response.candidates[0].content)
contents.append(
types.Content(
role='user',
parts=func_response_parts,
)
)
automatic_function_calling_history.extend(contents)
if _extra_utils.should_append_afc_history(config):
response.automatic_function_calling_history = (
automatic_function_calling_history
)
return response
async def list(
self,
*,
config: Optional[types.ListModelsConfigOrDict] = None,
) -> AsyncPager[types.Model]:
"""Makes an API request to list the available models.
If `query_base` is set to True in the config, the API will return all
available base models. If set to False or not set (default), it will return
all tuned models.
Args:
config (ListModelsConfigOrDict): Configuration for retrieving models.
Usage:
.. code-block:: python
response = await client.aio.models.list(config={'page_size': 5})
print(response.page)
# [Model(name='projects/./locations/./models/123', display_name='my_model'
response = await client.aio.models.list(
config={'page_size': 5, 'query_base': True}
)
print(response.page)
# [Model(name='publishers/google/models/gemini-2.0-flash-exp' ...
"""
config = (
types._ListModelsParameters(config=config).config
or types.ListModelsConfig()
)
if self._api_client.vertexai:
config = config.copy()
if config.query_base:
http_options = (
config.http_options if config.http_options else HttpOptionsDict()
)
http_options['skip_project_and_location_in_path'] = True
config.http_options = http_options
else:
# Filter for tuning jobs artifacts by labels.
filter_value = config.filter
config.filter = (
filter_value + '&filter=labels.tune-type:*'
if filter_value
else 'labels.tune-type:*'
)
if not config.query_base:
config.query_base = False
return AsyncPager(
'models',
self._list,
await self._list(config=config),
config,
)
async def upscale_image(
self,
*,
model: str,
image: types.ImageOrDict,
upscale_factor: str,
config: Optional[types.UpscaleImageConfigOrDict] = None,
) -> types.UpscaleImageResponse:
"""Makes an API request to upscale a provided image.
Args:
model (str): The model to use.
image (Image): The input image for upscaling.
upscale_factor (str): The factor to upscale the image (x2 or x4).
config (UpscaleImageConfig): Configuration for upscaling.
Usage:
.. code-block:: python
from google.genai.types import Image
IMAGE_FILE_PATH="my-image.png"
response = await client.aio.models.upscale_image(
model='imagen-3.0-generate-001',
image=types.Image.from_file(IMAGE_FILE_PATH),
upscale_factor='x2',
)
response.generated_images[0].image.show()
# Opens my-image.png which is upscaled by a factor of 2.
"""
# Validate config.
types.UpscaleImageParameters(
model=model,
image=image,
upscale_factor=upscale_factor,
config=config,
)
# Convert to API config.
config = config or {}
config_dct = config if isinstance(config, dict) else config.dict()
api_config = types._UpscaleImageAPIConfigDict(**config_dct) # pylint: disable=protected-access
# Provide default values through API config.
api_config['mode'] = 'upscale'
api_config['number_of_images'] = 1
return await self._upscale_image(
model=model,
image=image,
upscale_factor=upscale_factor,
config=api_config,
)