1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
"""Test that the search feature works as expected"""
from hypothesis import given, strategies as st
from pymonad.maybe import Just, Nothing
import pytest
from gn3.api.search import apply_si_suffix, parse_range, parse_position
@pytest.mark.unit_test
@given(st.decimals(places=3, allow_nan=False, allow_infinity=False),
st.sampled_from(["k", "K"]))
def test_apply_si_suffix_kilo(mantissa, suffix):
"""
GIVEN: A string of a decimal value with up to 9 decimal places and a suffix 'K'
e.g. 45.240K - where '45.240' is the decimal values
WHEN: We apply the suffix
THEN: We get the integer value that is closest to the decimal value
multiplied by 1000
"""
assert apply_si_suffix(f"{mantissa}{suffix}") == int(mantissa * 10**3)
@pytest.mark.unit_test
@given(st.decimals(places=6, allow_nan=False, allow_infinity=False),
st.sampled_from(["m", "M"]))
def test_apply_si_suffix_mega(mantissa, suffix):
"""
GIVEN: A string of a decimal value with up to 9 decimal places and a suffix 'M'
e.g. 45.240M - where '45.240' is the decimal values
WHEN: We apply the suffix
THEN: We get the integer value that is closest to the decimal value
multiplied by 1000000
"""
assert apply_si_suffix(f"{mantissa}{suffix}") == int(mantissa * 10**6)
@pytest.mark.unit_test
@given(st.decimals(places=9, allow_nan=False, allow_infinity=False),
st.sampled_from(["g", "G"]))
def test_apply_si_suffix_giga(mantissa, suffix):
"""
GIVEN: A string of a decimal value with up to 9 decimal places and a suffix 'G'
e.g. 45.240G - where '45.240' is the decimal values
WHEN: We apply the suffix
THEN: We get the integer value that is closest to the decimal value
multiplied by 1000000000
"""
assert apply_si_suffix(f"{mantissa}{suffix}") == int(mantissa * 10**9)
@pytest.mark.unit_test
def test_parse_range_closed_interval():
"""
GIVEN: An closed range as a string, with both the beginning and the ending
e.g. "foo..bar"
WHEN: we parse the range
THEN: we get both values for the beginning (Just("foo")) and the ending
(Just("bar")).
"""
assert parse_range("foo..bar") == (Just("foo"), Just("bar"))
@pytest.mark.unit_test
def test_parse_range_left_open_interval():
"""
GIVEN: An open range as a string, with only the ending e.g. "foo.."
WHEN: we parse the range
THEN: we get no value (Nothing) for the beginning and an actual value
(Just("bar")) for the ending
"""
assert parse_range("..bar") == (Nothing, Just("bar"))
@pytest.mark.unit_test
def test_parse_range_right_open_interval():
"""
GIVEN: An open range as a string, with only the beginning e.g. "foo.."
WHEN: we parse the range
THEN: we get an actual value for the beginning of the range (Just("foo"))
and no value (Nothing) for the ending of the range
"""
assert parse_range("foo..") == (Just("foo"), Nothing)
@pytest.mark.unit_test
def test_parse_position_close_to_zero_location():
"""
GIVEN: A point location close to zero
WHEN: we parse the range
THEN: set the lower limit to zero, not a negative number
"""
assert parse_position("25K")[0] == Just(0)
|