1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
# initial workspace setup
library(WGCNA);
library(stringi);
options(stringsAsFactors = FALSE);
# load expression data **assumes csv format row(traits)(columns info+samples)
wgcnaRawData <- read.csv(file = "wgcna_data.csv")
# transform expressionData
dataExpr <- as.data.frame(t(wgcnaRawData));
# data cleaning
# adopted from docs
gsg = goodSamplesGenes(dataExpr, verbose = 3);
if (!gsg$allOK)
{
# Optionally, print the gene and sample names that were removed:
if (sum(!gsg$goodGenes)>0)
printFlush(paste("Removing genes:", paste(names(datExpr0)[!gsg$goodGenes], collapse = ", ")));
if (sum(!gsg$goodSamples)>0)
printFlush(paste("Removing samples:", paste(rownames(datExpr0)[!gsg$goodSamples], collapse = ", ")));
# Remove the offending genes and samples from the data:
dataExpr <- dataExpr[gsg$goodSamples, gsg$goodGenes]
}
# network constructions and modules
# choose softthreshhold (Calculate soft threshold if the user specified the)
powers <- c(c(1:10), seq(from = 12, to=20, by=2))
sft <- pickSoftThreshold(dataExpr, powerVector = powers, verbose = 5)
# pass user options
network <- blockwiseModules(dataExpr,
#similarity matrix options
corType = "pearson",
#adjacency matrix options
power = sft$powerEstimate,
networkType = "unsigned",
#TOM options
TOMtype = "unsigned",
#module indentification
minmodulesSize = 30,
deepSplit = 5,
PamRespectsDendro = FALSE
)
genImageRandStr <- function(prefix){
randStr <- paste(prefix,stri_rand_strings(1, 9, pattern = "[A-Za-z0-9]"),sep="_")
return(paste(randStr,".png",sep=""))
}
mergedColors = labels2colors(net$colors)
png(genImageRandStr,width=1000,height=600,type='cairo-png')
plotDendroAndColors(network$dendrograms[[1]],mergedColors[net$blockGenes[[1]]],
"Module colors",
dendroLabels = FALSE, hang = 0.03,
addGuide = TRUE, guideHang = 0.05)
|