1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
"""Methods for fetching data from the matrix stored in LMDB"""
from typing import Optional
from dataclasses import dataclass
import struct
import json
import lmdb
BLOB_HASH_DIGEST = 32
@dataclass
class Matrix:
"""Store sample data and any other relevant metadata"""
data: list
metadata: dict
def get_total_versions(db_path: str) -> int:
"""Get the total number of versions in the matrix"""
env = lmdb.open(db_path)
with env.begin(write=False) as txn:
versions_hash = txn.get(b"versions")
if not versions_hash:
return 0
return int(len(versions_hash) / BLOB_HASH_DIGEST)
def get_nth_matrix(index: int, db_path: str) -> Optional[Matrix]:
"""Get the NTH matrix from the DB_PATH. The most recent matrix is 0."""
env = lmdb.open(db_path)
with env.begin(write=False) as txn:
versions_hash = txn.get(b"versions")
if (index * 32) + 32 > len(versions_hash):
return None
_hash, nrows = versions_hash[index * 32: (index * 32) + 32], 0
row_pointers = txn.get(_hash + b":row-pointers")
if _hash:
(nrows,) = struct.unpack("<Q", txn.get(_hash + b":nrows"))
if row_pointers:
return Matrix(
data=[
json.loads(txn.get(row_pointers[i: i + 32]).decode())
for i in range(0, nrows * 32, 32)
],
metadata=json.loads(
txn.get(_hash + b":metadata").rstrip(b"\x00").decode()
),
)
return None
def get_current_matrix(db_path: str) -> Optional[Matrix]:
"""Get the most recent matrix from DB_PATH. This is functionally
equivalent to get_nth_matrix(0, db_path)"""
env = lmdb.open(db_path)
with env.begin(write=False) as txn:
current_hash = txn.get(b"current") or b""
matrix_hash = txn.get(current_hash + b":matrix") or b""
row_pointers = txn.get(matrix_hash + b":row-pointers")
nrows = 0
if matrix_hash:
(nrows,) = struct.unpack("<Q", txn.get(matrix_hash + b":nrows"))
if row_pointers:
return Matrix(
data=[
json.loads(txn.get(row_pointers[i: i + 32]).decode())
for i in range(0, nrows * 32, 32)
],
metadata=json.loads(
txn.get(matrix_hash + b":metadata")
.rstrip(b"\x00")
.decode()
),
)
return None
|