1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
"""module contains code integration correlation implemented in rust here
https://github.com/Alexanderlacuna/correlation_rust
"""
import subprocess
import json
import os
from gn3.computations.qtlreaper import create_output_directory
from gn3.random import random_string
from gn3.settings import CORRELATION_COMMAND
from gn3.settings import TMPDIR
def generate_input_files(dataset: list[str],
output_dir: str = TMPDIR) -> tuple[str, str]:
"""function generates outputfiles and inputfiles"""
tmp_dir = f"{output_dir}/correlation"
create_output_directory(tmp_dir)
tmp_file = os.path.join(tmp_dir, f"{random_string(10)}.txt")
with open(tmp_file, "w", encoding="utf-8") as file_writer:
file_writer.write("\n".join(dataset))
return (tmp_dir, tmp_file)
def generate_json_file(tmp_dir, tmp_file, method, delimiter, x_vals) -> str:
"""generating json input file required by cargo"""
tmp_json_file = os.path.join(tmp_dir, f"{random_string(10)}.json")
output_file = os.path.join(tmp_dir, f"{random_string(10)}.txt")
correlation_args = {
"method": method,
"file_path": tmp_file,
"x_vals": x_vals,
"sample_values": "bxd1",
"output_file": output_file,
"file_delimiter": delimiter
}
with open(tmp_json_file, "w", encoding="utf-8") as outputfile:
json.dump(correlation_args, outputfile)
return (output_file, tmp_json_file)
def run_correlation(dataset, trait_vals:
list[str],
method: str,
delimiter: str):
"""entry function to call rust correlation"""
(tmp_dir, tmp_file) = generate_input_files(dataset)
(output_file, json_file) = generate_json_file(tmp_dir=tmp_dir,
tmp_file=tmp_file,
method=method,
delimiter=delimiter,
x_vals=trait_vals)
command_list = [CORRELATION_COMMAND, json_file, TMPDIR]
rls = subprocess.run(command_list, check=True)
rs = parse_correlation_output(output_file,10000)
return rs
def parse_correlation_output(result_file: str, top_n: int = 500) -> list[dict]:
"""parse file output """
corr_results = []
with open(result_file, "r", encoding="utf-8") as file_reader:
lines = [next(file_reader) for x in range(top_n)]
for line in lines:
(trait_name, corr_coeff, p_val) = line.rstrip().split(",")
corr_data = {
"num_overlap": 00, # to be later fixed
"corr_coefficient": corr_coeff,
"p_value": p_val
}
corr_results.append({trait_name: corr_data})
return corr_results
# computation specific;sample_r,lit_corr
def compute_top_n(first_run_results,init_type,dataset_1,dataset_2,dataset_type:str):
if dataset__type.lower()!= "probeset":
return first_run_results
if init_type == "sample":
# do both lit and tissue
results_a = run_correlation(dataset_1, x_vals_1,method,delimiter)
results_b = lit_correlation_for_trait(unkown)
# question how do we merge this
if init_type == "tissue":
# do sample and tissue
file_a = run_correlation(dataset_1,x_vals_1,method,delimiter)
result_b = lit_correlation_for_trait(unkown)
# merge the results
if init_type == "lit":
file_a = run_correlation()
file_b = run_correlation()
join <(file_a) <(file_b)
# do the merge here
# do both sample and tissue
|