aboutsummaryrefslogtreecommitdiff
path: root/gn3/computations/rqtl.py
blob: 2f9c4a2f8dc1ab679029bb1ac29da8868da56ca1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""Procedures related rqtl computations"""
import os
from bisect import bisect
from typing import Dict, List, Tuple, Union

import numpy as np

from flask import current_app

from gn3.commands import compose_rqtl_cmd
from gn3.computations.gemma import generate_hash_of_string
from gn3.fs_helpers import get_hash_of_files


def generate_rqtl_cmd(
    rqtl_wrapper_cmd: str,
    rqtl_wrapper_kwargs: Dict,
    rqtl_wrapper_bool_kwargs: list,
) -> Dict:
    """Given the base rqtl_wrapper command and
    dict of keyword arguments, return the full rqtl_wrapper command and an
    output filename generated from a hash of the genotype and phenotype files"""

    # Generate a hash from contents of the genotype and phenotype files
    _hash = get_hash_of_files(
        [v for k, v in rqtl_wrapper_kwargs.items() if k in ["g", "p"]]
    )

    # Append to hash a hash of keyword arguments
    _hash += generate_hash_of_string(
        ",".join(
            [
                f"{k}:{v}"
                for k, v in rqtl_wrapper_kwargs.items()
                if k not in ["g", "p"]
            ]
        )
    )

    # Append to hash a hash of boolean keyword arguments
    _hash += generate_hash_of_string(",".join(rqtl_wrapper_bool_kwargs))

    # Temporarily substitute forward-slashes in hash with underscores
    _hash = _hash.replace("/", "_")

    _output_filename = f"{_hash}-output.csv"
    rqtl_wrapper_kwargs["filename"] = _output_filename

    return {
        "output_file": _output_filename,
        "rqtl_cmd": compose_rqtl_cmd(
            rqtl_wrapper_cmd=rqtl_wrapper_cmd,
            rqtl_wrapper_kwargs=rqtl_wrapper_kwargs,
            rqtl_wrapper_bool_kwargs=rqtl_wrapper_bool_kwargs,
        ),
    }


def process_rqtl_mapping(file_name: str) -> List:
    """Given an output file name, read in R/qtl results and return
    a List of marker objects"""
    marker_obs = []
    # Later I should probably redo this using csv.read to avoid the
    # awkwardness with removing quotes with [1:-1]
    with open(
        os.path.join(
            current_app.config.get("TMPDIR", "/tmp"), "output", file_name
        ),
        "r",
        encoding="utf-8",
    ) as the_file:
        for line in the_file:
            line_items = line.split(",")
            if line_items[1][1:-1] == "chr" or not line_items:
                # Skip header line
                continue

            # Convert chr to int if possible
            the_chr: Union[int, str]
            try:
                the_chr = int(line_items[1][1:-1])
            except ValueError:
                the_chr = line_items[1][1:-1]
            this_marker = {
                "name": line_items[0][1:-1],
                "chr": the_chr,
                "cM": float(line_items[2]),
                "Mb": float(line_items[2]),
                "lod_score": float(line_items[3]),
            }
            marker_obs.append(this_marker)

    return marker_obs


def process_rqtl_pairscan(file_name: str, geno_file: str) -> List:
    """Given an output file name, read in R/qtl pair-scan results and return
    a list of both the JSON needed for the d3panels figure and a list of results
    to be used when generating the results table (which will include marker names)"""
    figure_data = pairscan_for_figure(file_name)
    table_data = pairscan_for_table(file_name, geno_file)

    return [figure_data, table_data]


def pairscan_for_figure(file_name: str) -> Dict:
    """Given an output file name, read in R/qtl pair-scan results and return
    the JSON needed for the d3panels figure"""
    figure_data = {}

    # Open the file with the actual results, written as a list of lists
    with open(
        os.path.join(
            current_app.config.get("TMPDIR", "/tmp"), "output", file_name
        ),
        "r",
        encoding="utf8",
    ) as the_file:
        lod_results = []
        for i, line in enumerate(the_file):
            if i == 0:  # Skip first line
                continue
            line_items = [item.rstrip("\n") for item in line.split(",")]
            # Append all but first item in line
            lod_results.append(line_items[1:])
        figure_data["lod"] = lod_results

    # Open the map file with the list of markers/pseudomarkers and their
    # positions
    with open(
        os.path.join(
            current_app.config.get("TMPDIR", "/tmp"),
            "output",
            "MAP_" + file_name,
        ),
        "r",
        encoding="utf8",
    ) as the_file:
        chr_list = []  # type: List
        pos_list = []  # type: List
        for i, line in enumerate(the_file):
            if i == 0:  # Skip first line
                continue
            line_items = [item.rstrip("\n") for item in line.split(",")]
            chr_list.append(line_items[1][1:-1])
            pos_list.append(line_items[2])
        figure_data["chr"] = chr_list
        figure_data["pos"] = pos_list

    return figure_data


def get_marker_list(map_file: str) -> List:
    """
    Open the map file with the list of markers/pseudomarkers and create list of marker obs

    PARAMETERS:
    map_file: The map file output by R/qtl containing marker/pseudomarker positions
    """

    marker_list = []
    with open(
        os.path.join(
            current_app.config.get("TMPDIR", "/tmp"), "output", map_file
        ),
        "r",
        encoding="utf8",
    ) as map_fh:
        for line in map_fh.readlines()[1:]:
            line_items = [item.rstrip("\n") for item in line.split(",")]
            this_marker = {
                "name": line_items[0],
                "chr": line_items[1][
                    1:-1
                ],  # Strip quotes from beginning and end of chr string
                "pos": line_items[2],
            }

            marker_list.append(this_marker)

    return marker_list


def generate_table_rows(
    results_file: str, marker_list: List, original_markers: Dict
) -> List:
    """
    Open the file with the actual R/qtl pair-scan results and write them as
    they will be displayed in the results table

    PARAMETERS:
    results_file: The filename containing R/qtl pair-scan results
    marker_list: List of marker/pseudomarker names/positions from results
    original_markers: Dict of markers from the .geno file, for finding proximal/distal
                      markers to each pseudomarker
    """
    table_data = []
    with open(
        os.path.join(
            current_app.config.get("TMPDIR", "/tmp"), "output", results_file
        ),
        "r",
        encoding="utf8",
    ) as the_file:
        for i, line in enumerate(the_file.readlines()[1:]):
            marker_1 = marker_list[i]
            marker_1["proximal"], marker_1["distal"] = find_nearest_marker(
                marker_1["chr"], marker_1["pos"], original_markers
            )
            line_items = [item.rstrip("\n") for item in line.split(",")]
            for j, item in enumerate(line_items[1:]):
                marker_2 = marker_list[j]
                marker_2["proximal"], marker_2["distal"] = find_nearest_marker(
                    marker_2["chr"], marker_2["pos"], original_markers
                )
                try:
                    lod_score = f"{float(item):.3f}"
                except ValueError:
                    lod_score = f"{item}"

                table_data.append(
                    {
                        "proximal1": marker_1["proximal"],
                        "distal1": marker_1["distal"],
                        "pos1": f"Chr {marker_1['chr']} @ {float(marker_1['pos']):.1f} cM",
                        "lod": lod_score,
                        "proximal2": marker_2["proximal"],
                        "distal2": marker_2["distal"],
                        "pos2": f"Chr {marker_2['chr']} @ {float(marker_2['pos']):.1f} cM",
                    }
                )

    return table_data


def pairscan_for_table(file_name: str, geno_file: str) -> List:
    """
    Read in R/qtl pair-scan results and return as List representing
    table row contents

    PARAMETERS:
    file_name: The filename containing R/qtl pair-scan results
    geno_file: Filename of the genotype file (used to get marker positions)
    """

    # Open the map file with the list of markers/pseudomarkers and create list of marker obs
    marker_list = get_marker_list("MAP_" + file_name)

    # Get the list of original markers from the .geno file
    original_markers = build_marker_pos_dict(geno_file)

    # Open the file with the actual results and write the results as
    # they will be displayed in the results table
    table_data = generate_table_rows(file_name, marker_list, original_markers)

    return sorted(table_data, key=lambda i: float(i["lod"]), reverse=True)[:500]


def build_marker_pos_dict(genotype_file: str) -> Dict:
    """Gets list of markers and their positions from .geno file

    Basically a pared-down version of parse_genotype_file for R/qtl pair-scan"""

    with open(genotype_file, "r", encoding="utf8") as infile:
        contents = infile.readlines()

    # Get all lines after the metadata
    lines = tuple(
        line
        for line in contents
        if (
            (not line.strip().startswith("#"))
            and (not line.strip().startswith("@"))
            and (not line.strip() == "")
        )
    )

    header_items = lines[0].split("\t")
    mb_exists = "Mb" in header_items
    pos_column = (
        header_items.index("Mb") if mb_exists else header_items.index("cM")
    )

    the_markers = {"1": {}}  # type: Dict[str, Dict]
    for line in lines[1:]:  # The lines with markers
        line_items = line.split("\t")
        this_chr = line_items[0]
        if this_chr not in the_markers:
            the_markers[this_chr] = {}
        the_markers[this_chr][str(float(line_items[pos_column]))] = line_items[
            1
        ]

    return the_markers


def find_nearest_marker(
    the_chr: str, the_pos: str, marker_list: Dict
) -> Tuple[str, str]:
    """Given a chromosome and position of a pseudomarker (from R/qtl pair-scan results),
    return the nearest real marker"""

    pos_list = [float(pos) for pos in marker_list[the_chr]]

    # Get the position of the pseudomarker in the list of markers for the chr
    the_pos_index = bisect(pos_list, float(the_pos))

    proximal_marker = marker_list[the_chr][str(pos_list[the_pos_index - 1])]
    distal_marker = marker_list[the_chr][str(pos_list[the_pos_index])]

    return proximal_marker, distal_marker


def process_perm_output(file_name: str) -> Tuple[List, float, float]:
    """Given base filename, read in R/qtl permutation output and calculate
    suggestive and significant thresholds"""

    perm_results = []
    with open(
        os.path.join(
            current_app.config.get("TMPDIR", "/tmp"),
            "output",
            "PERM_" + file_name,
        ),
        "r",
        encoding="utf-8",
    ) as the_file:
        for i, line in enumerate(the_file):
            if i == 0:
                # Skip header line
                continue

            line_items = line.split(",")
            perm_results.append(float(line_items[1]))

    suggestive = np.percentile(np.array(perm_results), 67)
    significant = np.percentile(np.array(perm_results), 95)

    return perm_results, suggestive, significant