aboutsummaryrefslogtreecommitdiff
path: root/gn3/computations/correlations.py
blob: d38946eefc544825f449bd970c6bfde985a7ea3f (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
"""module contains code for correlations"""
import math
import multiprocessing
from contextlib import closing

from typing import List
from typing import Tuple
from typing import Optional
from typing import Callable

import scipy.stats
import pingouin as pg


def map_shared_keys_to_values(target_sample_keys: List,
                              target_sample_vals: dict) -> List:
    """Function to construct target dataset data items given common shared keys
    and trait sample-list values for example given keys

    >>>>>>>>>> ["BXD1", "BXD2", "BXD5", "BXD6", "BXD8", "BXD9"] and value
    object as "HCMA:_AT": [4.1, 5.6, 3.2, 1.1, 4.4, 2.2],TXD_AT": [6.2, 5.7,
    3.6, 1.5, 4.2, 2.3]} return results should be a list of dicts mapping the
    shared keys to the trait values

    """
    target_dataset_data = []

    for trait_id, sample_values in target_sample_vals.items():
        target_trait_dict = dict(zip(target_sample_keys, sample_values))

        target_trait = {
            "trait_id": trait_id,
            "trait_sample_data": target_trait_dict
        }

        target_dataset_data.append(target_trait)

    return target_dataset_data


def normalize_values(a_values: List, b_values: List):
    """
    :param a_values: list of primary strain values
    :param b_values: a list of target strain values
    :return: yield 2 values if none of them is none
    """

    for a_val, b_val in zip(a_values, b_values):
        if (a_val and b_val is not None):
            yield a_val, b_val


def compute_corr_coeff_p_value(primary_values: List, target_values: List,
                               corr_method: str) -> Tuple[float, float]:
    """Given array like inputs calculate the primary and target_value methods ->
pearson,spearman and biweight mid correlation return value is rho and p_value

    """
    corr_mapping = {
        "bicor": do_bicor,
        "pearson": scipy.stats.pearsonr,
        "spearman": scipy.stats.spearmanr
    }
    use_corr_method = corr_mapping.get(corr_method, "spearman")
    corr_coefficient, p_val = use_corr_method(primary_values, target_values)
    return (corr_coefficient, p_val)


def compute_sample_r_correlation(trait_name, corr_method, trait_vals,
                                 target_samples_vals) -> Optional[
                                     Tuple[str, float, float, int]]:
    """Given a primary trait values and target trait values calculate the
    correlation coeff and p value

    """

    try:
        normalized_traits_vals, normalized_target_vals = list(
            zip(*list(normalize_values(trait_vals, target_samples_vals))))
        num_overlap = len(normalized_traits_vals)
    except ValueError:
        return

    if num_overlap > 5:

        (corr_coefficient, p_value) =\
            compute_corr_coeff_p_value(primary_values=normalized_traits_vals,
                                       target_values=normalized_target_vals,
                                       corr_method=corr_method)

        if corr_coefficient is not None and not math.isnan(corr_coefficient):
            return (trait_name, corr_coefficient, p_value, num_overlap)
    return None


def do_bicor(x_val, y_val) -> Tuple[float, float]:
    """Not implemented method for doing biweight mid correlation use astropy stats
package :not packaged in guix

    """

    results = pg.corr(x_val, y_val, method="bicor")
    corr_coeff = results["r"].values[0]
    p_val = results["p-val"].values[0]
    return (corr_coeff, p_val)


def filter_shared_sample_keys(this_samplelist,
                              target_samplelist) -> Tuple[List, List]:
    """Given primary and target sample-list for two base and target trait select
    filter the values using the shared keys

    """
    for key, value in target_samplelist.items():
        if key in this_samplelist:
            yield this_samplelist[key], value


def fast_compute_all_sample_correlation(this_trait,
                                        target_dataset,
                                        corr_method="pearson") -> List:
    """Given a trait data sample-list and target__datasets compute all sample
    correlation
    this functions uses multiprocessing if not use the normal fun

    """
    # xtodo fix trait_name currently returning single one
    # pylint: disable-msg=too-many-locals
    this_trait_samples = this_trait["trait_sample_data"]
    corr_results = []
    processed_values = []
    for target_trait in target_dataset:
        trait_name = target_trait.get("trait_id")
        target_trait_data = target_trait["trait_sample_data"]

        try:
            this_vals, target_vals = list(zip(*list(filter_shared_sample_keys(
                this_trait_samples, target_trait_data))))

            processed_values.append(
                (trait_name, corr_method, this_vals, target_vals))
        except ValueError:
            continue

    with closing(multiprocessing.Pool()) as pool:
        results = pool.starmap(compute_sample_r_correlation, processed_values)

        for sample_correlation in results:
            if sample_correlation is not None:
                (trait_name, corr_coefficient, p_value,
                 num_overlap) = sample_correlation
                corr_result = {
                    "corr_coefficient": corr_coefficient,
                    "p_value": p_value,
                    "num_overlap": num_overlap
                }

                corr_results.append({trait_name: corr_result})
    return sorted(
        corr_results,
        key=lambda trait_name: -abs(list(trait_name.values())[0]["corr_coefficient"]))


def compute_all_sample_correlation(this_trait,
                                   target_dataset,
                                   corr_method="pearson") -> List:
    """Temp function to benchmark with compute_all_sample_r alternative to
    compute_all_sample_r where we use multiprocessing

    """
    this_trait_samples = this_trait["trait_sample_data"]
    corr_results = []
    for target_trait in target_dataset:
        trait_name = target_trait.get("trait_id")
        target_trait_data = target_trait["trait_sample_data"]

        try:
            this_vals, target_vals = list(zip(*list(filter_shared_sample_keys(
                this_trait_samples, target_trait_data))))

        except ValueError:
            # case where no matching strain names
            continue

        sample_correlation = compute_sample_r_correlation(
            trait_name=trait_name,
            corr_method=corr_method,
            trait_vals=this_vals,
            target_samples_vals=target_vals)
        if sample_correlation is not None:
            (trait_name, corr_coefficient,
             p_value, num_overlap) = sample_correlation
        else:
            continue
        corr_result = {
            "corr_coefficient": corr_coefficient,
            "p_value": p_value,
            "num_overlap": num_overlap
        }
        corr_results.append({trait_name: corr_result})
    return sorted(
        corr_results,
        key=lambda trait_name: -abs(list(trait_name.values())[0]["corr_coefficient"]))


def tissue_correlation_for_trait(
        primary_tissue_vals: List,
        target_tissues_values: List,
        corr_method: str,
        trait_id: str,
        compute_corr_p_value: Callable = compute_corr_coeff_p_value) -> dict:
    """Given a primary tissue values for a trait and the target tissues values
    compute the correlation_cooeff and p value the input required are arrays
    output -> List containing Dicts with corr_coefficient value, P_value and
    also the tissue numbers is len(primary) == len(target)

    """

    # ax :todo assertion that length one one target tissue ==primary_tissue

    (tissue_corr_coefficient,
     p_value) = compute_corr_p_value(primary_values=primary_tissue_vals,
                                     target_values=target_tissues_values,
                                     corr_method=corr_method)

    tiss_corr_result = {trait_id: {
        "tissue_corr": tissue_corr_coefficient,
        "tissue_number": len(primary_tissue_vals),
        "tissue_p_val": p_value}}

    return tiss_corr_result


def fetch_lit_correlation_data(
        conn,
        input_mouse_gene_id: Optional[str],
        gene_id: str,
        mouse_gene_id: Optional[str] = None) -> Tuple[str, float]:
    """Given input trait mouse gene id and mouse gene id fetch the lit
    corr_data

    """
    if mouse_gene_id is not None and ";" not in mouse_gene_id:
        query = """
        SELECT VALUE
        FROM  LCorrRamin3
        WHERE GeneId1='%s' and
        GeneId2='%s'
        """

        query_values = (str(mouse_gene_id), str(input_mouse_gene_id))

        cursor = conn.cursor()

        cursor.execute(query_formatter(query,
                                       *query_values))
        results = cursor.fetchone()
        lit_corr_results = None
        if results is not None:
            lit_corr_results = results
        else:
            cursor = conn.cursor()
            cursor.execute(query_formatter(query,
                                           *tuple(reversed(query_values))))
            lit_corr_results = cursor.fetchone()
        lit_results = (gene_id, lit_corr_results[0])\
            if lit_corr_results else (gene_id, 0)
        return lit_results
    return (gene_id, 0)


def lit_correlation_for_trait(
        conn,
        target_trait_lists: List,
        species: Optional[str] = None,
        trait_gene_id: Optional[str] = None) -> List:
    """given species,base trait gene id fetch the lit corr results from the db\
    output is float for lit corr results """
    fetched_lit_corr_results = []
    this_trait_mouse_gene_id = map_to_mouse_gene_id(conn=conn,
                                                    species=species,
                                                    gene_id=trait_gene_id)
    for (trait_name, target_trait_gene_id) in target_trait_lists:
        corr_results = {}
        if target_trait_gene_id:
            target_mouse_gene_id = map_to_mouse_gene_id(
                conn=conn,
                species=species,
                gene_id=target_trait_gene_id)
            fetched_corr_data = fetch_lit_correlation_data(
                conn=conn,
                input_mouse_gene_id=this_trait_mouse_gene_id,
                gene_id=target_trait_gene_id,
                mouse_gene_id=target_mouse_gene_id)
            dict_results = dict(zip(("gene_id", "lit_corr"),
                                    fetched_corr_data))
            corr_results[trait_name] = dict_results
            fetched_lit_corr_results.append(corr_results)
    return fetched_lit_corr_results


def query_formatter(query_string: str, *query_values):
    """Formatter query string given the unformatted query string and the
    respectibe values.Assumes number of placeholders is equal to the number of
    query values

    """
    # xtodo escape sql queries
    return query_string % (query_values)


def map_to_mouse_gene_id(conn, species: Optional[str],
                         gene_id: Optional[str]) -> Optional[str]:
    """Given a species which is not mouse map the gene_id\
    to respective mouse gene id"""
    if None in (species, gene_id):
        return None
    if species == "mouse":
        return gene_id
    cursor = conn.cursor()
    query = """SELECT mouse
                FROM GeneIDXRef
                WHERE '%s' = '%s'"""
    query_values = (species, gene_id)
    cursor.execute(query_formatter(query,
                                   *query_values))
    results = cursor.fetchone()
    mouse_gene_id = results.mouse if results is not None else None
    return mouse_gene_id


def compute_all_lit_correlation(conn, trait_lists: List,
                                species: str, gene_id):
    """Function that acts as an abstraction for
    lit_correlation_for_trait"""

    lit_results = lit_correlation_for_trait(
        conn=conn,
        target_trait_lists=trait_lists,
        species=species,
        trait_gene_id=gene_id)
    sorted_lit_results = sorted(
        lit_results,
        key=lambda trait_name: -abs(list(trait_name.values())[0]["lit_corr"]))

    return sorted_lit_results


def compute_tissue_correlation(primary_tissue_dict: dict,
                               target_tissues_data: dict,
                               corr_method: str):
    """Function acts as an abstraction for tissue_correlation_for_trait\
    required input are target tissue object and primary tissue trait\
    target tissues data contains the trait_symbol_dict and symbol_tissue_vals
    """
    tissues_results = []
    primary_tissue_vals = primary_tissue_dict["tissue_values"]
    traits_symbol_dict = target_tissues_data["trait_symbol_dict"]
    symbol_tissue_vals_dict = target_tissues_data["symbol_tissue_vals_dict"]
    target_tissues_list = process_trait_symbol_dict(
        traits_symbol_dict, symbol_tissue_vals_dict)
    for target_tissue_obj in target_tissues_list:
        trait_id = target_tissue_obj.get("trait_id")
        target_tissue_vals = target_tissue_obj.get("tissue_values")

        tissue_result = tissue_correlation_for_trait(
            primary_tissue_vals=primary_tissue_vals,
            target_tissues_values=target_tissue_vals,
            trait_id=trait_id,
            corr_method=corr_method)
        tissues_results.append(tissue_result)
    return sorted(
        tissues_results,
        key=lambda trait_name: -abs(list(trait_name.values())[0]["tissue_corr"]))


def process_trait_symbol_dict(trait_symbol_dict, symbol_tissue_vals_dict) -> List:
    """Method for processing trait symbol dict given the symbol tissue values

    """
    traits_tissue_vals = []
    for (trait, symbol) in trait_symbol_dict.items():
        if symbol is not None:
            target_symbol = symbol.lower()
            if target_symbol in symbol_tissue_vals_dict:
                trait_tissue_val = symbol_tissue_vals_dict[target_symbol]
                target_tissue_dict = {"trait_id": trait,
                                      "symbol": target_symbol,
                                      "tissue_values": trait_tissue_val}
                traits_tissue_vals.append(target_tissue_dict)
    return traits_tissue_vals


def fast_compute_tissue_correlation(primary_tissue_dict: dict,
                                    target_tissues_data: dict,
                                    corr_method: str):
    """Experimental function that uses multiprocessing for computing tissue
    correlation

    """
    tissues_results = []
    primary_tissue_vals = primary_tissue_dict["tissue_values"]
    traits_symbol_dict = target_tissues_data["trait_symbol_dict"]
    symbol_tissue_vals_dict = target_tissues_data["symbol_tissue_vals_dict"]
    target_tissues_list = process_trait_symbol_dict(
        traits_symbol_dict, symbol_tissue_vals_dict)
    processed_values = []

    for target_tissue_obj in target_tissues_list:
        trait_id = target_tissue_obj.get("trait_id")

        target_tissue_vals = target_tissue_obj.get("tissue_values")
        processed_values.append(
            (primary_tissue_vals, target_tissue_vals, corr_method, trait_id))

    with multiprocessing.Pool(4) as pool:
        results = pool.starmap(
            tissue_correlation_for_trait, processed_values)
        for result in results:
            tissues_results.append(result)

    return sorted(
        tissues_results,
        key=lambda trait_name: -abs(list(trait_name.values())[0]["tissue_corr"]))