diff options
Diffstat (limited to 'tests/unit/computations/test_dictify_by_samples.py')
-rw-r--r-- | tests/unit/computations/test_dictify_by_samples.py | 108 |
1 files changed, 108 insertions, 0 deletions
diff --git a/tests/unit/computations/test_dictify_by_samples.py b/tests/unit/computations/test_dictify_by_samples.py new file mode 100644 index 0000000..decc095 --- /dev/null +++ b/tests/unit/computations/test_dictify_by_samples.py @@ -0,0 +1,108 @@ +from math import isnan +import pytest +from collections.abc import Sequence +from hypothesis import given, strategies as st +from gn3.computations.partial_correlations import dictify_by_samples + + +def check_keys(samples, the_dict): + """Check that all the keys in `the_dict` are strings in `samples.`""" + return all( + (key in samples) for key in the_dict.keys()) + + +def same(val1, val2): + """ + Check that values are similar. + + In Python3 `float('nan') == float('nan')` always returns False. This + function thus, compares similarity rather than direct equality for NaN + values. + + `Math.isnan(None)` would throw an error, thus this function takes advantage + of the `or` operation's short-circuit to avoid this failure in the case + where both values are NoneType values. + """ + return ( + (val1 is None and val2 is None) or + (isnan(val1) and isnan(val2)) or + (val1 == val2)) + +def check_dict_keys_and_values(sample, value, variance, the_dict): + """ + Check the following properties for each dict: + - has only `sample_name`, `value` and `variance` as the keys + - The values in the dict are the same ones in `sample`, `value` and + `variance`. + """ + return ( + all((key in ("sample_name", "value", "variance")) + for key in the_dict.keys()) and + the_dict["sample_name"] == sample and + same(the_dict["value"], value) and + same(the_dict["variance"], variance)) + +def check_values(samples, values, variances, row): + """ + Check that the values in each dict in `row` are made up from the values in + the `samples`, `values`, and `variances` sequences, skipping all values in + the `row` for which the sample name is an empty string. + """ + return all( + check_dict_keys_and_values(smp, val, var, row[smp]) + for smp, val, var in zip(samples, values, variances) + if smp != "") + +non_empty_samples = st.lists( + st.text(min_size=1, max_size=15).map( + lambda s: s.strip())) +empty_samples = st.text( + alphabet=" \t\n\r\f\v", min_size=1, max_size=15).filter( + lambda s: len(s.strip()) == 0) +values = st.lists(st.floats()) +variances = st.lists(st.one_of(st.none(), st.floats())) +other = st.lists(st.integers()) + +@given(svv=st.tuples( + st.lists(non_empty_samples), + st.lists(values), + st.lists(variances), + st.lists(other))) +def test_dictifify_by_samples_with_nonempty_samples_strings(svv): + """ + Test for `dictify_by_samples`. + + Given a sequence of sequences of sequences + + Check for the following properties: + - Returns a sequence of dicts + - Each dicts keys correspond to its index in the zeroth sequence in the + top-level sequence + """ + res = dictify_by_samples(svv) + assert ( + isinstance(res, Sequence) + and all((isinstance(elt, dict) for elt in res)) + and all( + check_keys(svv[0][idx], row) + for idx, row in enumerate(res)) + and all( + check_values(svv[0][idx], svv[1][idx], svv[2][idx], row) + for idx, row in enumerate(res))) + +@pytest.mark.unit_test +@given(svv=st.tuples( + st.lists( + st.lists(empty_samples,min_size=1), + min_size=1), + st.lists(st.lists(st.floats(), min_size=1), min_size=1), + st.lists( + st.lists(st.one_of(st.none(), st.floats()), min_size=1), min_size=1), + st.lists(st.lists(st.integers(), min_size=1), min_size=1))) +def test_dictify_by_samples_with_empty_samples_strings(svv): + """ + Test that `dictify_by_samples` warns the user about providing sample names + that are just empty strings. + """ + with pytest.warns(RuntimeWarning): + dictify_by_samples(svv) |