aboutsummaryrefslogtreecommitdiff
path: root/scripts/wgcna_analysis.R
diff options
context:
space:
mode:
Diffstat (limited to 'scripts/wgcna_analysis.R')
-rw-r--r--scripts/wgcna_analysis.R115
1 files changed, 115 insertions, 0 deletions
diff --git a/scripts/wgcna_analysis.R b/scripts/wgcna_analysis.R
new file mode 100644
index 0000000..17b3537
--- /dev/null
+++ b/scripts/wgcna_analysis.R
@@ -0,0 +1,115 @@
+
+
+library(WGCNA);
+library(stringi);
+library(rjson)
+
+options(stringsAsFactors = FALSE);
+
+imgDir = Sys.getenv("GENERATED_IMAGE_DIR")
+# load expression data **assumes from json files row(traits)(columns info+samples)
+# pass the file_path as arg
+# pass the file path to read json data
+
+args = commandArgs(trailingOnly=TRUE)
+
+if (length(args)==0) {
+ stop("Argument for the file location is required", call.=FALSE)
+} else {
+ # default output file
+ json_file_path = args[1]
+}
+
+inputData <- fromJSON(file = json_file_path)
+
+
+trait_sample_data <- do.call(rbind, inputData$trait_sample_data)
+
+dataExpr <- data.frame(apply(trait_sample_data, 2, function(x) as.numeric(as.character(x))))
+# transform expressionData
+
+dataExpr <- data.frame(t(dataExpr))
+gsg = goodSamplesGenes(dataExpr, verbose = 3)
+
+if (!gsg$allOK)
+{
+if (sum(!gsg$goodGenes)>0)
+printFlush(paste("Removing genes:", paste(names(dataExpr)[!gsg$goodGenes], collapse = ", ")));
+if (sum(!gsg$goodSamples)>0)
+printFlush(paste("Removing samples:", paste(rownames(dataExpr)[!gsg$goodSamples], collapse = ", ")));
+# Remove the offending genes and samples from the data:
+dataExpr <- dataExpr[gsg$goodSamples, gsg$goodGenes]
+}
+
+## network constructions and modules
+
+names(dataExpr) = inputData$trait_names
+
+# Allow multi-threading within WGCNA
+enableWGCNAThreads()
+
+# choose softthreshhold (Calculate soft threshold)
+# xtodo allow users to pass args
+
+powers <- c(c(1:10), seq(from = 12, to=20, by=2))
+sft <- pickSoftThreshold(dataExpr, powerVector = powers, verbose = 5)
+
+# check the power estimate
+
+if (is.na(sft$powerEstimate)){
+ powerEst = 1
+}else{
+ powerEst = sft$powerEstimate
+}
+
+# pass user options
+network <- blockwiseModules(dataExpr,
+ #similarity matrix options
+ corType = inputData$corType,
+ #adjacency matrix options
+
+ power = powerEst,
+ networkType = "unsigned",
+ #TOM options
+ TOMtype = inputData$TOMtype,
+
+ #module indentification
+ verbose = 3,
+
+ minmodulesSize = inputData$minModuleSize,
+ deepSplit = 3,
+ PamRespectsDendro = FALSE
+ )
+
+
+
+genImageRandStr <- function(prefix){
+
+ randStr <- paste(prefix,stri_rand_strings(1, 9, pattern = "[A-Za-z0-9]"),sep="_")
+
+ return(paste(randStr,".png",sep=""))
+}
+
+mergedColors <- labels2colors(network$colors)
+
+imageLoc <- file.path(imgDir,genImageRandStr("WGCNAoutput"))
+png(imageLoc,width=1000,height=600,type='cairo-png')
+
+plotDendroAndColors(network$dendrograms[[1]],mergedColors[network$blockGenes[[1]]],
+"Module colors",
+dendroLabels = FALSE, hang = 0.03,
+addGuide = TRUE, guideHang = 0.05)
+
+
+json_data <- list(input = inputData,
+ output = list(ModEigens=network$MEs,
+ soft_threshold=sft$fitIndices,
+ blockGenes =network$blockGenes[[1]],
+ net_colors =network$colors,
+ power_used_for_analy=powerEst,
+ net_unmerged=network$unmergedColors,
+ imageLoc=imageLoc))
+
+json_data <- toJSON(json_data)
+
+write(json_data,file= json_file_path) \ No newline at end of file