about summary refs log tree commit diff
path: root/gn3
diff options
context:
space:
mode:
Diffstat (limited to 'gn3')
-rw-r--r--gn3/api/async_commands.py16
-rw-r--r--gn3/api/correlation.py73
-rw-r--r--gn3/api/ctl.py24
-rw-r--r--gn3/api/general.py7
-rw-r--r--gn3/api/heatmaps.py21
-rw-r--r--gn3/api/rqtl.py2
-rw-r--r--gn3/app.py4
-rw-r--r--gn3/authentication.py20
-rw-r--r--gn3/commands.py34
-rw-r--r--gn3/computations/correlations.py58
-rw-r--r--gn3/computations/correlations2.py36
-rw-r--r--gn3/computations/ctl.py30
-rw-r--r--gn3/computations/diff.py2
-rw-r--r--gn3/computations/gemma.py2
-rw-r--r--gn3/computations/parsers.py2
-rw-r--r--gn3/computations/partial_correlations.py628
-rw-r--r--gn3/computations/partial_correlations_optimised.py244
-rw-r--r--gn3/computations/pca.py189
-rw-r--r--gn3/computations/qtlreaper.py16
-rw-r--r--gn3/computations/rqtl.py5
-rw-r--r--gn3/computations/wgcna.py28
-rw-r--r--gn3/csvcmp.py146
-rw-r--r--gn3/data_helpers.py28
-rw-r--r--gn3/db/correlations.py234
-rw-r--r--gn3/db/datasets.py152
-rw-r--r--gn3/db/genotypes.py44
-rw-r--r--gn3/db/partial_correlations.py791
-rw-r--r--gn3/db/sample_data.py365
-rw-r--r--gn3/db/species.py17
-rw-r--r--gn3/db/traits.py195
-rw-r--r--gn3/db_utils.py7
-rw-r--r--gn3/fs_helpers.py7
-rw-r--r--gn3/heatmaps.py36
-rw-r--r--gn3/responses/__init__.py0
-rw-r--r--gn3/responses/pcorrs_responses.py24
-rw-r--r--gn3/settings.py12
36 files changed, 3067 insertions, 432 deletions
diff --git a/gn3/api/async_commands.py b/gn3/api/async_commands.py
new file mode 100644
index 0000000..c0cf4bb
--- /dev/null
+++ b/gn3/api/async_commands.py
@@ -0,0 +1,16 @@
+"""Endpoints and functions concerning commands run in external processes."""
+import redis
+from flask import jsonify, Blueprint
+
+async_commands = Blueprint("async_commands", __name__)
+
+@async_commands.route("/state/<command_id>")
+def command_state(command_id):
+    """Respond with the current state of command identified by `command_id`."""
+    with redis.Redis(decode_responses=True) as rconn:
+        state = rconn.hgetall(name=command_id)
+        if not state:
+            return jsonify(
+                status=404,
+                error="The command id provided does not exist.")
+        return jsonify(dict(state.items()))
diff --git a/gn3/api/correlation.py b/gn3/api/correlation.py
index 46121f8..7eb7cd6 100644
--- a/gn3/api/correlation.py
+++ b/gn3/api/correlation.py
@@ -1,13 +1,21 @@
 """Endpoints for running correlations"""
+import sys
+from functools import reduce
+
+import redis
 from flask import jsonify
 from flask import Blueprint
 from flask import request
+from flask import current_app
 
-from gn3.computations.correlations import compute_all_sample_correlation
-from gn3.computations.correlations import compute_all_lit_correlation
-from gn3.computations.correlations import compute_tissue_correlation
-from gn3.computations.correlations import map_shared_keys_to_values
+from gn3.settings import SQL_URI
+from gn3.commands import queue_cmd, compose_pcorrs_command
 from gn3.db_utils import database_connector
+from gn3.responses.pcorrs_responses import build_response
+from gn3.computations.correlations import map_shared_keys_to_values
+from gn3.computations.correlations import compute_tissue_correlation
+from gn3.computations.correlations import compute_all_lit_correlation
+from gn3.computations.correlations import compute_all_sample_correlation
 
 correlation = Blueprint("correlation", __name__)
 
@@ -58,17 +66,15 @@ def compute_lit_corr(species=None, gene_id=None):
     might be needed for actual computing of the correlation results
     """
 
-    conn, _cursor_object = database_connector()
-    target_traits_gene_ids = request.get_json()
-    target_trait_gene_list = list(target_traits_gene_ids.items())
+    with database_connector() as conn:
+        target_traits_gene_ids = request.get_json()
+        target_trait_gene_list = list(target_traits_gene_ids.items())
 
-    lit_corr_results = compute_all_lit_correlation(
-        conn=conn, trait_lists=target_trait_gene_list,
-        species=species, gene_id=gene_id)
+        lit_corr_results = compute_all_lit_correlation(
+            conn=conn, trait_lists=target_trait_gene_list,
+            species=species, gene_id=gene_id)
 
-    conn.close()
-
-    return jsonify(lit_corr_results)
+        return jsonify(lit_corr_results)
 
 
 @correlation.route("/tissue_corr/<string:corr_method>", methods=["POST"])
@@ -83,3 +89,44 @@ def compute_tissue_corr(corr_method="pearson"):
                                          corr_method=corr_method)
 
     return jsonify(results)
+
+@correlation.route("/partial", methods=["POST"])
+def partial_correlation():
+    """API endpoint for partial correlations."""
+    def trait_fullname(trait):
+        return f"{trait['dataset']}::{trait['trait_name']}"
+
+    def __field_errors__(args):
+        def __check__(acc, field):
+            if args.get(field) is None:
+                return acc + (f"Field '{field}' missing",)
+            return acc
+        return __check__
+
+    def __errors__(request_data, fields):
+        errors = tuple()
+        if request_data is None:
+            return ("No request data",)
+
+        return reduce(__field_errors__(request_data), fields, errors)
+
+    args = request.get_json()
+    request_errors = __errors__(
+        args, ("primary_trait", "control_traits", "target_db", "method"))
+    if request_errors:
+        return build_response({
+            "status": "error",
+            "messages": request_errors,
+            "error_type": "Client Error"})
+    return build_response({
+        "status": "success",
+        "results": queue_cmd(
+            conn=redis.Redis(),
+            cmd=compose_pcorrs_command(
+                trait_fullname(args["primary_trait"]),
+                tuple(
+                    trait_fullname(trait) for trait in args["control_traits"]),
+                args["method"], args["target_db"],
+                int(args.get("criteria", 500))),
+            job_queue=current_app.config.get("REDIS_JOB_QUEUE"),
+            env = {"PYTHONPATH": ":".join(sys.path), "SQL_URI": SQL_URI})})
diff --git a/gn3/api/ctl.py b/gn3/api/ctl.py
new file mode 100644
index 0000000..ac33d63
--- /dev/null
+++ b/gn3/api/ctl.py
@@ -0,0 +1,24 @@
+"""module contains endpoints for ctl"""
+
+from flask import Blueprint
+from flask import request
+from flask import jsonify
+
+from gn3.computations.ctl import call_ctl_script
+
+ctl = Blueprint("ctl", __name__)
+
+
+@ctl.route("/run_ctl", methods=["POST"])
+def run_ctl():
+    """endpoint to run ctl
+    input: request form object
+    output:json object enum::(response,error)
+
+    """
+    ctl_data = request.json
+
+    (cmd_results, response) = call_ctl_script(ctl_data)
+    return (jsonify({
+        "results": response
+    }), 200) if response is not None else (jsonify({"error": str(cmd_results)}), 401)
diff --git a/gn3/api/general.py b/gn3/api/general.py
index 69ec343..e0bfc81 100644
--- a/gn3/api/general.py
+++ b/gn3/api/general.py
@@ -7,7 +7,7 @@ from flask import request
 
 from gn3.fs_helpers import extract_uploaded_file
 from gn3.commands import run_cmd
-
+from gn3.db import datasets
 
 general = Blueprint("general", __name__)
 
@@ -68,3 +68,8 @@ def run_r_qtl(geno_filestr, pheno_filestr):
     cmd = (f"Rscript {rqtl_wrapper} "
            f"{geno_filestr} {pheno_filestr}")
     return jsonify(run_cmd(cmd)), 201
+
+@general.route("/dataset/<accession_id>")
+def dataset_metadata(accession_id):
+    """Return info as JSON for dataset with ACCESSION_ID."""
+    return jsonify(datasets.dataset_metadata(accession_id))
diff --git a/gn3/api/heatmaps.py b/gn3/api/heatmaps.py
index 633a061..80c8ca8 100644
--- a/gn3/api/heatmaps.py
+++ b/gn3/api/heatmaps.py
@@ -24,15 +24,14 @@ def clustered_heatmaps():
         return jsonify({
             "message": "You need to provide at least two trait names."
         }), 400
-    conn, _cursor = database_connector()
-    def parse_trait_fullname(trait):
-        name_parts = trait.split(":")
-        return "{dataset_name}::{trait_name}".format(
-            dataset_name=name_parts[1], trait_name=name_parts[0])
-    traits_fullnames = [parse_trait_fullname(trait) for trait in traits_names]
+    with database_connector() as conn:
+        def parse_trait_fullname(trait):
+            name_parts = trait.split(":")
+            return f"{name_parts[1]}::{name_parts[0]}"
+        traits_fullnames = [parse_trait_fullname(trait) for trait in traits_names]
 
-    with io.StringIO() as io_str:
-        figure = build_heatmap(traits_fullnames, conn, vertical=vertical)
-        figure.write_json(io_str)
-        fig_json = io_str.getvalue()
-    return fig_json, 200
+        with io.StringIO() as io_str:
+            figure = build_heatmap(traits_fullnames, conn, vertical=vertical)
+            figure.write_json(io_str)
+            fig_json = io_str.getvalue()
+        return fig_json, 200
diff --git a/gn3/api/rqtl.py b/gn3/api/rqtl.py
index 85b2460..70ebe12 100644
--- a/gn3/api/rqtl.py
+++ b/gn3/api/rqtl.py
@@ -25,7 +25,7 @@ run the rqtl_wrapper script and return the results as JSON
         raise FileNotFoundError
 
     # Split kwargs by those with values and boolean ones that just convert to True/False
-    kwargs = ["model", "method", "nperm", "scale", "control_marker"]
+    kwargs = ["covarstruct", "model", "method", "nperm", "scale", "control_marker"]
     boolean_kwargs = ["addcovar", "interval", "pstrata", "pairscan"]
     all_kwargs = kwargs + boolean_kwargs
 
diff --git a/gn3/app.py b/gn3/app.py
index 3d68b3f..790e87c 100644
--- a/gn3/app.py
+++ b/gn3/app.py
@@ -14,6 +14,8 @@ from gn3.api.heatmaps import heatmaps
 from gn3.api.correlation import correlation
 from gn3.api.data_entry import data_entry
 from gn3.api.wgcna import wgcna
+from gn3.api.ctl import ctl
+from gn3.api.async_commands import async_commands
 
 def create_app(config: Union[Dict, str, None] = None) -> Flask:
     """Create a new flask object"""
@@ -45,4 +47,6 @@ def create_app(config: Union[Dict, str, None] = None) -> Flask:
     app.register_blueprint(correlation, url_prefix="/api/correlation")
     app.register_blueprint(data_entry, url_prefix="/api/dataentry")
     app.register_blueprint(wgcna, url_prefix="/api/wgcna")
+    app.register_blueprint(ctl, url_prefix="/api/ctl")
+    app.register_blueprint(async_commands, url_prefix="/api/async_commands")
     return app
diff --git a/gn3/authentication.py b/gn3/authentication.py
index 6719631..d0b35bc 100644
--- a/gn3/authentication.py
+++ b/gn3/authentication.py
@@ -113,9 +113,9 @@ def get_groups_by_user_uid(user_uid: str, conn: Redis) -> Dict:
     """
     admin = []
     member = []
-    for uuid, group_info in conn.hgetall("groups").items():
+    for group_uuid, group_info in conn.hgetall("groups").items():
         group_info = json.loads(group_info)
-        group_info["uuid"] = uuid
+        group_info["uuid"] = group_uuid
         if user_uid in group_info.get('admins'):
             admin.append(group_info)
         if user_uid in group_info.get('members'):
@@ -130,11 +130,10 @@ def get_user_info_by_key(key: str, value: str,
                          conn: Redis) -> Optional[Dict]:
     """Given a key, get a user's information if value is matched"""
     if key != "user_id":
-        for uuid, user_info in conn.hgetall("users").items():
+        for user_uuid, user_info in conn.hgetall("users").items():
             user_info = json.loads(user_info)
-            if (key in user_info and
-                user_info.get(key) == value):
-                user_info["user_id"] = uuid
+            if (key in user_info and user_info.get(key) == value):
+                user_info["user_id"] = user_uuid
                 return user_info
     elif key == "user_id":
         if user_info := conn.hget("users", value):
@@ -145,9 +144,13 @@ def get_user_info_by_key(key: str, value: str,
 
 
 def create_group(conn: Redis, group_name: Optional[str],
-                 admin_user_uids: List = [],
-                 member_user_uids: List = []) -> Optional[Dict]:
+                 admin_user_uids: List = None,
+                 member_user_uids: List = None) -> Optional[Dict]:
     """Create a group given the group name, members and admins of that group."""
+    if admin_user_uids is None:
+        admin_user_uids = []
+    if member_user_uids is None:
+        member_user_uids = []
     if group_name and bool(admin_user_uids + member_user_uids):
         timestamp = datetime.datetime.utcnow().strftime('%b %d %Y %I:%M%p')
         group = {
@@ -160,3 +163,4 @@ def create_group(conn: Redis, group_name: Optional[str],
         }
         conn.hset("groups", group_id, json.dumps(group))
         return group
+    return None
diff --git a/gn3/commands.py b/gn3/commands.py
index 7d42ced..e622068 100644
--- a/gn3/commands.py
+++ b/gn3/commands.py
@@ -1,5 +1,8 @@
 """Procedures used to work with the various bio-informatics cli
 commands"""
+import os
+import sys
+import json
 import subprocess
 
 from datetime import datetime
@@ -7,6 +10,8 @@ from typing import Dict
 from typing import List
 from typing import Optional
 from typing import Tuple
+from typing import Union
+from typing import Sequence
 from uuid import uuid4
 from redis.client import Redis  # Used only in type hinting
 
@@ -46,10 +51,21 @@ def compose_rqtl_cmd(rqtl_wrapper_cmd: str,
 
     return cmd
 
+def compose_pcorrs_command(
+        primary_trait: str, control_traits: Tuple[str, ...], method: str,
+        target_database: str, criteria: int = 500):
+    """Compose the command to run partias correlations"""
+    rundir = os.path.abspath(".")
+    return (
+        f"{sys.executable}", f"{rundir}/scripts/partial_correlations.py",
+        primary_trait, ",".join(control_traits), f'"{method}"',
+        f"{target_database}", f"--criteria={criteria}")
+
 def queue_cmd(conn: Redis,
               job_queue: str,
-              cmd: str,
-              email: Optional[str] = None) -> str:
+              cmd: Union[str, Sequence[str]],
+              email: Optional[str] = None,
+              env: Optional[dict] = None) -> str:
     """Given a command CMD; (optional) EMAIL; and a redis connection CONN, queue
 it in Redis with an initial status of 'queued'.  The following status codes
 are supported:
@@ -68,17 +84,23 @@ Returns the name of the specific redis hash for the specific task.
                  f"{datetime.now().strftime('%Y-%m-%d%H-%M%S-%M%S-')}"
                  f"{str(uuid4())}")
     conn.rpush(job_queue, unique_id)
-    for key, value in {"cmd": cmd, "result": "", "status": "queued"}.items():
+    for key, value in {
+            "cmd": json.dumps(cmd), "result": "", "status": "queued"}.items():
         conn.hset(name=unique_id, key=key, value=value)
     if email:
         conn.hset(name=unique_id, key="email", value=email)
+    if env:
+        conn.hset(name=unique_id, key="env", value=json.dumps(env))
     return unique_id
 
 
-def run_cmd(cmd: str, success_codes: Tuple = (0,)) -> Dict:
+def run_cmd(cmd: str, success_codes: Tuple = (0,), env: str = None) -> Dict:
     """Run CMD and return the CMD's status code and output as a dict"""
-    results = subprocess.run(cmd, capture_output=True, shell=True,
-                             check=False)
+    parsed_cmd = json.loads(cmd)
+    parsed_env = (json.loads(env) if env is not None else None)
+    results = subprocess.run(
+        parsed_cmd, capture_output=True, shell=isinstance(parsed_cmd, str),
+        check=False, env=parsed_env)
     out = str(results.stdout, 'utf-8')
     if results.returncode not in success_codes:  # Error!
         out = str(results.stderr, 'utf-8')
diff --git a/gn3/computations/correlations.py b/gn3/computations/correlations.py
index c5c56db..a0da2c4 100644
--- a/gn3/computations/correlations.py
+++ b/gn3/computations/correlations.py
@@ -7,6 +7,7 @@ from typing import List
 from typing import Tuple
 from typing import Optional
 from typing import Callable
+from typing import Generator
 
 import scipy.stats
 import pingouin as pg
@@ -38,20 +39,15 @@ def map_shared_keys_to_values(target_sample_keys: List,
     return target_dataset_data
 
 
-def normalize_values(a_values: List,
-                     b_values: List) -> Tuple[List[float], List[float], int]:
-    """Trim two lists of values to contain only the values they both share Given
-    two lists of sample values, trim each list so that it contains only the
-    samples that contain a value in both lists. Also returns the number of
-    such samples.
-
-    >>> normalize_values([2.3, None, None, 3.2, 4.1, 5],
-                         [3.4, 7.2, 1.3, None, 6.2, 4.1])
-    ([2.3, 4.1, 5], [3.4, 6.2, 4.1], 3)
-
+def normalize_values(a_values: List, b_values: List) -> Generator:
+    """
+    :param a_values: list of primary strain values
+    :param b_values: a list of target strain values
+    :return: yield 2 values if none of them is none
     """
+
     for a_val, b_val in zip(a_values, b_values):
-        if (a_val and b_val is not None):
+        if (a_val is not None) and (b_val is not None):
             yield a_val, b_val
 
 
@@ -79,15 +75,18 @@ def compute_sample_r_correlation(trait_name, corr_method, trait_vals,
 
     """
 
-    sanitized_traits_vals, sanitized_target_vals = list(
-        zip(*list(normalize_values(trait_vals, target_samples_vals))))
-    num_overlap = len(sanitized_traits_vals)
+    try:
+        normalized_traits_vals, normalized_target_vals = list(
+            zip(*list(normalize_values(trait_vals, target_samples_vals))))
+        num_overlap = len(normalized_traits_vals)
+    except ValueError:
+        return None
 
     if num_overlap > 5:
 
         (corr_coefficient, p_value) =\
-            compute_corr_coeff_p_value(primary_values=sanitized_traits_vals,
-                                       target_values=sanitized_target_vals,
+            compute_corr_coeff_p_value(primary_values=normalized_traits_vals,
+                                       target_values=normalized_target_vals,
                                        corr_method=corr_method)
 
         if corr_coefficient is not None and not math.isnan(corr_coefficient):
@@ -108,7 +107,7 @@ package :not packaged in guix
 
 
 def filter_shared_sample_keys(this_samplelist,
-                              target_samplelist) -> Tuple[List, List]:
+                              target_samplelist) -> Generator:
     """Given primary and target sample-list for two base and target trait select
     filter the values using the shared keys
 
@@ -134,9 +133,16 @@ def fast_compute_all_sample_correlation(this_trait,
     for target_trait in target_dataset:
         trait_name = target_trait.get("trait_id")
         target_trait_data = target_trait["trait_sample_data"]
-        processed_values.append((trait_name, corr_method,
-                                 list(zip(*list(filter_shared_sample_keys(
-                                     this_trait_samples, target_trait_data))))))
+
+        try:
+            this_vals, target_vals = list(zip(*list(filter_shared_sample_keys(
+                this_trait_samples, target_trait_data))))
+
+            processed_values.append(
+                (trait_name, corr_method, this_vals, target_vals))
+        except ValueError:
+            continue
+
     with closing(multiprocessing.Pool()) as pool:
         results = pool.starmap(compute_sample_r_correlation, processed_values)
 
@@ -168,8 +174,14 @@ def compute_all_sample_correlation(this_trait,
     for target_trait in target_dataset:
         trait_name = target_trait.get("trait_id")
         target_trait_data = target_trait["trait_sample_data"]
-        this_vals, target_vals = list(zip(*list(filter_shared_sample_keys(
-            this_trait_samples, target_trait_data))))
+
+        try:
+            this_vals, target_vals = list(zip(*list(filter_shared_sample_keys(
+                this_trait_samples, target_trait_data))))
+
+        except ValueError:
+            # case where no matching strain names
+            continue
 
         sample_correlation = compute_sample_r_correlation(
             trait_name=trait_name,
diff --git a/gn3/computations/correlations2.py b/gn3/computations/correlations2.py
index 93db3fa..d0222ae 100644
--- a/gn3/computations/correlations2.py
+++ b/gn3/computations/correlations2.py
@@ -6,45 +6,21 @@ FUNCTIONS:
 compute_correlation:
     TODO: Describe what the function does..."""
 
-from math import sqrt
-from functools import reduce
+from scipy import stats
 ## From GN1: mostly for clustering and heatmap generation
 
 def __items_with_values(dbdata, userdata):
     """Retains only corresponding items in the data items that are not `None` values.
     This should probably be renamed to something sensible"""
-    def both_not_none(item1, item2):
-        """Check that both items are not the value `None`."""
-        if (item1 is not None) and (item2 is not None):
-            return (item1, item2)
-        return None
-    def split_lists(accumulator, item):
-        """Separate the 'x' and 'y' items."""
-        return [accumulator[0] + [item[0]], accumulator[1] + [item[1]]]
-    return reduce(
-        split_lists,
-        filter(lambda x: x is not None, map(both_not_none, dbdata, userdata)),
-        [[], []])
+    filtered = [x for x in zip(dbdata, userdata) if x[0] is not None and x[1] is not None]
+    return tuple(zip(*filtered)) if filtered else ([], [])
 
 def compute_correlation(dbdata, userdata):
-    """Compute some form of correlation.
+    """Compute the Pearson correlation coefficient.
 
     This is extracted from
     https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/utility/webqtlUtil.py#L622-L647
     """
     x_items, y_items = __items_with_values(dbdata, userdata)
-    if len(x_items) < 6:
-        return (0.0, len(x_items))
-    meanx = sum(x_items)/len(x_items)
-    meany = sum(y_items)/len(y_items)
-    def cal_corr_vals(acc, item):
-        xitem, yitem = item
-        return [
-            acc[0] + ((xitem - meanx) * (yitem - meany)),
-            acc[1] + ((xitem - meanx) * (xitem - meanx)),
-            acc[2] + ((yitem - meany) * (yitem - meany))]
-    xyd, sxd, syd = reduce(cal_corr_vals, zip(x_items, y_items), [0.0, 0.0, 0.0])
-    try:
-        return ((xyd/(sqrt(sxd)*sqrt(syd))), len(x_items))
-    except ZeroDivisionError:
-        return(0, len(x_items))
+    correlation = stats.pearsonr(x_items, y_items)[0] if len(x_items) >= 6 else 0
+    return (correlation, len(x_items))
diff --git a/gn3/computations/ctl.py b/gn3/computations/ctl.py
new file mode 100644
index 0000000..f881410
--- /dev/null
+++ b/gn3/computations/ctl.py
@@ -0,0 +1,30 @@
+"""module contains code to process ctl analysis data"""
+import json
+from gn3.commands import run_cmd
+
+from gn3.computations.wgcna import dump_wgcna_data
+from gn3.computations.wgcna import compose_wgcna_cmd
+from gn3.computations.wgcna import process_image
+
+from gn3.settings import TMPDIR
+
+
+def call_ctl_script(data):
+    """function to call ctl script"""
+    data["imgDir"] = TMPDIR
+    temp_file_name = dump_wgcna_data(data)
+    cmd = compose_wgcna_cmd("ctl_analysis.R", temp_file_name)
+
+    cmd_results = run_cmd(cmd)
+    with open(temp_file_name, "r", encoding="utf-8") as outputfile:
+        if cmd_results["code"] != 0:
+            return (cmd_results, None)
+        output_file_data = json.load(outputfile)
+
+        output_file_data["image_data"] = process_image(
+            output_file_data["image_loc"]).decode("ascii")
+
+        output_file_data["ctl_plots"] = [process_image(ctl_plot).decode("ascii") for
+                                         ctl_plot in output_file_data["ctl_plots"]]
+
+        return (cmd_results, output_file_data)
diff --git a/gn3/computations/diff.py b/gn3/computations/diff.py
index af02f7f..0b6edd6 100644
--- a/gn3/computations/diff.py
+++ b/gn3/computations/diff.py
@@ -6,7 +6,7 @@ from gn3.commands import run_cmd
 
 def generate_diff(data: str, edited_data: str) -> Optional[str]:
     """Generate the diff between 2 files"""
-    results = run_cmd(f"diff {data} {edited_data}", success_codes=(1, 2))
+    results = run_cmd(f'"diff {data} {edited_data}"', success_codes=(1, 2))
     if results.get("code", -1) > 0:
         return results.get("output")
     return None
diff --git a/gn3/computations/gemma.py b/gn3/computations/gemma.py
index 0b22d3c..8036a7b 100644
--- a/gn3/computations/gemma.py
+++ b/gn3/computations/gemma.py
@@ -31,7 +31,7 @@ def generate_pheno_txt_file(trait_filename: str,
     # Early return if this already exists!
     if os.path.isfile(f"{tmpdir}/gn2/{trait_filename}"):
         return f"{tmpdir}/gn2/{trait_filename}"
-    with open(f"{tmpdir}/gn2/{trait_filename}", "w") as _file:
+    with open(f"{tmpdir}/gn2/{trait_filename}", "w", encoding="utf-8") as _file:
         for value in values:
             if value == "x":
                 _file.write("NA\n")
diff --git a/gn3/computations/parsers.py b/gn3/computations/parsers.py
index 1af35d6..79e3955 100644
--- a/gn3/computations/parsers.py
+++ b/gn3/computations/parsers.py
@@ -15,7 +15,7 @@ def parse_genofile(file_path: str) -> Tuple[List[str],
         'u': None,
     }
     genotypes, samples = [], []
-    with open(file_path, "r") as _genofile:
+    with open(file_path, "r", encoding="utf-8") as _genofile:
         for line in _genofile:
             line = line.strip()
             if line.startswith(("#", "@")):
diff --git a/gn3/computations/partial_correlations.py b/gn3/computations/partial_correlations.py
index 07dc16d..5017796 100644
--- a/gn3/computations/partial_correlations.py
+++ b/gn3/computations/partial_correlations.py
@@ -5,12 +5,32 @@ It is an attempt to migrate over the partial correlations feature from
 GeneNetwork1.
 """
 
-from functools import reduce
-from typing import Any, Tuple, Sequence
+import math
+import warnings
+from functools import reduce, partial
+from typing import Any, Tuple, Union, Sequence
+
+import numpy
+import pandas
+import pingouin
 from scipy.stats import pearsonr, spearmanr
 
 from gn3.settings import TEXTDIR
+from gn3.random import random_string
+from gn3.function_helpers import  compose
 from gn3.data_helpers import parse_csv_line
+from gn3.db.traits import export_informative
+from gn3.db.datasets import retrieve_trait_dataset
+from gn3.db.partial_correlations import traits_info, traits_data
+from gn3.db.species import species_name, translate_to_mouse_gene_id
+from gn3.db.correlations import (
+    get_filename,
+    fetch_all_database_data,
+    check_for_literature_info,
+    fetch_tissue_correlations,
+    fetch_literature_correlations,
+    check_symbol_for_tissue_correlation,
+    fetch_gene_symbol_tissue_value_dict_for_trait)
 
 def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
     """
@@ -40,7 +60,7 @@ def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
             __process_sample__, sampleslist, (tuple(), tuple(), tuple()))
 
     return reduce(
-        lambda acc, item: (
+        lambda acc, item: (# type: ignore[arg-type, return-value]
             acc[0] + (item[0],),
             acc[1] + (item[1],),
             acc[2] + (item[2],),
@@ -49,22 +69,6 @@ def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
         [__process_control__(trait_data) for trait_data in controls],
         (tuple(), tuple(), tuple(), tuple()))
 
-def dictify_by_samples(samples_vals_vars: Sequence[Sequence]) -> Sequence[dict]:
-    """
-    Build a sequence of dictionaries from a sequence of separate sequences of
-    samples, values and variances.
-
-    This is a partial migration of
-    `web.webqtl.correlation.correlationFunction.fixStrains` function in GN1.
-    This implementation extracts code that will find common use, and that will
-    find use in more than one place.
-    """
-    return tuple(
-        {
-            sample: {"sample_name": sample, "value": val, "variance": var}
-            for sample, val, var in zip(*trait_line)
-        } for trait_line in zip(*(samples_vals_vars[0:3])))
-
 def fix_samples(primary_trait: dict, control_traits: Sequence[dict]) -> Sequence[Sequence[Any]]:
     """
     Corrects sample_names, values and variance such that they all contain only
@@ -108,7 +112,7 @@ def find_identical_traits(
         return acc + ident[1]
 
     def __dictify_controls__(acc, control_item):
-        ckey = "{:.3f}".format(control_item[0])
+        ckey = tuple(f"{item:.3f}" for item in control_item[0])
         return {**acc, ckey: acc.get(ckey, tuple()) + (control_item[1],)}
 
     return (reduce(## for identical control traits
@@ -148,11 +152,11 @@ def tissue_correlation(
     assert len(primary_trait_values) == len(target_trait_values), (
         "The lengths of the `primary_trait_values` and `target_trait_values` "
         "must be equal")
-    assert method in method_fns.keys(), (
-        "Method must be one of: {}".format(",".join(method_fns.keys())))
+    assert method in method_fns, (
+        "Method must be one of: {','.join(method_fns.keys())}")
 
     corr, pvalue = method_fns[method](primary_trait_values, target_trait_values)
-    return (round(corr, 10), round(pvalue, 10))
+    return (corr, pvalue)
 
 def batch_computed_tissue_correlation(
         primary_trait_values: Tuple[float, ...], target_traits_dict: dict,
@@ -196,33 +200,19 @@ def good_dataset_samples_indexes(
         samples_from_file.index(good) for good in
         set(samples).intersection(set(samples_from_file))))
 
-def determine_partials(
-        primary_vals, control_vals, all_target_trait_names,
-        all_target_trait_values, method):
-    """
-    This **WILL** be a migration of
-    `web.webqtl.correlation.correlationFunction.determinePartialsByR` function
-    in GeneNetwork1.
-
-    The function in GeneNetwork1 contains code written in R that is then used to
-    compute the partial correlations.
-    """
-    ## This function is not implemented at this stage
-    return tuple(
-        primary_vals, control_vals, all_target_trait_names,
-        all_target_trait_values, method)
-
-def compute_partial_correlations_fast(# pylint: disable=[R0913, R0914]
+def partial_correlations_fast(# pylint: disable=[R0913, R0914]
         samples, primary_vals, control_vals, database_filename,
         fetched_correlations, method: str, correlation_type: str) -> Tuple[
-            float, Tuple[float, ...]]:
+            int, Tuple[float, ...]]:
     """
+    Computes partial correlation coefficients using data from a CSV file.
+
     This is a partial migration of the
     `web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsFast`
     function in GeneNetwork1.
     """
     assert method in ("spearman", "pearson")
-    with open(f"{TEXTDIR}/{database_filename}", "r") as dataset_file:
+    with open(database_filename, "r", encoding="utf-8") as dataset_file: # pytest: disable=[W1514]
         dataset = tuple(dataset_file.readlines())
 
     good_dataset_samples = good_dataset_samples_indexes(
@@ -245,7 +235,7 @@ def compute_partial_correlations_fast(# pylint: disable=[R0913, R0914]
     all_target_trait_names: Tuple[str, ...] = processed_trait_names_values[0]
     all_target_trait_values: Tuple[float, ...] = processed_trait_names_values[1]
 
-    all_correlations = determine_partials(
+    all_correlations = compute_partial(
         primary_vals, control_vals, all_target_trait_names,
         all_target_trait_values, method)
     ## Line 772 to 779 in GN1 are the cause of the weird complexity in the
@@ -254,36 +244,544 @@ def compute_partial_correlations_fast(# pylint: disable=[R0913, R0914]
     ## `correlation_type` parameter
     return len(all_correlations), tuple(
         corr + (
-            (fetched_correlations[corr[0]],) if correlation_type == "literature"
-            else fetched_correlations[corr[0]][0:2])
+            (fetched_correlations[corr[0]],) # type: ignore[index]
+            if correlation_type == "literature"
+            else fetched_correlations[corr[0]][0:2]) # type: ignore[index]
         for idx, corr in enumerate(all_correlations))
 
-def partial_correlation_matrix(
+def build_data_frame(
         xdata: Tuple[float, ...], ydata: Tuple[float, ...],
-        zdata: Tuple[float, ...], method: str = "pearsons",
-        omit_nones: bool = True) -> float:
+        zdata: Union[
+            Tuple[float, ...],
+            Tuple[Tuple[float, ...], ...]]) -> pandas.DataFrame:
+    """
+    Build a pandas DataFrame object from xdata, ydata and zdata
+    """
+    x_y_df = pandas.DataFrame({"x": xdata, "y": ydata})
+    if isinstance(zdata[0], float):
+        return x_y_df.join(pandas.DataFrame({"z": zdata}))
+    interm_df = x_y_df.join(pandas.DataFrame(
+        {f"z{i}": val for i, val in enumerate(zdata)}))
+    if interm_df.shape[1] == 3:
+        return interm_df.rename(columns={"z0": "z"})
+    return interm_df
+
+def compute_trait_info(primary_vals, control_vals, target, method):
     """
-    Computes the partial correlation coefficient using the
-    'variance-covariance matrix' method
+    Compute the correlation values for the given arguments.
+    """
+    targ_vals = target[0]
+    targ_name = target[1]
+    primary = [
+        prim for targ, prim in zip(targ_vals, primary_vals)
+        if targ is not None]
+
+    if len(primary) < 3:
+        return None
+
+    def __remove_controls_for_target_nones(cont_targ):
+        return tuple(cont for cont, targ in cont_targ if targ is not None)
+
+    datafrm = build_data_frame(
+        primary,
+        [targ for targ in targ_vals if targ is not None],
+        [__remove_controls_for_target_nones(tuple(zip(control, targ_vals)))
+         for control in control_vals])
+    covariates = "z" if datafrm.shape[1] == 3 else [
+        col for col in datafrm.columns if col not in ("x", "y")]
+    ppc = pingouin.partial_corr(
+        data=datafrm, x="x", y="y", covar=covariates, method=(
+            "pearson" if "pearson" in method.lower() else "spearman"))
+    pc_coeff = ppc["r"][0]
+
+    zero_order_corr = pingouin.corr(
+        datafrm["x"], datafrm["y"], method=(
+            "pearson" if "pearson" in method.lower() else "spearman"))
+
+    if math.isnan(pc_coeff):
+        return (
+            targ_name, len(primary), pc_coeff, 1, zero_order_corr["r"][0],
+            zero_order_corr["p-val"][0])
+    return (
+        targ_name, len(primary), pc_coeff,
+        (ppc["p-val"][0] if not math.isnan(ppc["p-val"][0]) else (
+            0 if (abs(pc_coeff - 1) < 0.0000001) else 1)),
+        zero_order_corr["r"][0], zero_order_corr["p-val"][0])
+
+def compute_partial(
+        primary_vals, control_vals, target_vals, target_names,
+        method: str) -> Tuple[
+            Union[
+                Tuple[str, int, float, float, float, float], None],
+            ...]:
+    """
+    Compute the partial correlations.
 
-    This is a partial migration of the
-    `web.webqtl.correlation.correlationFunction.determinPartialsByR` function in
-    GeneNetwork1, specifically the `pcor.mat` function written in the R
-    programming language.
+    This is a re-implementation of the
+    `web.webqtl.correlation.correlationFunction.determinePartialsByR` function
+    in GeneNetwork1.
+
+    This implementation reworks the child function `compute_partial` which will
+    then be used in the place of `determinPartialsByR`.
+    """
+    return tuple(
+        result for result in (
+            compute_trait_info(
+                primary_vals, control_vals, (tvals, tname), method)
+            for tvals, tname in zip(target_vals, target_names))
+        if result is not None)
+
+def partial_correlations_normal(# pylint: disable=R0913
+        primary_vals, control_vals, input_trait_gene_id, trait_database,
+        data_start_pos: int, db_type: str, method: str) -> Tuple[
+            int, Tuple[Union[
+                Tuple[str, int, float, float, float, float], None],
+                       ...]]:#Tuple[float, ...]
     """
-    return 0
+    Computes the correlation coefficients.
 
-def partial_correlation_recursive(
-        xdata: Tuple[float, ...], ydata: Tuple[float, ...],
-        zdata: Tuple[float, ...], method: str = "pearsons",
-        omit_nones: bool = True) -> float:
+    This is a migration of the
+    `web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsNormal`
+    function in GeneNetwork1.
     """
-    Computes the partial correlation coefficient using the 'recursive formula'
-    method
+    def __add_lit_and_tiss_corr__(item):
+        if method.lower() == "sgo literature correlation":
+            # if method is 'SGO Literature Correlation', `compute_partial`
+            # would give us LitCorr in the [1] position
+            return tuple(item) + trait_database[1]
+        if method.lower() in (
+                "tissue correlation, pearson's r",
+                "tissue correlation, spearman's rho"):
+            # if method is 'Tissue Correlation, *', `compute_partial` would give
+            # us Tissue Corr in the [1] position and Tissue Corr P Value in the
+            # [2] position
+            return tuple(item) + (trait_database[1], trait_database[2])
+        return item
+
+    target_trait_names, target_trait_vals = reduce(# type: ignore[var-annotated]
+        lambda acc, item: (acc[0]+(item[0],), acc[1]+(item[data_start_pos:],)),
+        trait_database, (tuple(), tuple()))
+
+    all_correlations = compute_partial(
+        primary_vals, control_vals, target_trait_vals, target_trait_names,
+        method)
+
+    if (input_trait_gene_id and db_type == "ProbeSet" and method.lower() in (
+            "sgo literature correlation", "tissue correlation, pearson's r",
+            "tissue correlation, spearman's rho")):
+        return (
+            len(trait_database),
+            tuple(
+                __add_lit_and_tiss_corr__(item)
+                for idx, item in enumerate(all_correlations)))
+
+    return len(trait_database), all_correlations
+
+def partial_corrs(# pylint: disable=[R0913]
+        conn, samples, primary_vals, control_vals, return_number, species,
+        input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
+        method, dataset, database_filename):
+    """
+    Compute the partial correlations, selecting the fast or normal method
+    depending on the existence of the database text file.
 
     This is a partial migration of the
-    `web.webqtl.correlation.correlationFunction.determinPartialsByR` function in
-    GeneNetwork1, specifically the `pcor.rec` function written in the R
-    programming language.
+    `web.webqtl.correlation.PartialCorrDBPage.__init__` function in
+    GeneNetwork1.
+    """
+    if database_filename:
+        return partial_correlations_fast(
+            samples, primary_vals, control_vals, database_filename,
+            (
+                fetch_literature_correlations(
+                    species, input_trait_geneid, dataset, return_number, conn)
+                if "literature" in method.lower() else
+                fetch_tissue_correlations(
+                    dataset, input_trait_symbol, tissue_probeset_freeze_id,
+                    method, return_number, conn)),
+            method,
+            ("literature" if method.lower() == "sgo literature correlation"
+             else ("tissue" if "tissue" in method.lower() else "genetic")))
+
+    trait_database, data_start_pos = fetch_all_database_data(
+        conn, species, input_trait_geneid, input_trait_symbol, samples, dataset,
+        method, return_number, tissue_probeset_freeze_id)
+    return partial_correlations_normal(
+        primary_vals, control_vals, input_trait_geneid, trait_database,
+        data_start_pos, dataset, method)
+
+def literature_correlation_by_list(
+        conn: Any, species: str, trait_list: Tuple[dict]) -> Tuple[dict, ...]:
+    """
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.getLiteratureCorrelationByList`
+    function in GeneNetwork1.
+    """
+    if any((lambda t: (
+            bool(t.get("tissue_corr")) and
+            bool(t.get("tissue_p_value"))))(trait)
+           for trait in trait_list):
+        temporary_table_name = f"LITERATURE{random_string(8)}"
+        query1 = (
+            f"CREATE TEMPORARY TABLE {temporary_table_name} "
+            "(GeneId1 INT(12) UNSIGNED, GeneId2 INT(12) UNSIGNED PRIMARY KEY, "
+            "value DOUBLE)")
+        query2 = (
+            f"INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) "
+            "SELECT GeneId1, GeneId2, value FROM LCorrRamin3 "
+            "WHERE GeneId1=%(geneid)s")
+        query3 = (
+            "INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) "
+            "SELECT GeneId2, GeneId1, value FROM LCorrRamin3 "
+            "WHERE GeneId2=%s AND GeneId1 != %(geneid)s")
+
+        def __set_mouse_geneid__(trait):
+            if trait.get("geneid"):
+                return {
+                    **trait,
+                    "mouse_geneid": translate_to_mouse_gene_id(
+                        species, trait.get("geneid"), conn)
+                }
+            return {**trait, "mouse_geneid": 0}
+
+        def __retrieve_lcorr__(cursor, geneids):
+            cursor.execute(
+                f"SELECT GeneId2, value FROM {temporary_table_name} "
+                "WHERE GeneId2 IN %(geneids)s",
+                geneids=geneids)
+            return dict(cursor.fetchall())
+
+        with conn.cursor() as cursor:
+            cursor.execute(query1)
+            cursor.execute(query2)
+            cursor.execute(query3)
+
+            traits = tuple(__set_mouse_geneid__(trait) for trait in trait_list)
+            lcorrs = __retrieve_lcorr__(
+                cursor, (
+                    trait["mouse_geneid"] for trait in traits
+                    if (trait["mouse_geneid"] != 0 and
+                        trait["mouse_geneid"].find(";") < 0)))
+            return tuple(
+                {**trait, "l_corr": lcorrs.get(trait["mouse_geneid"], None)}
+                for trait in traits)
+
+        return trait_list
+    return trait_list
+
+def tissue_correlation_by_list(
+        conn: Any, primary_trait_symbol: str, tissue_probeset_freeze_id: int,
+        method: str, trait_list: Tuple[dict]) -> Tuple[dict, ...]:
+    """
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.getTissueCorrelationByList`
+    function in GeneNetwork1.
+    """
+    def __add_tissue_corr__(trait, primary_trait_values, trait_values):
+        result = pingouin.corr(
+            primary_trait_values, trait_values,
+            method=("spearman" if "spearman" in method.lower() else "pearson"))
+        return {
+            **trait,
+            "tissue_corr": result["r"],
+            "tissue_p_value": result["p-val"]
+        }
+
+    if any((lambda t: bool(t.get("l_corr")))(trait) for trait in trait_list):
+        prim_trait_symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
+            (primary_trait_symbol,), tissue_probeset_freeze_id, conn)
+        if primary_trait_symbol.lower() in prim_trait_symbol_value_dict:
+            primary_trait_value = prim_trait_symbol_value_dict[
+                primary_trait_symbol.lower()]
+            gene_symbol_list = tuple(
+                trait["symbol"] for trait in trait_list if "symbol" in trait.keys())
+            symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
+                gene_symbol_list, tissue_probeset_freeze_id, conn)
+            return tuple(
+                __add_tissue_corr__(
+                    trait, primary_trait_value,
+                    symbol_value_dict[trait["symbol"].lower()])
+                for trait in trait_list
+                if ("symbol" in trait and
+                    bool(trait["symbol"]) and
+                    trait["symbol"].lower() in symbol_value_dict))
+        return tuple({
+            **trait,
+            "tissue_corr": None,
+            "tissue_p_value": None
+        } for trait in trait_list)
+    return trait_list
+
+def trait_for_output(trait):
+    """
+    Process a trait for output.
+
+    Removes a lot of extraneous data from the trait, that is not needed for
+    the display of partial correlation results.
+    This function also removes all key-value pairs, for which the value is
+    `None`, because it is a waste of network resources to transmit the key-value
+    pair just to indicate it does not exist.
+    """
+    def __nan_to_none__(val):
+        if val is None:
+            return None
+        if math.isnan(val) or numpy.isnan(val):
+            return None
+        return val
+
+    trait = {
+        "trait_type": trait["db"]["dataset_type"],
+        "dataset_name": trait["db"]["dataset_name"],
+        "dataset_type": trait["db"]["dataset_type"],
+        "group": trait["db"]["group"],
+        "trait_fullname": trait["trait_fullname"],
+        "trait_name": trait["trait_name"],
+        "symbol": trait.get("symbol"),
+        "description": trait.get("description"),
+        "pre_publication_description": trait.get("Pre_publication_description"),
+        "post_publication_description": trait.get(
+            "Post_publication_description"),
+        "original_description": trait.get("Original_description"),
+        "authors": trait.get("Authors"),
+        "year": trait.get("Year"),
+        "probe_target_description": trait.get("Probe_target_description"),
+        "chr": trait.get("chr"),
+        "mb": trait.get("mb"),
+        "geneid": trait.get("geneid"),
+        "homologeneid": trait.get("homologeneid"),
+        "noverlap": trait.get("noverlap"),
+        "partial_corr": __nan_to_none__(trait.get("partial_corr")),
+        "partial_corr_p_value": __nan_to_none__(
+            trait.get("partial_corr_p_value")),
+        "corr": __nan_to_none__(trait.get("corr")),
+        "corr_p_value": __nan_to_none__(trait.get("corr_p_value")),
+        "rank_order": __nan_to_none__(trait.get("rank_order")),
+        "delta": (
+            None if trait.get("partial_corr") is None
+            else (trait.get("partial_corr") - trait.get("corr"))),
+        "l_corr": __nan_to_none__(trait.get("l_corr")),
+        "tissue_corr": __nan_to_none__(trait.get("tissue_corr")),
+        "tissue_p_value": __nan_to_none__(trait.get("tissue_p_value"))
+    }
+    return {key: val for key, val in trait.items() if val is not None}
+
+def partial_correlations_entry(# pylint: disable=[R0913, R0914, R0911]
+        conn: Any, primary_trait_name: str,
+        control_trait_names: Tuple[str, ...], method: str,
+        criteria: int, target_db_name: str) -> dict:
+    """
+    This is the 'ochestration' function for the partial-correlation feature.
+
+    This function will dispatch the functions doing data fetches from the
+    database (and various other places) and feed that data to the functions
+    doing the conversions and computations. It will then return the results of
+    all of that work.
+
+    This function is doing way too much. Look into splitting out the
+    functionality into smaller functions that do fewer things.
     """
-    return 0
+    threshold = 0
+    corr_min_informative = 4
+
+    all_traits = traits_info(
+        conn, threshold, (primary_trait_name,) + control_trait_names)
+    all_traits_data = traits_data(conn, all_traits)
+
+    primary_trait = tuple(
+        trait for trait in all_traits
+        if trait["trait_fullname"] == primary_trait_name)[0]
+    if not primary_trait["haveinfo"]:
+        return {
+            "status": "not-found",
+            "message": f"Could not find primary trait {primary_trait['trait_fullname']}"
+        }
+    cntrl_traits = tuple(
+        trait for trait in all_traits
+        if trait["trait_fullname"] != primary_trait_name)
+    if not any(trait["haveinfo"] for trait in cntrl_traits):
+        return {
+            "status": "not-found",
+            "message": "None of the requested control traits were found."}
+    for trait in cntrl_traits:
+        if trait["haveinfo"] is False:
+            warnings.warn(
+                (f"Control traits {trait['trait_fullname']} was not found "
+                 "- continuing without it."),
+                category=UserWarning)
+
+    group = primary_trait["db"]["group"]
+    primary_trait_data = all_traits_data[primary_trait["trait_name"]]
+    primary_samples, primary_values, _primary_variances = export_informative(
+        primary_trait_data)
+
+    cntrl_traits_data = tuple(
+        data for trait_name, data in all_traits_data.items()
+        if trait_name != primary_trait["trait_name"])
+    species = species_name(conn, group)
+
+    (cntrl_samples,
+     cntrl_values,
+     _cntrl_variances,
+     _cntrl_ns) = control_samples(cntrl_traits_data, primary_samples)
+
+    common_primary_control_samples = primary_samples
+    fixed_primary_vals = primary_values
+    fixed_control_vals = cntrl_values
+    if not all(cnt_smp == primary_samples for cnt_smp in cntrl_samples):
+        (common_primary_control_samples,
+         fixed_primary_vals,
+         fixed_control_vals,
+         _primary_variances,
+         _cntrl_variances) = fix_samples(primary_trait, cntrl_traits)
+
+    if len(common_primary_control_samples) < corr_min_informative:
+        return {
+            "status": "error",
+            "message": (
+                f"Fewer than {corr_min_informative} samples data entered for "
+                f"{group} dataset. No calculation of correlation has been "
+                "attempted."),
+            "error_type": "Inadequate Samples"}
+
+    identical_traits_names = find_identical_traits(
+        primary_trait_name, primary_values, control_trait_names, cntrl_values)
+    if len(identical_traits_names) > 0:
+        return {
+            "status": "error",
+            "message": (
+                f"{identical_traits_names[0]} and {identical_traits_names[1]} "
+                "have the same values for the {len(fixed_primary_vals)} "
+                "samples that will be used to compute the partial correlation "
+                "(common for all primary and control traits). In such cases, "
+                "partial correlation cannot be computed. Please re-select your "
+                "traits."),
+            "error_type": "Identical Traits"}
+
+    input_trait_geneid = primary_trait.get("geneid", 0)
+    input_trait_symbol = primary_trait.get("symbol", "")
+    input_trait_mouse_geneid = translate_to_mouse_gene_id(
+        species, input_trait_geneid, conn)
+
+    tissue_probeset_freeze_id = 1
+    db_type = primary_trait["db"]["dataset_type"]
+
+    if db_type == "ProbeSet" and method.lower() in (
+            "sgo literature correlation",
+            "tissue correlation, pearson's r",
+            "tissue correlation, spearman's rho"):
+        return {
+            "status": "error",
+            "message": (
+                "Wrong correlation type: It is not possible to compute the "
+                f"{method} between your trait and data in the {target_db_name} "
+                "database. Please try again after selecting another type of "
+                "correlation."),
+            "error_type": "Correlation Type"}
+
+    if (method.lower() == "sgo literature correlation" and (
+            bool(input_trait_geneid) is False or
+            check_for_literature_info(conn, input_trait_mouse_geneid))):
+        return {
+            "status": "error",
+            "message": (
+                "No Literature Information: This gene does not have any "
+                "associated Literature Information."),
+            "error_type": "Literature Correlation"}
+
+    if (
+            method.lower() in (
+                "tissue correlation, pearson's r",
+                "tissue correlation, spearman's rho")
+            and bool(input_trait_symbol) is False):
+        return {
+            "status": "error",
+            "message": (
+                "No Tissue Correlation Information: This gene does not have "
+                "any associated Tissue Correlation Information."),
+            "error_type": "Tissue Correlation"}
+
+    if (
+            method.lower() in (
+                "tissue correlation, pearson's r",
+                "tissue correlation, spearman's rho")
+            and check_symbol_for_tissue_correlation(
+                conn, tissue_probeset_freeze_id, input_trait_symbol)):
+        return {
+            "status": "error",
+            "message": (
+                "No Tissue Correlation Information: This gene does not have "
+                "any associated Tissue Correlation Information."),
+            "error_type": "Tissue Correlation"}
+
+    target_dataset = retrieve_trait_dataset(
+        ("Temp" if "Temp" in target_db_name else
+         ("Publish" if "Publish" in target_db_name else
+          "Geno" if "Geno" in target_db_name else "ProbeSet")),
+        {"db": {"dataset_name": target_db_name}, "trait_name": "_"},
+        threshold,
+        conn)
+
+    database_filename = get_filename(conn, target_db_name, TEXTDIR)
+    _total_traits, all_correlations = partial_corrs(
+        conn, common_primary_control_samples, fixed_primary_vals,
+        fixed_control_vals, len(fixed_primary_vals), species,
+        input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
+        method, {**target_dataset, "dataset_type": target_dataset["type"]}, database_filename)
+
+
+    def __make_sorter__(method):
+        def __by_lit_or_tiss_corr_then_p_val__(row):
+            return (row[6], row[3])
+
+        def __by_partial_corr_p_value__(row):
+            return row[3]
+
+        if (("literature" in method.lower()) or ("tissue" in method.lower())):
+            return __by_lit_or_tiss_corr_then_p_val__
+
+        return __by_partial_corr_p_value__
+
+    add_lit_corr_and_tiss_corr = compose(
+        partial(literature_correlation_by_list, conn, species),
+        partial(
+            tissue_correlation_by_list, conn, input_trait_symbol,
+            tissue_probeset_freeze_id, method))
+
+    selected_results = sorted(
+        all_correlations,
+        key=__make_sorter__(method))[:criteria]
+    traits_list_corr_info = {
+        f"{target_dataset['dataset_name']}::{item[0]}": {
+            "noverlap": item[1],
+            "partial_corr": item[2],
+            "partial_corr_p_value": item[3],
+            "corr": item[4],
+            "corr_p_value": item[5],
+            "rank_order": (1 if "spearman" in method.lower() else 0),
+            **({
+                "tissue_corr": item[6],
+                "tissue_p_value": item[7]}
+               if len(item) == 8 else {}),
+            **({"l_corr": item[6]}
+               if len(item) == 7 else {})
+        } for item in selected_results}
+
+    trait_list = add_lit_corr_and_tiss_corr(tuple(
+        {**trait, **traits_list_corr_info.get(trait["trait_fullname"], {})}
+        for trait in traits_info(
+            conn, threshold,
+            tuple(
+                f"{target_dataset['dataset_name']}::{item[0]}"
+                for item in selected_results))))
+
+    return {
+        "status": "success",
+        "results": {
+            "primary_trait": trait_for_output(primary_trait),
+            "control_traits": tuple(
+                trait_for_output(trait) for trait in cntrl_traits),
+            "correlations": tuple(
+                trait_for_output(trait) for trait in trait_list),
+            "dataset_type": target_dataset["type"],
+            "method": "spearman" if "spearman" in method.lower() else "pearson"
+        }}
diff --git a/gn3/computations/partial_correlations_optimised.py b/gn3/computations/partial_correlations_optimised.py
new file mode 100644
index 0000000..601289c
--- /dev/null
+++ b/gn3/computations/partial_correlations_optimised.py
@@ -0,0 +1,244 @@
+"""
+This contains an optimised version of the
+ `gn3.computations.partial_correlations.partial_correlations_entry`
+function.
+"""
+from functools import partial
+from typing import Any, Tuple
+
+from gn3.settings import TEXTDIR
+from gn3.function_helpers import  compose
+from gn3.db.partial_correlations import traits_info, traits_data
+from gn3.db.species import species_name, translate_to_mouse_gene_id
+from gn3.db.traits import export_informative, retrieve_trait_dataset
+from gn3.db.correlations import (
+    get_filename,
+    check_for_literature_info,
+    check_symbol_for_tissue_correlation)
+from gn3.computations.partial_correlations import (
+    fix_samples,
+    partial_corrs,
+    control_samples,
+    trait_for_output,
+    find_identical_traits,
+    tissue_correlation_by_list,
+    literature_correlation_by_list)
+
+def partial_correlations_entry(# pylint: disable=[R0913, R0914, R0911]
+        conn: Any, primary_trait_name: str,
+        control_trait_names: Tuple[str, ...], method: str,
+        criteria: int, target_db_name: str) -> dict:
+    """
+    This is the 'ochestration' function for the partial-correlation feature.
+
+    This function will dispatch the functions doing data fetches from the
+    database (and various other places) and feed that data to the functions
+    doing the conversions and computations. It will then return the results of
+    all of that work.
+
+    This function is doing way too much. Look into splitting out the
+    functionality into smaller functions that do fewer things.
+    """
+    threshold = 0
+    corr_min_informative = 4
+
+    all_traits = traits_info(
+        conn, threshold, (primary_trait_name,) + control_trait_names)
+    all_traits_data = traits_data(conn, all_traits)
+
+    # primary_trait = retrieve_trait_info(threshold, primary_trait_name, conn)
+    primary_trait = tuple(
+        trait for trait in all_traits
+        if trait["trait_fullname"] == primary_trait_name)[0]
+    group = primary_trait["db"]["group"]
+    # primary_trait_data = retrieve_trait_data(primary_trait, conn)
+    primary_trait_data = all_traits_data[primary_trait["trait_name"]]
+    primary_samples, primary_values, _primary_variances = export_informative(
+        primary_trait_data)
+
+    # cntrl_traits = tuple(
+    #     retrieve_trait_info(threshold, trait_full_name, conn)
+    #     for trait_full_name in control_trait_names)
+    # cntrl_traits_data = tuple(
+    #     retrieve_trait_data(cntrl_trait, conn)
+    #     for cntrl_trait in cntrl_traits)
+    cntrl_traits = tuple(
+        trait for trait in all_traits
+        if trait["trait_fullname"] != primary_trait_name)
+    cntrl_traits_data = tuple(
+        data for trait_name, data in all_traits_data.items()
+        if trait_name != primary_trait["trait_name"])
+    species = species_name(conn, group)
+
+    (cntrl_samples,
+     cntrl_values,
+     _cntrl_variances,
+     _cntrl_ns) = control_samples(cntrl_traits_data, primary_samples)
+
+    common_primary_control_samples = primary_samples
+    fixed_primary_vals = primary_values
+    fixed_control_vals = cntrl_values
+    if not all(cnt_smp == primary_samples for cnt_smp in cntrl_samples):
+        (common_primary_control_samples,
+         fixed_primary_vals,
+         fixed_control_vals,
+         _primary_variances,
+         _cntrl_variances) = fix_samples(primary_trait, cntrl_traits)
+
+    if len(common_primary_control_samples) < corr_min_informative:
+        return {
+            "status": "error",
+            "message": (
+                f"Fewer than {corr_min_informative} samples data entered for "
+                f"{group} dataset. No calculation of correlation has been "
+                "attempted."),
+            "error_type": "Inadequate Samples"}
+
+    identical_traits_names = find_identical_traits(
+        primary_trait_name, primary_values, control_trait_names, cntrl_values)
+    if len(identical_traits_names) > 0:
+        return {
+            "status": "error",
+            "message": (
+                f"{identical_traits_names[0]} and {identical_traits_names[1]} "
+                "have the same values for the {len(fixed_primary_vals)} "
+                "samples that will be used to compute the partial correlation "
+                "(common for all primary and control traits). In such cases, "
+                "partial correlation cannot be computed. Please re-select your "
+                "traits."),
+            "error_type": "Identical Traits"}
+
+    input_trait_geneid = primary_trait.get("geneid", 0)
+    input_trait_symbol = primary_trait.get("symbol", "")
+    input_trait_mouse_geneid = translate_to_mouse_gene_id(
+        species, input_trait_geneid, conn)
+
+    tissue_probeset_freeze_id = 1
+    db_type = primary_trait["db"]["dataset_type"]
+
+    if db_type == "ProbeSet" and method.lower() in (
+            "sgo literature correlation",
+            "tissue correlation, pearson's r",
+            "tissue correlation, spearman's rho"):
+        return {
+            "status": "error",
+            "message": (
+                "Wrong correlation type: It is not possible to compute the "
+                f"{method} between your trait and data in the {target_db_name} "
+                "database. Please try again after selecting another type of "
+                "correlation."),
+            "error_type": "Correlation Type"}
+
+    if (method.lower() == "sgo literature correlation" and (
+            bool(input_trait_geneid) is False or
+            check_for_literature_info(conn, input_trait_mouse_geneid))):
+        return {
+            "status": "error",
+            "message": (
+                "No Literature Information: This gene does not have any "
+                "associated Literature Information."),
+            "error_type": "Literature Correlation"}
+
+    if (
+            method.lower() in (
+                "tissue correlation, pearson's r",
+                "tissue correlation, spearman's rho")
+            and bool(input_trait_symbol) is False):
+        return {
+            "status": "error",
+            "message": (
+                "No Tissue Correlation Information: This gene does not have "
+                "any associated Tissue Correlation Information."),
+            "error_type": "Tissue Correlation"}
+
+    if (
+            method.lower() in (
+                "tissue correlation, pearson's r",
+                "tissue correlation, spearman's rho")
+            and check_symbol_for_tissue_correlation(
+                conn, tissue_probeset_freeze_id, input_trait_symbol)):
+        return {
+            "status": "error",
+            "message": (
+                "No Tissue Correlation Information: This gene does not have "
+                "any associated Tissue Correlation Information."),
+            "error_type": "Tissue Correlation"}
+
+    target_dataset = retrieve_trait_dataset(
+        ("Temp" if "Temp" in target_db_name else
+         ("Publish" if "Publish" in target_db_name else
+          "Geno" if "Geno" in target_db_name else "ProbeSet")),
+        {"db": {"dataset_name": target_db_name}, "trait_name": "_"},
+        threshold,
+        conn)
+
+    database_filename = get_filename(conn, target_db_name, TEXTDIR)
+    _total_traits, all_correlations = partial_corrs(
+        conn, common_primary_control_samples, fixed_primary_vals,
+        fixed_control_vals, len(fixed_primary_vals), species,
+        input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
+        method, {**target_dataset, "dataset_type": target_dataset["type"]}, database_filename)
+
+
+    def __make_sorter__(method):
+        def __sort_6__(row):
+            return row[6]
+
+        def __sort_3__(row):
+            return row[3]
+
+        if "literature" in method.lower():
+            return __sort_6__
+
+        if "tissue" in method.lower():
+            return __sort_6__
+
+        return __sort_3__
+
+    # sorted_correlations = sorted(
+    #     all_correlations, key=__make_sorter__(method))
+
+    add_lit_corr_and_tiss_corr = compose(
+        partial(literature_correlation_by_list, conn, species),
+        partial(
+            tissue_correlation_by_list, conn, input_trait_symbol,
+            tissue_probeset_freeze_id, method))
+
+    selected_results = sorted(
+        all_correlations,
+        key=__make_sorter__(method))[:min(criteria, len(all_correlations))]
+    traits_list_corr_info = {
+        "{target_dataset['dataset_name']}::{item[0]}": {
+            "noverlap": item[1],
+            "partial_corr": item[2],
+            "partial_corr_p_value": item[3],
+            "corr": item[4],
+            "corr_p_value": item[5],
+            "rank_order": (1 if "spearman" in method.lower() else 0),
+            **({
+                "tissue_corr": item[6],
+                "tissue_p_value": item[7]}
+               if len(item) == 8 else {}),
+            **({"l_corr": item[6]}
+               if len(item) == 7 else {})
+        } for item in selected_results}
+
+    trait_list = add_lit_corr_and_tiss_corr(tuple(
+        {**trait, **traits_list_corr_info.get(trait["trait_fullname"], {})}
+        for trait in traits_info(
+            conn, threshold,
+            tuple(
+                f"{target_dataset['dataset_name']}::{item[0]}"
+                for item in selected_results))))
+
+    return {
+        "status": "success",
+        "results": {
+            "primary_trait": trait_for_output(primary_trait),
+            "control_traits": tuple(
+                trait_for_output(trait) for trait in cntrl_traits),
+            "correlations": tuple(
+                trait_for_output(trait) for trait in trait_list),
+            "dataset_type": target_dataset["type"],
+            "method": "spearman" if "spearman" in method.lower() else "pearson"
+        }}
diff --git a/gn3/computations/pca.py b/gn3/computations/pca.py
new file mode 100644
index 0000000..35c9f03
--- /dev/null
+++ b/gn3/computations/pca.py
@@ -0,0 +1,189 @@
+"""module contains pca implementation using python"""
+
+
+from typing import Any
+from scipy import stats
+
+from sklearn.decomposition import PCA
+from sklearn import preprocessing
+
+import numpy as np
+import redis
+
+
+from typing_extensions import TypeAlias
+
+fArray: TypeAlias = list[float]
+
+
+def compute_pca(array: list[fArray]) -> dict[str, Any]:
+    """
+    computes the principal component analysis
+
+    Parameters:
+
+          array(list[list]):a list of lists contains data to perform  pca
+
+
+    Returns:
+           pca_dict(dict):dict contains the pca_object,pca components,pca scores
+
+
+    """
+
+    corr_matrix = np.array(array)
+
+    pca_obj = PCA()
+    scaled_data = preprocessing.scale(corr_matrix)
+
+    pca_obj.fit(scaled_data)
+
+    return {
+        "pca": pca_obj,
+        "components": pca_obj.components_,
+        "scores": pca_obj.transform(scaled_data)
+    }
+
+
+def generate_scree_plot_data(variance_ratio: fArray) -> tuple[list, fArray]:
+    """
+    generates the scree data for plotting
+
+    Parameters:
+
+            variance_ratio(list[floats]):ratios for contribution of each pca
+
+    Returns:
+
+            coordinates(list[(x_coor,y_coord)])
+
+
+    """
+
+    perc_var = [round(ratio*100, 1) for ratio in variance_ratio]
+
+    x_coordinates = [f"PC{val}" for val in range(1, len(perc_var)+1)]
+
+    return (x_coordinates, perc_var)
+
+
+def generate_pca_traits_vals(trait_data_array: list[fArray],
+                             corr_array: list[fArray]) -> list[list[Any]]:
+    """
+    generates datasets from zscores of the traits and eigen_vectors\
+    of correlation matrix
+
+    Parameters:
+
+            trait_data_array(list[floats]):an list of the traits
+            corr_array(list[list]): list of arrays for computing eigen_vectors
+
+    Returns:
+
+            pca_vals[list[list]]:
+
+
+    """
+
+    trait_zscores = stats.zscore(trait_data_array)
+
+    if len(trait_data_array[0]) < 10:
+        trait_zscores = trait_data_array
+
+    (eigen_values, corr_eigen_vectors) = np.linalg.eig(np.array(corr_array))
+    idx = eigen_values.argsort()[::-1]
+
+    return np.dot(corr_eigen_vectors[:, idx], trait_zscores)
+
+
+def process_factor_loadings_tdata(factor_loadings, traits_num: int):
+    """
+
+    transform loadings for tables visualization
+
+    Parameters:
+           factor_loading(numpy.ndarray)
+           traits_num(int):number of traits
+
+    Returns:
+           tabular_loadings(list[list[float]])
+    """
+
+    target_columns = 3 if traits_num > 2 else 2
+
+    trait_loadings = list(factor_loadings.T)
+
+    return [list(trait_loading[:target_columns])
+            for trait_loading in trait_loadings]
+
+
+def generate_pca_temp_traits(
+    species: str,
+    group: str,
+    traits_data: list[fArray],
+    corr_array: list[fArray],
+    dataset_samples: list[str],
+    shared_samples: list[str],
+    create_time: str
+) -> dict[str, list[Any]]:
+    """
+
+
+    generate pca temp datasets
+
+    """
+
+    # pylint: disable=too-many-arguments
+
+    pca_trait_dict = {}
+
+    pca_vals = generate_pca_traits_vals(traits_data, corr_array)
+
+    for (idx, pca_trait) in enumerate(list(pca_vals)):
+
+        trait_id = f"PCA{str(idx+1)}_{species}_{group}_{create_time}"
+        sample_vals = []
+
+        pointer = 0
+
+        for sample in dataset_samples:
+            if sample in shared_samples:
+
+                sample_vals.append(str(pca_trait[pointer]))
+                pointer += 1
+
+            else:
+                sample_vals.append("x")
+
+        pca_trait_dict[trait_id] = sample_vals
+
+    return pca_trait_dict
+
+
+def cache_pca_dataset(redis_conn: Any, exp_days: int,
+                      pca_trait_dict: dict[str, list[Any]]):
+    """
+
+    caches pca dataset to redis
+
+    Parameters:
+
+            redis_conn(object)
+            exp_days(int): fo redis cache
+            pca_trait_dict(Dict): contains traits and traits vals to cache
+
+    Returns:
+
+            boolean(True if correct conn object False incase of exception)
+
+
+    """
+
+    try:
+        for trait_id, sample_data in pca_trait_dict.items():
+            samples_str = " ".join([str(x) for x in sample_data])
+            redis_conn.set(trait_id, samples_str, ex=exp_days)
+        return True
+
+    except (redis.ConnectionError, AttributeError):
+        return False
diff --git a/gn3/computations/qtlreaper.py b/gn3/computations/qtlreaper.py
index d1ff4ac..b61bdae 100644
--- a/gn3/computations/qtlreaper.py
+++ b/gn3/computations/qtlreaper.py
@@ -27,7 +27,7 @@ def generate_traits_file(samples, trait_values, traits_filename):
         ["{}\t{}".format(
             len(trait_values), "\t".join([str(i) for i in t]))
          for t in trait_values[-1:]])
-    with open(traits_filename, "w") as outfile:
+    with open(traits_filename, "w", encoding="utf8") as outfile:
         outfile.writelines(data)
 
 def create_output_directory(path: str):
@@ -68,13 +68,13 @@ def run_reaper(
     The function will raise a `subprocess.CalledProcessError` exception in case
     of any errors running the `qtlreaper` command.
     """
-    create_output_directory("{}/qtlreaper".format(output_dir))
-    output_filename = "{}/qtlreaper/main_output_{}.txt".format(
-        output_dir, random_string(10))
+    create_output_directory(f"{output_dir}/qtlreaper")
+    output_filename = (
+        f"{output_dir}/qtlreaper/main_output_{random_string(10)}.txt")
     output_list = ["--main_output", output_filename]
     if separate_nperm_output:
-        permu_output_filename: Union[None, str] = "{}/qtlreaper/permu_output_{}.txt".format(
-            output_dir, random_string(10))
+        permu_output_filename: Union[None, str] = (
+            f"{output_dir}/qtlreaper/permu_output_{random_string(10)}.txt")
         output_list = output_list + [
             "--permu_output", permu_output_filename] # type: ignore[list-item]
     else:
@@ -135,7 +135,7 @@ def parse_reaper_main_results(results_file):
     """
     Parse the results file of running QTLReaper into a list of dicts.
     """
-    with open(results_file, "r") as infile:
+    with open(results_file, "r", encoding="utf8") as infile:
         lines = infile.readlines()
 
     def __parse_column_float_value(value):
@@ -164,7 +164,7 @@ def parse_reaper_permutation_results(results_file):
     """
     Parse the results QTLReaper permutations into a list of values.
     """
-    with open(results_file, "r") as infile:
+    with open(results_file, "r", encoding="utf8") as infile:
         lines = infile.readlines()
 
     return [float(line.strip()) for line in lines]
diff --git a/gn3/computations/rqtl.py b/gn3/computations/rqtl.py
index e81aba3..65ee6de 100644
--- a/gn3/computations/rqtl.py
+++ b/gn3/computations/rqtl.py
@@ -53,7 +53,7 @@ def process_rqtl_mapping(file_name: str) -> List:
     # Later I should probably redo this using csv.read to avoid the
     # awkwardness with removing quotes with [1:-1]
     with open(os.path.join(current_app.config.get("TMPDIR", "/tmp"),
-                           "output", file_name), "r") as the_file:
+                           "output", file_name), "r", encoding="utf-8") as the_file:
         for line in the_file:
             line_items = line.split(",")
             if line_items[1][1:-1] == "chr" or not line_items:
@@ -118,7 +118,6 @@ def pairscan_for_figure(file_name: str) -> Dict:
 
     return figure_data
 
-
 def get_marker_list(map_file: str) -> List:
     """
     Open the map file with the list of markers/pseudomarkers and create list of marker obs
@@ -255,7 +254,7 @@ def process_perm_output(file_name: str) -> Tuple[List, float, float]:
 
     perm_results = []
     with open(os.path.join(current_app.config.get("TMPDIR", "/tmp"),
-                           "output", "PERM_" + file_name), "r") as the_file:
+                           "output", "PERM_" + file_name), "r", encoding="utf-8") as the_file:
         for i, line in enumerate(the_file):
             if i == 0:
                 # Skip header line
diff --git a/gn3/computations/wgcna.py b/gn3/computations/wgcna.py
index ab12fe7..c985491 100644
--- a/gn3/computations/wgcna.py
+++ b/gn3/computations/wgcna.py
@@ -19,7 +19,7 @@ def dump_wgcna_data(request_data: dict):
 
     request_data["TMPDIR"] = TMPDIR
 
-    with open(temp_file_path, "w") as output_file:
+    with open(temp_file_path, "w", encoding="utf-8") as output_file:
         json.dump(request_data, output_file)
 
     return temp_file_path
@@ -31,20 +31,18 @@ def stream_cmd_output(socketio, request_data, cmd: str):
 
     socketio.emit("output", {"data": f"calling you script {cmd}"},
                   namespace="/", room=request_data["socket_id"])
-    results = subprocess.Popen(
-        cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True)
+    with subprocess.Popen(
+            cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True) as results:
+        if results.stdout is not None:
+            for line in iter(results.stdout.readline, b""):
+                socketio.emit("output",
+                              {"data": line.decode("utf-8").rstrip()},
+                              namespace="/", room=request_data["socket_id"])
 
-    if results.stdout is not None:
-
-        for line in iter(results.stdout.readline, b""):
-            socketio.emit("output",
-                          {"data": line.decode("utf-8").rstrip()},
-                          namespace="/", room=request_data["socket_id"])
-
-        socketio.emit(
-            "output", {"data":
-                       "parsing the output results"}, namespace="/",
-            room=request_data["socket_id"])
+                socketio.emit(
+                    "output", {"data":
+                               "parsing the output results"}, namespace="/",
+                    room=request_data["socket_id"])
 
 
 def process_image(image_loc: str) -> bytes:
@@ -75,7 +73,7 @@ def call_wgcna_script(rscript_path: str, request_data: dict):
 
         run_cmd_results = run_cmd(cmd)
 
-        with open(generated_file, "r") as outputfile:
+        with open(generated_file, "r", encoding="utf-8") as outputfile:
 
             if run_cmd_results["code"] != 0:
                 return run_cmd_results
diff --git a/gn3/csvcmp.py b/gn3/csvcmp.py
new file mode 100644
index 0000000..8db89ca
--- /dev/null
+++ b/gn3/csvcmp.py
@@ -0,0 +1,146 @@
+"""This module contains functions for manipulating and working with csv
+texts"""
+from typing import Any, List
+
+import json
+import os
+import uuid
+from gn3.commands import run_cmd
+
+
+def extract_strain_name(csv_header, data, seek="Strain Name") -> str:
+    """Extract a strain's name given a csv header"""
+    for column, value in zip(csv_header.split(","), data.split(",")):
+        if seek in column:
+            return value
+    return ""
+
+
+def create_dirs_if_not_exists(dirs: list) -> None:
+    """Create directories from a list"""
+    for dir_ in dirs:
+        if not os.path.exists(dir_):
+            os.makedirs(dir_)
+
+
+def remove_insignificant_edits(diff_data, epsilon=0.001):
+    """Remove or ignore edits that are not within ε"""
+    __mod = []
+    if diff_data.get("Modifications"):
+        for mod in diff_data.get("Modifications"):
+            original = mod.get("Original").split(",")
+            current = mod.get("Current").split(",")
+            for i, (_x, _y) in enumerate(zip(original, current)):
+                if (
+                    _x.replace(".", "").isdigit()
+                    and _y.replace(".", "").isdigit()
+                    and abs(float(_x) - float(_y)) < epsilon
+                ):
+                    current[i] = _x
+            if not (__o := ",".join(original)) == (__c := ",".join(current)):
+                __mod.append(
+                    {
+                        "Original": __o,
+                        "Current": __c,
+                    }
+                )
+        diff_data["Modifications"] = __mod
+    return diff_data
+
+
+def clean_csv_text(csv_text: str) -> str:
+    """Remove extra white space elements in all elements of the CSV file"""
+    _csv_text = []
+    for line in csv_text.strip().split("\n"):
+        _csv_text.append(
+            ",".join([el.strip() for el in line.split(",")]))
+    return "\n".join(_csv_text)
+
+
+def csv_diff(base_csv, delta_csv, tmp_dir="/tmp") -> dict:
+    """Diff 2 csv strings"""
+    base_csv = clean_csv_text(base_csv)
+    delta_csv = clean_csv_text(delta_csv)
+    base_csv_list = base_csv.split("\n")
+    delta_csv_list = delta_csv.split("\n")
+
+    base_csv_header, delta_csv_header = "", ""
+    for i, line in enumerate(base_csv_list):
+        if line.startswith("Strain Name,Value,SE,Count"):
+            base_csv_header, delta_csv_header = line, delta_csv_list[i]
+            break
+    longest_header = max(base_csv_header, delta_csv_header)
+
+    if base_csv_header != delta_csv_header:
+        if longest_header != base_csv_header:
+            base_csv = base_csv.replace("Strain Name,Value,SE,Count",
+                                        longest_header, 1)
+        else:
+            delta_csv = delta_csv.replace(
+                "Strain Name,Value,SE,Count", longest_header, 1
+            )
+    file_name1 = os.path.join(tmp_dir, str(uuid.uuid4()))
+    file_name2 = os.path.join(tmp_dir, str(uuid.uuid4()))
+
+    with open(file_name1, "w", encoding="utf-8") as _f:
+        _l = len(longest_header.split(","))
+        _f.write(fill_csv(csv_text=base_csv, width=_l))
+    with open(file_name2, "w", encoding="utf-8") as _f:
+        _f.write(fill_csv(delta_csv, width=_l))
+
+    # Now we can run the diff!
+    _r = run_cmd(cmd=('"csvdiff '
+                      f"{file_name1} {file_name2} "
+                      '--format json"'))
+    if _r.get("code") == 0:
+        _r = json.loads(_r.get("output", ""))
+        if any(_r.values()):
+            _r["Columns"] = max(base_csv_header, delta_csv_header)
+    else:
+        _r = {}
+
+    # Clean Up!
+    if os.path.exists(file_name1):
+        os.remove(file_name1)
+    if os.path.exists(file_name2):
+        os.remove(file_name2)
+    return _r
+
+
+def fill_csv(csv_text, width, value="x"):
+    """Fill a csv text with 'value' if it's length is less than width"""
+    data = []
+    for line in csv_text.strip().split("\n"):
+        if line.startswith("Strain") or line.startswith("#"):
+            data.append(line)
+        elif line:
+            _n = line.split(",")
+            for i, val in enumerate(_n):
+                if not val.strip():
+                    _n[i] = value
+            data.append(",".join(_n + [value] * (width - len(_n))))
+    return "\n".join(data)
+
+
+def get_allowable_sampledata_headers(conn: Any) -> List:
+    """Get a list of all the case-attributes stored in the database"""
+    attributes = ["Strain Name", "Value", "SE", "Count"]
+    with conn.cursor() as cursor:
+        cursor.execute("SELECT Name from CaseAttribute")
+        attributes += [attributes[0] for attributes in
+                       cursor.fetchall()]
+    return attributes
+
+
+def extract_invalid_csv_headers(allowed_headers: List, csv_text: str) -> List:
+    """Check whether a csv text's columns contains valid headers"""
+    csv_header = []
+    for line in csv_text.split("\n"):
+        if line.startswith("Strain Name"):
+            csv_header = [_l.strip() for _l in line.split(",")]
+            break
+    invalid_headers = []
+    for header in csv_header:
+        if header not in allowed_headers:
+            invalid_headers.append(header)
+    return invalid_headers
diff --git a/gn3/data_helpers.py b/gn3/data_helpers.py
index d3f942b..268a0bb 100644
--- a/gn3/data_helpers.py
+++ b/gn3/data_helpers.py
@@ -5,9 +5,9 @@ data structures.
 
 from math import ceil
 from functools import reduce
-from typing import Any, Tuple, Sequence, Optional
+from typing import Any, Tuple, Sequence, Optional, Generator
 
-def partition_all(num: int, items: Sequence[Any]) -> Tuple[Tuple[Any, ...], ...]:
+def partition_all(num: int, items: Sequence[Any]) -> Generator:
     """
     Given a sequence `items`, return a new sequence of the same type as `items`
     with the data partitioned into sections of `n` items per partition.
@@ -19,10 +19,24 @@ def partition_all(num: int, items: Sequence[Any]) -> Tuple[Tuple[Any, ...], ...]
         return acc + ((start, start + num),)
 
     iterations = range(ceil(len(items) / num))
-    return tuple([# type: ignore[misc]
-        tuple(items[start:stop]) for start, stop # type: ignore[has-type]
-        in reduce(
-            __compute_start_stop__, iterations, tuple())])
+    for start, stop in reduce(# type: ignore[misc]
+            __compute_start_stop__, iterations, tuple()):
+        yield tuple(items[start:stop]) # type: ignore[has-type]
+
+def partition_by(partition_fn, items):
+    """
+    Given a sequence `items`, return a tuple of tuples, each of which contain
+    the values in `items` partitioned such that the first item in each internal
+    tuple, when passed to `partition_function` returns True.
+
+    This is an approximation of Clojure's `partition-by` function.
+    """
+    def __partitioner__(accumulator, item):
+        if partition_fn(item):
+            return accumulator + ((item,),)
+        return accumulator[:-1] + (accumulator[-1] + (item,),)
+
+    return reduce(__partitioner__, items, tuple())
 
 def parse_csv_line(
         line: str, delimiter: str = ",",
@@ -34,4 +48,4 @@ def parse_csv_line(
     function in GeneNetwork1.
     """
     return tuple(
-        col.strip("{} \t\n".format(quoting)) for col in line.split(delimiter))
+        col.strip(f"{quoting} \t\n") for col in line.split(delimiter))
diff --git a/gn3/db/correlations.py b/gn3/db/correlations.py
index 06b3310..3ae66ca 100644
--- a/gn3/db/correlations.py
+++ b/gn3/db/correlations.py
@@ -2,17 +2,16 @@
 This module will hold functions that are used in the (partial) correlations
 feature to access the database to retrieve data needed for computations.
 """
-
+import os
 from functools import reduce
-from typing import Any, Dict, Tuple
+from typing import Any, Dict, Tuple, Union
 
 from gn3.random import random_string
 from gn3.data_helpers import partition_all
 from gn3.db.species import translate_to_mouse_gene_id
 
-from gn3.computations.partial_correlations import correlations_of_all_tissue_traits
-
-def get_filename(target_db_name: str, conn: Any) -> str:
+def get_filename(conn: Any, target_db_name: str, text_files_dir: str) -> Union[
+        str, bool]:
     """
     Retrieve the name of the reference database file with which correlations are
     computed.
@@ -23,18 +22,23 @@ def get_filename(target_db_name: str, conn: Any) -> str:
     """
     with conn.cursor() as cursor:
         cursor.execute(
-            "SELECT Id, FullName from ProbeSetFreeze WHERE Name-%s",
-            target_db_name)
+            "SELECT Id, FullName from ProbeSetFreeze WHERE Name=%s",
+            (target_db_name,))
         result = cursor.fetchone()
         if result:
-            return "ProbeSetFreezeId_{tid}_FullName_{fname}.txt".format(
-                tid=result[0],
-                fname=result[1].replace(' ', '_').replace('/', '_'))
+            filename = (
+                f"ProbeSetFreezeId_{result[0]}_FullName_"
+                f"{result[1].replace(' ', '_').replace('/', '_')}.txt")
+            full_filename = f"{text_files_dir}/{filename}"
+            return (
+                os.path.exists(full_filename) and
+                (filename in os.listdir(text_files_dir)) and
+                full_filename)
 
-    return ""
+    return False
 
 def build_temporary_literature_table(
-        species: str, gene_id: int, return_number: int, conn: Any) -> str:
+        conn: Any, species: str, gene_id: int, return_number: int) -> str:
     """
     Build and populate a temporary table to hold the literature correlation data
     to be used in computations.
@@ -49,7 +53,7 @@ def build_temporary_literature_table(
         query = {
             "rat": "SELECT rat FROM GeneIDXRef WHERE mouse=%s",
             "human": "SELECT human FROM GeneIDXRef WHERE mouse=%d"}
-        if species in query.keys():
+        if species in query:
             cursor.execute(query[species], row[1])
             record = cursor.fetchone()
             if record:
@@ -128,7 +132,7 @@ def fetch_literature_correlations(
     GeneNetwork1.
     """
     temp_table = build_temporary_literature_table(
-        species, gene_id, return_number, conn)
+        conn, species, gene_id, return_number)
     query_fns = {
         "Geno": fetch_geno_literature_correlations,
         # "Temp": fetch_temp_literature_correlations,
@@ -156,11 +160,14 @@ def fetch_symbol_value_pair_dict(
         symbol: data_id_dict.get(symbol) for symbol in symbol_list
         if data_id_dict.get(symbol) is not None
     }
-    query = "SELECT Id, value FROM TissueProbeSetData WHERE Id IN %(data_ids)s"
+    data_ids_fields = (f"%(id{i})s" for i in range(len(data_ids.values())))
+    query = (
+        "SELECT Id, value FROM TissueProbeSetData "
+        f"WHERE Id IN ({','.join(data_ids_fields)})")
     with conn.cursor() as cursor:
         cursor.execute(
             query,
-            data_ids=tuple(data_ids.values()))
+            **{f"id{i}": did for i, did in enumerate(data_ids.values())})
         value_results = cursor.fetchall()
         return {
             key: tuple(row[1] for row in value_results if row[0] == key)
@@ -234,8 +241,10 @@ def fetch_tissue_probeset_xref_info(
                 "INNER JOIN TissueProbeSetXRef AS t ON t.Symbol = x.Symbol "
                 "AND t.Mean = x.maxmean")
             cursor.execute(
-                query, probeset_freeze_id=probeset_freeze_id,
-                symbols=tuple(gene_name_list))
+                query, {
+                    "probeset_freeze_id": probeset_freeze_id,
+                    "symbols": tuple(gene_name_list)
+                })
 
         results = cursor.fetchall()
 
@@ -268,8 +277,8 @@ def fetch_gene_symbol_tissue_value_dict_for_trait(
     return {}
 
 def build_temporary_tissue_correlations_table(
-        trait_symbol: str, probeset_freeze_id: int, method: str,
-        return_number: int, conn: Any) -> str:
+        conn: Any, trait_symbol: str, probeset_freeze_id: int, method: str,
+        return_number: int) -> str:
     """
     Build a temporary table to hold the tissue correlations data.
 
@@ -279,6 +288,16 @@ def build_temporary_tissue_correlations_table(
     # We should probably pass the `correlations_of_all_tissue_traits` function
     # as an argument to this function and get rid of the one call immediately
     # following this comment.
+    from gn3.computations.partial_correlations import (#pylint: disable=[C0415, R0401]
+        correlations_of_all_tissue_traits)
+    # This import above is necessary within the function to avoid
+    # circular-imports.
+    #
+    #
+    # This import above is indicative of convoluted code, with the computation
+    # being interwoven with the data retrieval. This needs to be changed, such
+    # that the function being imported here is no longer necessary, or have the
+    # imported function passed to this function as an argument.
     symbol_corr_dict, symbol_p_value_dict = correlations_of_all_tissue_traits(
         fetch_gene_symbol_tissue_value_dict_for_trait(
             (trait_symbol,), probeset_freeze_id, conn),
@@ -320,7 +339,7 @@ def fetch_tissue_correlations(# pylint: disable=R0913
     GeneNetwork1.
     """
     temp_table = build_temporary_tissue_correlations_table(
-        trait_symbol, probeset_freeze_id, method, return_number, conn)
+        conn, trait_symbol, probeset_freeze_id, method, return_number)
     with conn.cursor() as cursor:
         cursor.execute(
             (
@@ -379,3 +398,176 @@ def check_symbol_for_tissue_correlation(
             return True
 
     return False
+
+def fetch_sample_ids(
+        conn: Any, sample_names: Tuple[str, ...], species_name: str) -> Tuple[
+            int, ...]:
+    """
+    Given a sequence of sample names, and a species name, return the sample ids
+    that correspond to both.
+
+    This is a partial migration of the
+    `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+    GeneNetwork1.
+    """
+    samples_fields = (f"%(s{i})s" for i in range(len(sample_names)))
+    query = (
+        "SELECT Strain.Id FROM Strain, Species "
+        f"WHERE Strain.Name IN ({','.join(samples_fields)}) "
+        "AND Strain.SpeciesId=Species.Id "
+        "AND Species.name=%(species_name)s")
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            {
+                **{f"s{i}": sname for i, sname in enumerate(sample_names)},
+                "species_name": species_name
+            })
+        return tuple(row[0] for row in cursor.fetchall())
+
+def build_query_sgo_lit_corr(
+        db_type: str, temp_table: str, sample_id_columns: str,
+        joins: Tuple[str, ...]) -> Tuple[str, int]:
+    """
+    Build query for `SGO Literature Correlation` data, when querying the given
+    `temp_table` temporary table.
+
+    This is a partial migration of the
+    `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+    GeneNetwork1.
+    """
+    return (
+        (f"SELECT {db_type}.Name, {temp_table}.value, " +
+         sample_id_columns +
+         f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " +
+         f"LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId " +
+         " ".join(joins) +
+         " WHERE ProbeSet.GeneId IS NOT NULL " +
+         f"AND {temp_table}.value IS NOT NULL " +
+         f"AND {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " +
+         f"AND {db_type}Freeze.Name = %(db_name)s " +
+         f"AND {db_type}.Id = {db_type}XRef.{db_type}Id " +
+         f"ORDER BY {db_type}.Id"),
+        2)
+
+def build_query_tissue_corr(db_type, temp_table, sample_id_columns, joins):
+    """
+    Build query for `Tissue Correlation` data, when querying the given
+    `temp_table` temporary table.
+
+    This is a partial migration of the
+    `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+    GeneNetwork1.
+    """
+    return (
+        (f"SELECT {db_type}.Name, {temp_table}.Correlation, " +
+         f"{temp_table}.PValue, " +
+         sample_id_columns +
+         f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " +
+         f"LEFT JOIN {temp_table} ON {temp_table}.Symbol=ProbeSet.Symbol " +
+         " ".join(joins) +
+         " WHERE ProbeSet.Symbol IS NOT NULL " +
+         f"AND {temp_table}.Correlation IS NOT NULL " +
+         f"AND {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " +
+         f"AND {db_type}Freeze.Name = %(db_name)s " +
+         f"AND {db_type}.Id = {db_type}XRef.{db_type}Id "
+         f"ORDER BY {db_type}.Id"),
+        3)
+
+def fetch_all_database_data(# pylint: disable=[R0913, R0914]
+        conn: Any, species: str, gene_id: int, trait_symbol: str,
+        samples: Tuple[str, ...], dataset: dict, method: str,
+        return_number: int, probeset_freeze_id: int) -> Tuple[
+            Tuple[float], int]:
+    """
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+    GeneNetwork1.
+    """
+    db_type = dataset["dataset_type"]
+    db_name = dataset["dataset_name"]
+    def __build_query__(sample_ids, temp_table):
+        sample_id_columns = ", ".join(f"T{smpl}.value" for smpl in sample_ids)
+        if db_type == "Publish":
+            joins = tuple(
+                (f"LEFT JOIN PublishData AS T{item} "
+                 f"ON T{item}.Id = PublishXRef.DataId "
+                 f"AND T{item}.StrainId = %(T{item}_sample_id)s")
+                for item in sample_ids)
+            return (
+                ("SELECT PublishXRef.Id, " +
+                 sample_id_columns +
+                 " FROM (PublishXRef, PublishFreeze) " +
+                 " ".join(joins) +
+                 " WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId "
+                 "AND PublishFreeze.Name = %(db_name)s"),
+                1)
+        if temp_table is not None:
+            joins = tuple(
+                (f"LEFT JOIN {db_type}Data AS T{item} "
+                 f"ON T{item}.Id = {db_type}XRef.DataId "
+                 f"AND T{item}.StrainId=%(T{item}_sample_id)s")
+                for item in sample_ids)
+            if method.lower() == "sgo literature correlation":
+                return build_query_sgo_lit_corr(
+                    sample_ids, temp_table, sample_id_columns, joins)
+            if method.lower() in (
+                    "tissue correlation, pearson's r",
+                    "tissue correlation, spearman's rho"):
+                return build_query_tissue_corr(
+                    sample_ids, temp_table, sample_id_columns, joins)
+        joins = tuple(
+            (f"LEFT JOIN {db_type}Data AS T{item} "
+             f"ON T{item}.Id = {db_type}XRef.DataId "
+             f"AND T{item}.StrainId = %(T{item}_sample_id)s")
+            for item in sample_ids)
+        return (
+            (
+                f"SELECT {db_type}.Name, " +
+                sample_id_columns +
+                f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " +
+                " ".join(joins) +
+                f" WHERE {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " +
+                f"AND {db_type}Freeze.Name = %(db_name)s " +
+                f"AND {db_type}.Id = {db_type}XRef.{db_type}Id " +
+                f"ORDER BY {db_type}.Id"),
+            1)
+
+    def __fetch_data__(sample_ids, temp_table):
+        query, data_start_pos = __build_query__(sample_ids, temp_table)
+        with conn.cursor() as cursor:
+            cursor.execute(
+                query,
+                {"db_name": db_name,
+                 **{f"T{item}_sample_id": item for item in sample_ids}})
+            return (cursor.fetchall(), data_start_pos)
+
+    sample_ids = tuple(
+        # look into graduating this to an argument and removing the `samples`
+        # and `species` argument: function currying and compositions might help
+        # with this
+        f"{sample_id}" for sample_id in
+        fetch_sample_ids(conn, samples, species))
+
+    temp_table = None
+    if gene_id and db_type == "probeset":
+        if method.lower() == "sgo literature correlation":
+            temp_table = build_temporary_literature_table(
+                conn, species, gene_id, return_number)
+        if method.lower() in (
+                "tissue correlation, pearson's r",
+                "tissue correlation, spearman's rho"):
+            temp_table = build_temporary_tissue_correlations_table(
+                conn, trait_symbol, probeset_freeze_id, method, return_number)
+
+    trait_database = tuple(
+        item for sublist in
+        (__fetch_data__(ssample_ids, temp_table)
+         for ssample_ids in partition_all(25, sample_ids))
+        for item in sublist)
+
+    if temp_table:
+        with conn.cursor() as cursor:
+            cursor.execute(f"DROP TEMPORARY TABLE {temp_table}")
+
+    return (trait_database[0], trait_database[1])
diff --git a/gn3/db/datasets.py b/gn3/db/datasets.py
index 6c328f5..b19db53 100644
--- a/gn3/db/datasets.py
+++ b/gn3/db/datasets.py
@@ -1,7 +1,11 @@
 """
 This module contains functions relating to specific trait dataset manipulation
 """
-from typing import Any
+import re
+from string import Template
+from typing import Any, Dict, List, Optional
+from SPARQLWrapper import JSON, SPARQLWrapper
+from gn3.settings import SPARQL_ENDPOINT
 
 def retrieve_probeset_trait_dataset_name(
         threshold: int, name: str, connection: Any):
@@ -22,10 +26,13 @@ def retrieve_probeset_trait_dataset_name(
                 "threshold": threshold,
                 "name": name
             })
-        return dict(zip(
-            ["dataset_id", "dataset_name", "dataset_fullname",
-             "dataset_shortname", "dataset_datascale"],
-            cursor.fetchone()))
+        res = cursor.fetchone()
+        if res:
+            return dict(zip(
+                ["dataset_id", "dataset_name", "dataset_fullname",
+                 "dataset_shortname", "dataset_datascale"],
+                res))
+        return {"dataset_id": None, "dataset_name": name, "dataset_fullname": name}
 
 def retrieve_publish_trait_dataset_name(
         threshold: int, name: str, connection: Any):
@@ -75,33 +82,8 @@ def retrieve_geno_trait_dataset_name(
              "dataset_shortname"],
             cursor.fetchone()))
 
-def retrieve_temp_trait_dataset_name(
-        threshold: int, name: str, connection: Any):
-    """
-    Get the ID, DataScale and various name formats for a `Temp` trait.
-    """
-    query = (
-        "SELECT Id, Name, FullName, ShortName "
-        "FROM TempFreeze "
-        "WHERE "
-        "public > %(threshold)s "
-        "AND "
-        "(Name = %(name)s OR FullName = %(name)s OR ShortName = %(name)s)")
-    with connection.cursor() as cursor:
-        cursor.execute(
-            query,
-            {
-                "threshold": threshold,
-                "name": name
-            })
-        return dict(zip(
-            ["dataset_id", "dataset_name", "dataset_fullname",
-             "dataset_shortname"],
-            cursor.fetchone()))
-
 def retrieve_dataset_name(
-        trait_type: str, threshold: int, trait_name: str, dataset_name: str,
-        conn: Any):
+        trait_type: str, threshold: int, dataset_name: str, conn: Any):
     """
     Retrieve the name of a trait given the trait's name
 
@@ -113,9 +95,7 @@ def retrieve_dataset_name(
         "ProbeSet": retrieve_probeset_trait_dataset_name,
         "Publish": retrieve_publish_trait_dataset_name,
         "Geno": retrieve_geno_trait_dataset_name,
-        "Temp": retrieve_temp_trait_dataset_name}
-    if trait_type == "Temp":
-        return retrieve_temp_trait_dataset_name(threshold, trait_name, conn)
+        "Temp": lambda threshold, dataset_name, conn: {}}
     return fn_map[trait_type](threshold, dataset_name, conn)
 
 
@@ -203,7 +183,6 @@ def retrieve_temp_trait_dataset():
     """
     Retrieve the dataset that relates to `Temp` traits
     """
-    # pylint: disable=[C0330]
     return {
         "searchfield": ["name", "description"],
         "disfield": ["name", "description"],
@@ -217,7 +196,6 @@ def retrieve_geno_trait_dataset():
     """
     Retrieve the dataset that relates to `Geno` traits
     """
-    # pylint: disable=[C0330]
     return {
         "searchfield": ["name", "chr"],
 	"disfield": ["name", "chr", "mb", "source2", "sequence"],
@@ -228,7 +206,6 @@ def retrieve_publish_trait_dataset():
     """
     Retrieve the dataset that relates to `Publish` traits
     """
-    # pylint: disable=[C0330]
     return {
         "searchfield": [
             "name", "post_publication_description", "abstract", "title",
@@ -247,7 +224,6 @@ def retrieve_probeset_trait_dataset():
     """
     Retrieve the dataset that relates to `ProbeSet` traits
     """
-    # pylint: disable=[C0330]
     return {
         "searchfield": [
             "name", "description", "probe_target_description", "symbol",
@@ -278,8 +254,7 @@ def retrieve_trait_dataset(trait_type, trait, threshold, conn):
         "dataset_id": None,
         "dataset_name": trait["db"]["dataset_name"],
         **retrieve_dataset_name(
-            trait_type, threshold, trait["trait_name"],
-            trait["db"]["dataset_name"], conn)
+            trait_type, threshold, trait["db"]["dataset_name"], conn)
     }
     group = retrieve_group_fields(
         trait_type, trait["trait_name"], dataset_name_info, conn)
@@ -289,3 +264,100 @@ def retrieve_trait_dataset(trait_type, trait, threshold, conn):
         **dataset_fns[trait_type](),
         **group
     }
+
+def sparql_query(query: str) -> List[Dict[str, Any]]:
+    """Run a SPARQL query and return the bound variables."""
+    sparql = SPARQLWrapper(SPARQL_ENDPOINT)
+    sparql.setQuery(query)
+    sparql.setReturnFormat(JSON)
+    return sparql.queryAndConvert()['results']['bindings']
+
+def dataset_metadata(accession_id: str) -> Optional[Dict[str, Any]]:
+    """Return info about dataset with ACCESSION_ID."""
+    # Check accession_id to protect against query injection.
+    # TODO: This function doesn't yet return the names of the actual dataset files.
+    pattern = re.compile(r'GN\d+', re.ASCII)
+    if not pattern.fullmatch(accession_id):
+        return None
+    # KLUDGE: We split the SPARQL query because virtuoso is very slow on a
+    # single large query.
+    queries = ["""
+PREFIX gn: <http://genenetwork.org/>
+SELECT ?name ?dataset_group ?status ?title ?geo_series
+WHERE {
+  ?dataset gn:accessionId "$accession_id" ;
+           rdf:type gn:dataset ;
+           gn:name ?name .
+  OPTIONAL { ?dataset gn:datasetGroup ?dataset_group } .
+  # FIXME: gn:datasetStatus should not be optional. But, some records don't
+  # have it.
+  OPTIONAL { ?dataset gn:datasetStatus ?status } .
+  OPTIONAL { ?dataset gn:title ?title } .
+  OPTIONAL { ?dataset gn:geoSeries ?geo_series } .
+}
+""",
+               """
+PREFIX gn: <http://genenetwork.org/>
+SELECT ?platform_name ?normalization_name ?species_name ?inbred_set_name ?tissue_name
+WHERE {
+  ?dataset gn:accessionId "$accession_id" ;
+           rdf:type gn:dataset ;
+           gn:normalization / gn:name ?normalization_name ;
+           gn:datasetOfSpecies / gn:menuName ?species_name ;
+           gn:datasetOfInbredSet / gn:name ?inbred_set_name .
+  OPTIONAL { ?dataset gn:datasetOfTissue / gn:name ?tissue_name } .
+  OPTIONAL { ?dataset gn:datasetOfPlatform / gn:name ?platform_name } .
+}
+""",
+               """
+PREFIX gn: <http://genenetwork.org/>
+SELECT ?specifics ?summary ?about_cases ?about_tissue ?about_platform
+       ?about_data_processing ?notes ?experiment_design ?contributors
+       ?citation ?acknowledgment
+WHERE {
+  ?dataset gn:accessionId "$accession_id" ;
+           rdf:type gn:dataset .
+  OPTIONAL { ?dataset gn:specifics ?specifics . }
+  OPTIONAL { ?dataset gn:summary ?summary . }
+  OPTIONAL { ?dataset gn:aboutCases ?about_cases . }
+  OPTIONAL { ?dataset gn:aboutTissue ?about_tissue . }
+  OPTIONAL { ?dataset gn:aboutPlatform ?about_platform . }
+  OPTIONAL { ?dataset gn:aboutDataProcessing ?about_data_processing . }
+  OPTIONAL { ?dataset gn:notes ?notes . }
+  OPTIONAL { ?dataset gn:experimentDesign ?experiment_design . }
+  OPTIONAL { ?dataset gn:contributors ?contributors . }
+  OPTIONAL { ?dataset gn:citation ?citation . }
+  OPTIONAL { ?dataset gn:acknowledgment ?acknowledgment . }
+}
+"""]
+    result: Dict[str, Any] = {'accession_id': accession_id,
+                              'investigator': {}}
+    query_result = {}
+    for query in queries:
+        if sparql_result := sparql_query(Template(query).substitute(accession_id=accession_id)):
+            query_result.update(sparql_result[0])
+        else:
+            return None
+    for key, value in query_result.items():
+        result[key] = value['value']
+    investigator_query_result = sparql_query(Template("""
+PREFIX gn: <http://genenetwork.org/>
+SELECT ?name ?address ?city ?state ?zip ?phone ?email ?country ?homepage
+WHERE {
+  ?dataset gn:accessionId "$accession_id" ;
+           rdf:type gn:dataset ;
+           gn:datasetOfInvestigator ?investigator .
+  OPTIONAL { ?investigator foaf:name ?name . }
+  OPTIONAL { ?investigator gn:address ?address . }
+  OPTIONAL { ?investigator gn:city ?city . }
+  OPTIONAL { ?investigator gn:state ?state . }
+  OPTIONAL { ?investigator gn:zipCode ?zip . }
+  OPTIONAL { ?investigator foaf:phone ?phone . }
+  OPTIONAL { ?investigator foaf:mbox ?email . }
+  OPTIONAL { ?investigator gn:country ?country . }
+  OPTIONAL { ?investigator foaf:homepage ?homepage . }
+}
+""").substitute(accession_id=accession_id))[0]
+    for key, value in investigator_query_result.items():
+        result['investigator'][key] = value['value']
+    return result
diff --git a/gn3/db/genotypes.py b/gn3/db/genotypes.py
index 8f18cac..6f867c7 100644
--- a/gn3/db/genotypes.py
+++ b/gn3/db/genotypes.py
@@ -2,7 +2,6 @@
 
 import os
 import gzip
-from typing import Union, TextIO
 
 from gn3.settings import GENOTYPE_FILES
 
@@ -10,7 +9,7 @@ def build_genotype_file(
         geno_name: str, base_dir: str = GENOTYPE_FILES,
         extension: str = "geno"):
     """Build the absolute path for the genotype file."""
-    return "{}/{}.{}".format(os.path.abspath(base_dir), geno_name, extension)
+    return f"{os.path.abspath(base_dir)}/{geno_name}.{extension}"
 
 def load_genotype_samples(genotype_filename: str, file_type: str = "geno"):
     """
@@ -44,22 +43,23 @@ def __load_genotype_samples_from_geno(genotype_filename: str):
 
     Loads samples from '.geno' files.
     """
-    gzipped_filename = "{}.gz".format(genotype_filename)
+    def __remove_comments_and_empty_lines__(rows):
+        return(
+            line for line in rows
+            if line and not line.startswith(("#", "@")))
+
+    gzipped_filename = f"{genotype_filename}.gz"
     if os.path.isfile(gzipped_filename):
-        genofile: Union[TextIO, gzip.GzipFile] = gzip.open(gzipped_filename)
+        with gzip.open(gzipped_filename) as gz_genofile:
+            rows = __remove_comments_and_empty_lines__(gz_genofile.readlines())
     else:
-        genofile = open(genotype_filename)
-
-    for row in genofile:
-        line = row.strip()
-        if (not line) or (line.startswith(("#", "@"))): # type: ignore[arg-type]
-            continue
-        break
+        with open(genotype_filename, encoding="utf8") as genofile:
+            rows = __remove_comments_and_empty_lines__(genofile.readlines())
 
-    headers = line.split("\t") # type: ignore[arg-type]
+    headers = next(rows).split() # type: ignore[arg-type]
     if headers[3] == "Mb":
-        return headers[4:]
-    return headers[3:]
+        return tuple(headers[4:])
+    return tuple(headers[3:])
 
 def __load_genotype_samples_from_plink(genotype_filename: str):
     """
@@ -67,8 +67,8 @@ def __load_genotype_samples_from_plink(genotype_filename: str):
 
     Loads samples from '.plink' files.
     """
-    genofile = open(genotype_filename)
-    return [line.split(" ")[1] for line in genofile]
+    with open(genotype_filename, encoding="utf8") as genofile:
+        return tuple(line.split()[1] for line in genofile)
 
 def parse_genotype_labels(lines: list):
     """
@@ -129,7 +129,7 @@ def parse_genotype_marker(line: str, geno_obj: dict, parlist: tuple):
 
     alleles = marker_row[start_pos:]
     genotype = tuple(
-        (geno_table[allele] if allele in geno_table.keys() else "U")
+        (geno_table[allele] if allele in geno_table else "U")
         for allele in alleles)
     if len(parlist) > 0:
         genotype = (-1, 1) + genotype
@@ -164,7 +164,7 @@ def parse_genotype_file(filename: str, parlist: tuple = tuple()):
     """
     Parse the provided genotype file into a usable pytho3 data structure.
     """
-    with open(filename, "r") as infile:
+    with open(filename, "r", encoding="utf8") as infile:
         contents = infile.readlines()
 
     lines = tuple(line for line in contents if
@@ -175,10 +175,10 @@ def parse_genotype_file(filename: str, parlist: tuple = tuple()):
     data_lines = tuple(line for line in lines if not line.startswith("@"))
     header = parse_genotype_header(data_lines[0], parlist)
     geno_obj = dict(labels + header)
-    markers = tuple(
-        [parse_genotype_marker(line, geno_obj, parlist)
-         for line in data_lines[1:]])
+    markers = (
+        parse_genotype_marker(line, geno_obj, parlist)
+        for line in data_lines[1:])
     chromosomes = tuple(
         dict(chromosome) for chromosome in
-        build_genotype_chromosomes(geno_obj, markers))
+        build_genotype_chromosomes(geno_obj, tuple(markers)))
     return {**geno_obj, "chromosomes": chromosomes}
diff --git a/gn3/db/partial_correlations.py b/gn3/db/partial_correlations.py
new file mode 100644
index 0000000..72dbf1a
--- /dev/null
+++ b/gn3/db/partial_correlations.py
@@ -0,0 +1,791 @@
+"""
+This module contains the code and queries for fetching data from the database,
+that relates to partial correlations.
+
+It is intended to replace the functions in `gn3.db.traits` and `gn3.db.datasets`
+modules with functions that fetch the data enmasse, rather than one at a time.
+
+This module is part of the optimisation effort for the partial correlations.
+"""
+
+from functools import reduce, partial
+from typing import Any, Dict, Tuple, Union, Sequence
+
+from MySQLdb.cursors import DictCursor
+
+from gn3.function_helpers import  compose
+from gn3.db.traits import (
+    build_trait_name,
+    with_samplelist_data_setup,
+    without_samplelist_data_setup)
+
+def organise_trait_data_by_trait(
+        traits_data_rows: Tuple[Dict[str, Any], ...]) -> Dict[
+            str, Dict[str, Any]]:
+    """
+    Organise the trait data items by their trait names.
+    """
+    def __organise__(acc, row):
+        trait_name = row["trait_name"]
+        return {
+            **acc,
+            trait_name: acc.get(trait_name, tuple()) + ({
+                key: val for key, val in row.items() if key != "trait_name"},)
+        }
+    if traits_data_rows:
+        return reduce(__organise__, traits_data_rows, {})
+    return {}
+
+def temp_traits_data(conn, traits):
+    """
+    Retrieve trait data for `Temp` traits.
+    """
+    query = (
+        "SELECT "
+        "Temp.Name AS trait_name, Strain.Name AS sample_name, TempData.value, "
+        "TempData.SE AS se_error, TempData.NStrain AS nstrain, "
+        "TempData.Id AS id "
+        "FROM TempData, Temp, Strain "
+        "WHERE TempData.StrainId = Strain.Id "
+        "AND TempData.Id = Temp.DataId "
+        f"AND Temp.name IN ({', '.join(['%s'] * len(traits))}) "
+        "ORDER BY Strain.Name")
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(
+            query,
+            tuple(trait["trait_name"] for trait in traits))
+        return organise_trait_data_by_trait(cursor.fetchall())
+    return {}
+
+def publish_traits_data(conn, traits):
+    """
+    Retrieve trait data for `Publish` traits.
+    """
+    dataset_ids = tuple(set(
+        trait["db"]["dataset_id"] for trait in traits
+        if trait["db"].get("dataset_id") is not None))
+    query = (
+        "SELECT "
+        "PublishXRef.Id AS trait_name, Strain.Name AS sample_name, "
+        "PublishData.value, PublishSE.error AS se_error, "
+        "NStrain.count AS nstrain, PublishData.Id AS id "
+        "FROM (PublishData, Strain, PublishXRef, PublishFreeze) "
+        "LEFT JOIN PublishSE "
+        "ON (PublishSE.DataId = PublishData.Id "
+        "AND PublishSE.StrainId = PublishData.StrainId) "
+        "LEFT JOIN NStrain "
+        "ON (NStrain.DataId = PublishData.Id "
+        "AND NStrain.StrainId = PublishData.StrainId) "
+        "WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId "
+        "AND PublishData.Id = PublishXRef.DataId "
+        f"AND PublishXRef.Id  IN ({', '.join(['%s'] * len(traits))}) "
+        "AND PublishFreeze.Id IN "
+        f"({', '.join(['%s'] * len(dataset_ids))}) "
+        "AND PublishData.StrainId = Strain.Id "
+        "ORDER BY Strain.Name")
+    if len(dataset_ids) > 0:
+        with conn.cursor(cursorclass=DictCursor) as cursor:
+            cursor.execute(
+                query,
+                tuple(trait["trait_name"] for trait in traits) +
+                tuple(dataset_ids))
+            return organise_trait_data_by_trait(cursor.fetchall())
+    return {}
+
+def cellid_traits_data(conn, traits):
+    """
+    Retrieve trait data for `Probe Data` types.
+    """
+    cellids = tuple(trait["cellid"] for trait in traits)
+    dataset_names = set(trait["db"]["dataset_name"] for trait in traits)
+    query = (
+        "SELECT "
+        "ProbeSet.Name AS trait_name, Strain.Name AS sample_name, "
+        "ProbeData.value, ProbeSE.error AS se_error, ProbeData.Id AS id "
+        "FROM (ProbeData, ProbeFreeze, ProbeSetFreeze, ProbeXRef, Strain, "
+        "Probe, ProbeSet) "
+        "LEFT JOIN ProbeSE "
+        "ON (ProbeSE.DataId = ProbeData.Id "
+        "AND ProbeSE.StrainId = ProbeData.StrainId) "
+        f"WHERE Probe.Name IN ({', '.join(['%s'] * len(cellids))}) "
+        f"AND ProbeSet.Name IN ({', '.join(['%s'] * len(traits))}) "
+        "AND Probe.ProbeSetId = ProbeSet.Id "
+        "AND ProbeXRef.ProbeId = Probe.Id "
+        "AND ProbeXRef.ProbeFreezeId = ProbeFreeze.Id "
+        "AND ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id "
+        f"AND ProbeSetFreeze.Name IN ({', '.join(['%s'] * len(dataset_names))}) "
+        "AND ProbeXRef.DataId = ProbeData.Id "
+        "AND ProbeData.StrainId = Strain.Id "
+        "ORDER BY Strain.Name")
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(
+            query,
+            cellids + tuple(trait["trait_name"] for trait in traits) +
+            tuple(dataset_names))
+        return organise_trait_data_by_trait(cursor.fetchall())
+    return {}
+
+def probeset_traits_data(conn, traits):
+    """
+    Retrieve trait data for `ProbeSet` traits.
+    """
+    dataset_names = set(trait["db"]["dataset_name"] for trait in traits)
+    query = (
+        "SELECT ProbeSet.Name AS trait_name, Strain.Name AS sample_name, "
+        "ProbeSetData.value, ProbeSetSE.error AS se_error, "
+        "ProbeSetData.Id AS id "
+        "FROM (ProbeSetData, ProbeSetFreeze, Strain, ProbeSet, ProbeSetXRef) "
+        "LEFT JOIN ProbeSetSE ON "
+        "(ProbeSetSE.DataId = ProbeSetData.Id "
+        "AND ProbeSetSE.StrainId = ProbeSetData.StrainId) "
+        f"WHERE ProbeSet.Name IN ({', '.join(['%s'] * len(traits))})"
+        "AND ProbeSetXRef.ProbeSetId = ProbeSet.Id "
+        "AND ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id "
+        f"AND ProbeSetFreeze.Name IN ({', '.join(['%s']*len(dataset_names))}) "
+        "AND ProbeSetXRef.DataId = ProbeSetData.Id "
+        "AND ProbeSetData.StrainId = Strain.Id "
+        "ORDER BY Strain.Name")
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(
+            query,
+            tuple(trait["trait_name"] for trait in traits) +
+            tuple(dataset_names))
+        return organise_trait_data_by_trait(cursor.fetchall())
+    return {}
+
+def species_ids(conn, traits):
+    """
+    Retrieve the IDS of the related species from the given list of traits.
+    """
+    groups = tuple(set(
+        trait["db"]["group"] for trait in traits
+        if trait["db"].get("group") is not None))
+    query = (
+        "SELECT Name AS `group`, SpeciesId AS species_id "
+        "FROM InbredSet "
+        f"WHERE Name IN ({', '.join(['%s'] * len(groups))})")
+    if len(groups) > 0:
+        with conn.cursor(cursorclass=DictCursor) as cursor:
+            cursor.execute(query, groups)
+            return tuple(row for row in cursor.fetchall())
+    return tuple()
+
+def geno_traits_data(conn, traits):
+    """
+    Retrieve trait data for `Geno` traits.
+    """
+    sp_ids = tuple(item["species_id"] for item in species_ids(conn, traits))
+    dataset_names = set(trait["db"]["dataset_name"] for trait in traits)
+    query = (
+        "SELECT Geno.Name AS trait_name, Strain.Name AS sample_name, "
+        "GenoData.value, GenoSE.error AS se_error, GenoData.Id AS id "
+        "FROM (GenoData, GenoFreeze, Strain, Geno, GenoXRef) "
+        "LEFT JOIN GenoSE ON "
+        "(GenoSE.DataId = GenoData.Id AND GenoSE.StrainId = GenoData.StrainId) "
+        f"WHERE Geno.SpeciesId IN ({', '.join(['%s'] * len(sp_ids))}) "
+        f"AND Geno.Name IN ({', '.join(['%s'] * len(traits))}) "
+        "AND GenoXRef.GenoId = Geno.Id "
+        "AND GenoXRef.GenoFreezeId = GenoFreeze.Id "
+        f"AND GenoFreeze.Name IN ({', '.join(['%s'] * len(dataset_names))}) "
+        "AND GenoXRef.DataId = GenoData.Id "
+        "AND GenoData.StrainId = Strain.Id "
+        "ORDER BY Strain.Name")
+    if len(sp_ids) > 0 and len(dataset_names) > 0:
+        with conn.cursor(cursorclass=DictCursor) as cursor:
+            cursor.execute(
+                query,
+                sp_ids +
+                tuple(trait["trait_name"] for trait in traits) +
+                tuple(dataset_names))
+            return organise_trait_data_by_trait(cursor.fetchall())
+    return {}
+
+def traits_data(
+        conn: Any, traits: Tuple[Dict[str, Any], ...],
+        samplelist: Tuple[str, ...] = tuple()) -> Dict[str, Dict[str, Any]]:
+    """
+    Retrieve trait data for multiple `traits`
+
+    This is a rework of the `gn3.db.traits.retrieve_trait_data` function.
+    """
+    def __organise__(acc, trait):
+        dataset_type = trait["db"]["dataset_type"]
+        if dataset_type == "Temp":
+            return {**acc, "Temp": acc.get("Temp", tuple()) + (trait,)}
+        if dataset_type == "Publish":
+            return {**acc, "Publish": acc.get("Publish", tuple()) + (trait,)}
+        if trait.get("cellid"):
+            return {**acc, "cellid": acc.get("cellid", tuple()) + (trait,)}
+        if dataset_type == "ProbeSet":
+            return {**acc, "ProbeSet": acc.get("ProbeSet", tuple()) + (trait,)}
+        return {**acc, "Geno": acc.get("Geno", tuple()) + (trait,)}
+
+    def __setup_samplelist__(data):
+        if samplelist:
+            return tuple(
+                item for item in
+                map(with_samplelist_data_setup(samplelist), data)
+                if item is not None)
+        return tuple(
+            item for item in
+            map(without_samplelist_data_setup(), data)
+            if item is not None)
+
+    def __process_results__(results):
+        flattened = reduce(lambda acc, res: {**acc, **res}, results)
+        return {
+            trait_name: {"data": dict(map(
+                lambda item: (
+                    item["sample_name"],
+                    {
+                        key: val for key, val in item.items()
+                        if item != "sample_name"
+                    }),
+                __setup_samplelist__(data)))}
+            for trait_name, data in flattened.items()}
+
+    traits_data_fns = {
+        "Temp": temp_traits_data,
+        "Publish": publish_traits_data,
+        "cellid": cellid_traits_data,
+        "ProbeSet": probeset_traits_data,
+        "Geno": geno_traits_data
+    }
+    return __process_results__(tuple(# type: ignore[var-annotated]
+        traits_data_fns[key](conn, vals)
+        for key, vals in reduce(__organise__, traits, {}).items()))
+
+def merge_traits_and_info(traits, info_results):
+    """
+    Utility to merge trait info retrieved from the database with the given traits.
+    """
+    if info_results:
+        results = {
+            str(trait["trait_name"]): trait for trait in info_results
+        }
+        return tuple(
+            {
+                **trait,
+                **results.get(trait["trait_name"], {}),
+                "haveinfo": bool(results.get(trait["trait_name"]))
+            } for trait in traits)
+    return tuple({**trait, "haveinfo": False} for trait in traits)
+
+def publish_traits_info(
+        conn: Any, traits: Tuple[Dict[str, Any], ...]) -> Tuple[
+            Dict[str, Any], ...]:
+    """
+    Retrieve trait information for type `Publish` traits.
+
+    This is a rework of `gn3.db.traits.retrieve_publish_trait_info` function:
+    this one fetches multiple items in a single query, unlike the original that
+    fetches one item per query.
+    """
+    trait_dataset_ids = set(
+        trait["db"]["dataset_id"] for trait in traits
+        if trait["db"].get("dataset_id") is not None)
+    columns = (
+        "PublishXRef.Id, Publication.PubMed_ID, "
+        "Phenotype.Pre_publication_description, "
+        "Phenotype.Post_publication_description, "
+        "Phenotype.Original_description, "
+        "Phenotype.Pre_publication_abbreviation, "
+        "Phenotype.Post_publication_abbreviation, "
+        "Phenotype.Lab_code, Phenotype.Submitter, Phenotype.Owner, "
+        "Phenotype.Authorized_Users, "
+        "CAST(Publication.Authors AS BINARY) AS Authors, Publication.Title, "
+        "Publication.Abstract, Publication.Journal, Publication.Volume, "
+        "Publication.Pages, Publication.Month, Publication.Year, "
+        "PublishXRef.Sequence, Phenotype.Units, PublishXRef.comments")
+    query = (
+        "SELECT "
+        f"PublishXRef.Id AS trait_name, {columns} "
+        "FROM "
+        "PublishXRef, Publication, Phenotype, PublishFreeze "
+        "WHERE "
+        f"PublishXRef.Id IN ({', '.join(['%s'] * len(traits))}) "
+        "AND Phenotype.Id = PublishXRef.PhenotypeId "
+        "AND Publication.Id = PublishXRef.PublicationId "
+        "AND PublishXRef.InbredSetId = PublishFreeze.InbredSetId "
+        "AND PublishFreeze.Id IN "
+        f"({', '.join(['%s'] * len(trait_dataset_ids))})")
+    if trait_dataset_ids:
+        with conn.cursor(cursorclass=DictCursor) as cursor:
+            cursor.execute(
+                query,
+                (
+                    tuple(trait["trait_name"] for trait in traits) +
+                    tuple(trait_dataset_ids)))
+            return merge_traits_and_info(traits, cursor.fetchall())
+    return tuple({**trait, "haveinfo": False} for trait in traits)
+
+def probeset_traits_info(
+        conn: Any, traits: Tuple[Dict[str, Any], ...]):
+    """
+    Retrieve information for the probeset traits
+    """
+    dataset_names = set(trait["db"]["dataset_name"] for trait in traits)
+    columns = ", ".join(
+        [f"ProbeSet.{x}" for x in
+         ("name", "symbol", "description", "probe_target_description", "chr",
+          "mb", "alias", "geneid", "genbankid", "unigeneid", "omim",
+          "refseq_transcriptid", "blatseq", "targetseq", "chipid", "comments",
+          "strand_probe", "strand_gene", "probe_set_target_region", "proteinid",
+          "probe_set_specificity", "probe_set_blat_score",
+          "probe_set_blat_mb_start", "probe_set_blat_mb_end",
+          "probe_set_strand", "probe_set_note_by_rw", "flag")])
+    query = (
+        f"SELECT ProbeSet.Name AS trait_name, {columns} "
+        "FROM ProbeSet INNER JOIN ProbeSetXRef "
+        "ON ProbeSetXRef.ProbeSetId = ProbeSet.Id "
+        "INNER JOIN ProbeSetFreeze "
+        "ON ProbeSetFreeze.Id = ProbeSetXRef.ProbeSetFreezeId "
+        "WHERE ProbeSetFreeze.Name IN "
+        f"({', '.join(['%s'] * len(dataset_names))}) "
+        f"AND ProbeSet.Name IN ({', '.join(['%s'] * len(traits))})")
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(
+            query,
+            tuple(dataset_names) + tuple(
+                trait["trait_name"] for trait in traits))
+        return merge_traits_and_info(traits, cursor.fetchall())
+    return tuple({**trait, "haveinfo": False} for trait in traits)
+
+def geno_traits_info(
+        conn: Any, traits: Tuple[Dict[str, Any], ...]):
+    """
+    Retrieve trait information for type `Geno` traits.
+
+    This is a rework of the `gn3.db.traits.retrieve_geno_trait_info` function.
+    """
+    dataset_names = set(trait["db"]["dataset_name"] for trait in traits)
+    columns = ", ".join([
+        f"Geno.{x}" for x in ("name", "chr", "mb", "source2", "sequence")])
+    query = (
+        "SELECT "
+        f"Geno.Name AS trait_name, {columns} "
+        "FROM "
+        "Geno INNER JOIN GenoXRef ON GenoXRef.GenoId = Geno.Id "
+        "INNER JOIN GenoFreeze ON GenoFreeze.Id = GenoXRef.GenoFreezeId "
+        f"WHERE GenoFreeze.Name IN ({', '.join(['%s'] * len(dataset_names))}) "
+        f"AND Geno.Name IN ({', '.join(['%s'] * len(traits))})")
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(
+            query,
+            tuple(dataset_names) + tuple(
+                trait["trait_name"] for trait in traits))
+        return merge_traits_and_info(traits, cursor.fetchall())
+    return tuple({**trait, "haveinfo": False} for trait in traits)
+
+def temp_traits_info(
+        conn: Any, traits: Tuple[Dict[str, Any], ...]):
+    """
+    Retrieve trait information for type `Temp` traits.
+
+    A rework of the `gn3.db.traits.retrieve_temp_trait_info` function.
+    """
+    query = (
+        "SELECT Name as trait_name, name, description FROM Temp "
+        f"WHERE Name IN ({', '.join(['%s'] * len(traits))})")
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(
+            query,
+            tuple(trait["trait_name"] for trait in traits))
+        return merge_traits_and_info(traits, cursor.fetchall())
+    return tuple({**trait, "haveinfo": False} for trait in traits)
+
+def publish_datasets_names(
+        conn: Any, threshold: int, dataset_names: Tuple[str, ...]):
+    """
+    Get the ID, DataScale and various name formats for a `Publish` trait.
+
+    Rework of the `gn3.db.datasets.retrieve_publish_trait_dataset_name`
+    """
+    query = (
+        "SELECT DISTINCT "
+        "Id AS dataset_id, Name AS dataset_name, FullName AS dataset_fullname, "
+        "ShortName AS dataset_shortname "
+        "FROM PublishFreeze "
+        "WHERE "
+        "public > %s "
+        "AND "
+        "(Name IN ({names}) OR FullName IN ({names}) OR ShortName IN ({names}))")
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(
+            query.format(names=", ".join(["%s"] * len(dataset_names))),
+            (threshold,) +(dataset_names * 3))
+        return {ds["dataset_name"]: ds for ds in cursor.fetchall()}
+    return {}
+
+def set_bxd(group_info):
+    """Set the group value to BXD if it is 'BXD300'."""
+    return {
+        **group_info,
+        "group": (
+            "BXD" if group_info.get("Name") == "BXD300"
+            else group_info.get("Name", "")),
+        "groupid": group_info["Id"]
+    }
+
+def organise_groups_by_dataset(
+        group_rows: Union[Sequence[Dict[str, Any]], None]) -> Dict[str, Any]:
+    """Utility: Organise given groups by their datasets."""
+    if group_rows:
+        return {
+            row["dataset_name"]: set_bxd({
+                key: val for key, val in row.items()
+                if key != "dataset_name"
+            }) for row in group_rows
+        }
+    return {}
+
+def publish_datasets_groups(conn: Any, dataset_names: Tuple[str]):
+    """
+    Retrieve the Group, and GroupID values for various Publish trait types.
+
+    Rework of `gn3.db.datasets.retrieve_publish_group_fields` function.
+    """
+    query = (
+        "SELECT PublishFreeze.Name AS dataset_name, InbredSet.Name, "
+        "InbredSet.Id "
+        "FROM InbredSet, PublishFreeze "
+        "WHERE PublishFreeze.InbredSetId = InbredSet.Id "
+        f"AND PublishFreeze.Name IN ({', '.join(['%s'] * len(dataset_names))})")
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(query, tuple(dataset_names))
+        return organise_groups_by_dataset(cursor.fetchall())
+    return {}
+
+def publish_traits_datasets(conn: Any, threshold, traits: Tuple[Dict]):
+    """Retrieve datasets for 'Publish' traits."""
+    dataset_names = tuple(set(trait["db"]["dataset_name"] for trait in traits))
+    dataset_names_info = publish_datasets_names(conn, threshold, dataset_names)
+    dataset_groups = publish_datasets_groups(conn, dataset_names) # type: ignore[arg-type]
+    return tuple({
+        **trait,
+        "db": {
+            **trait["db"],
+            **dataset_names_info.get(trait["db"]["dataset_name"], {}),
+            **dataset_groups.get(trait["db"]["dataset_name"], {})
+        }
+    } for trait in traits)
+
+def probeset_datasets_names(conn: Any, threshold: int, dataset_names: Tuple[str, ...]):
+    """
+    Get the ID, DataScale and various name formats for a `ProbeSet` trait.
+    """
+    query = (
+        "SELECT Id AS dataset_id, Name AS dataset_name, "
+        "FullName AS dataset_fullname, ShortName AS dataset_shortname, "
+        "DataScale AS dataset_datascale "
+        "FROM ProbeSetFreeze "
+        "WHERE "
+        "public > %s "
+        "AND "
+        "(Name IN ({names}) OR FullName IN ({names}) OR ShortName IN ({names}))")
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(
+            query.format(names=", ".join(["%s"] * len(dataset_names))),
+            (threshold,) +(dataset_names * 3))
+        return {ds["dataset_name"]: ds for ds in cursor.fetchall()}
+    return {}
+
+def probeset_datasets_groups(conn, dataset_names):
+    """
+    Retrieve the Group, and GroupID values for various ProbeSet trait types.
+    """
+    query = (
+        "SELECT ProbeSetFreeze.Name AS dataset_name, InbredSet.Name, "
+        "InbredSet.Id "
+        "FROM InbredSet, ProbeSetFreeze, ProbeFreeze "
+        "WHERE ProbeFreeze.InbredSetId = InbredSet.Id "
+        "AND ProbeFreeze.Id = ProbeSetFreeze.ProbeFreezeId "
+        f"AND ProbeSetFreeze.Name IN ({', '.join(['%s'] * len(dataset_names))})")
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(query, tuple(dataset_names))
+        return organise_groups_by_dataset(cursor.fetchall())
+    return {}
+
+def probeset_traits_datasets(conn: Any, threshold, traits: Tuple[Dict]):
+    """Retrive datasets for 'ProbeSet' traits."""
+    dataset_names = tuple(set(trait["db"]["dataset_name"] for trait in traits))
+    dataset_names_info = probeset_datasets_names(conn, threshold, dataset_names)
+    dataset_groups = probeset_datasets_groups(conn, dataset_names)
+    return tuple({
+        **trait,
+        "db": {
+            **trait["db"],
+            **dataset_names_info.get(trait["db"]["dataset_name"], {}),
+            **dataset_groups.get(trait["db"]["dataset_name"], {})
+        }
+    } for trait in traits)
+
+def geno_datasets_names(conn, threshold, dataset_names):
+    """
+    Get the ID, DataScale and various name formats for a `Geno` trait.
+    """
+    query = (
+        "SELECT Id AS dataset_id, Name AS dataset_name, "
+        "FullName AS dataset_fullname, ShortName AS dataset_short_name "
+        "FROM GenoFreeze "
+        "WHERE "
+        "public > %s "
+        "AND "
+        "(Name IN ({names}) OR FullName IN ({names}) OR ShortName IN ({names}))")
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(
+            query.format(names=", ".join(["%s"] * len(dataset_names))),
+            (threshold,) + (tuple(dataset_names) * 3))
+        return {ds["dataset_name"]: ds for ds in cursor.fetchall()}
+    return {}
+
+def geno_datasets_groups(conn, dataset_names):
+    """
+    Retrieve the Group, and GroupID values for various Geno trait types.
+    """
+    query = (
+        "SELECT GenoFreeze.Name AS dataset_name, InbredSet.Name, InbredSet.Id "
+        "FROM InbredSet, GenoFreeze "
+        "WHERE GenoFreeze.InbredSetId = InbredSet.Id "
+        f"AND GenoFreeze.Name IN ({', '.join(['%s'] * len(dataset_names))})")
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(query, tuple(dataset_names))
+        return organise_groups_by_dataset(cursor.fetchall())
+    return {}
+
+def geno_traits_datasets(conn: Any, threshold: int, traits: Tuple[Dict]):
+    """Retrieve datasets for 'Geno' traits."""
+    dataset_names = tuple(set(trait["db"]["dataset_name"] for trait in traits))
+    dataset_names_info = geno_datasets_names(conn, threshold, dataset_names)
+    dataset_groups = geno_datasets_groups(conn, dataset_names)
+    return tuple({
+        **trait,
+        "db": {
+            **trait["db"],
+            **dataset_names_info.get(trait["db"]["dataset_name"], {}),
+            **dataset_groups.get(trait["db"]["dataset_name"], {})
+        }
+    } for trait in traits)
+
+def temp_datasets_groups(conn, dataset_names):
+    """
+    Retrieve the Group, and GroupID values for `Temp` trait types.
+    """
+    query = (
+        "SELECT Temp.Name AS dataset_name, InbredSet.Name, InbredSet.Id "
+        "FROM InbredSet, Temp "
+        "WHERE Temp.InbredSetId = InbredSet.Id "
+        f"AND Temp.Name IN ({', '.join(['%s'] * len(dataset_names))})")
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(query, tuple(dataset_names))
+        return organise_groups_by_dataset(cursor.fetchall())
+    return {}
+
+def temp_traits_datasets(conn: Any, threshold: int, traits: Tuple[Dict]): #pylint: disable=[W0613]
+    """
+    Retrieve datasets for 'Temp' traits.
+    """
+    dataset_names = tuple(set(trait["db"]["dataset_name"] for trait in traits))
+    dataset_groups = temp_datasets_groups(conn, dataset_names)
+    return tuple({
+        **trait,
+        "db": {
+            **trait["db"],
+            **dataset_groups.get(trait["db"]["dataset_name"], {})
+        }
+    } for trait in traits)
+
+def set_confidential(traits):
+    """
+    Set the confidential field for traits of type `Publish`.
+    """
+    return tuple({
+        **trait,
+        "confidential": (
+            True if (# pylint: disable=[R1719]
+                trait.get("pre_publication_description")
+                and not trait.get("pubmed_id"))
+            else False)
+    } for trait in traits)
+
+def query_qtl_info(conn, query, traits, dataset_ids):
+    """
+    Utility: Run the `query` to get the QTL information for the given `traits`.
+    """
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(
+            query,
+            tuple(trait["trait_name"] for trait in traits) + dataset_ids)
+        results = {
+            row["trait_name"]: {
+                key: val for key, val in row if key != "trait_name"
+            } for row in cursor.fetchall()
+        }
+        return tuple(
+            {**trait, **results.get(trait["trait_name"], {})}
+            for trait in traits)
+
+def set_publish_qtl_info(conn, qtl, traits):
+    """
+    Load extra QTL information for `Publish` traits
+    """
+    if qtl:
+        dataset_ids = set(trait["db"]["dataset_id"] for trait in traits)
+        query = (
+            "SELECT PublishXRef.Id AS trait_name, PublishXRef.Locus, "
+            "PublishXRef.LRS, PublishXRef.additive "
+            "FROM PublishXRef, PublishFreeze "
+            f"WHERE PublishXRef.Id IN ({', '.join(['%s'] * len(traits))}) "
+            "AND PublishXRef.InbredSetId = PublishFreeze.InbredSetId "
+            f"AND PublishFreeze.Id IN ({', '.join(['%s'] * len(dataset_ids))})")
+        return query_qtl_info(conn, query, traits, tuple(dataset_ids))
+    return traits
+
+def set_probeset_qtl_info(conn, qtl, traits):
+    """
+    Load extra QTL information for `ProbeSet` traits
+    """
+    if qtl:
+        dataset_ids = tuple(set(trait["db"]["dataset_id"] for trait in traits))
+        query = (
+            "SELECT ProbeSet.Name AS trait_name, ProbeSetXRef.Locus, "
+            "ProbeSetXRef.LRS, ProbeSetXRef.pValue, "
+            "ProbeSetXRef.mean, ProbeSetXRef.additive "
+            "FROM ProbeSetXRef, ProbeSet "
+            "WHERE ProbeSetXRef.ProbeSetId = ProbeSet.Id "
+            f"AND ProbeSet.Name IN ({', '.join(['%s'] * len(traits))}) "
+            "AND ProbeSetXRef.ProbeSetFreezeId IN "
+            f"({', '.join(['%s'] * len(dataset_ids))})")
+        return query_qtl_info(conn, query, traits, tuple(dataset_ids))
+    return traits
+
+def set_sequence(conn, traits):
+    """
+    Retrieve 'ProbeSet' traits sequence information
+    """
+    dataset_names = set(trait["db"]["dataset_name"] for trait in traits)
+    query = (
+        "SELECT ProbeSet.Name as trait_name, ProbeSet.BlatSeq "
+        "FROM ProbeSet, ProbeSetFreeze, ProbeSetXRef "
+        "WHERE ProbeSet.Id=ProbeSetXRef.ProbeSetId "
+        "AND ProbeSetFreeze.Id = ProbeSetXRef.ProbeSetFreezeId "
+        f"AND ProbeSet.Name IN ({', '.join(['%s'] * len(traits))}) "
+        f"AND ProbeSetFreeze.Name IN ({', '.join(['%s'] * len(dataset_names))})")
+    with conn.cursor(cursorclass=DictCursor) as cursor:
+        cursor.execute(
+            query,
+            (tuple(trait["trait_name"] for trait in traits) +
+             tuple(dataset_names)))
+        results = {
+            row["trait_name"]: {
+                key: val for key, val in row.items() if key != "trait_name"
+            } for row in cursor.fetchall()
+        }
+        return tuple(
+            {
+                **trait,
+                **results.get(trait["trait_name"], {})
+            } for trait in traits)
+    return traits
+
+def set_homologene_id(conn, traits):
+    """
+    Retrieve and set the 'homologene_id' values for ProbeSet traits.
+    """
+    geneids = set(trait.get("geneid") for trait in traits if trait["haveinfo"])
+    groups = set(
+        trait["db"].get("group") for trait in traits if trait["haveinfo"])
+    if len(geneids) > 1 and len(groups) > 1:
+        query = (
+            "SELECT InbredSet.Name AS `group`, Homologene.GeneId AS geneid, "
+            "HomologeneId "
+            "FROM Homologene, Species, InbredSet "
+            f"WHERE Homologene.GeneId IN ({', '.join(['%s'] * len(geneids))}) "
+            f"AND InbredSet.Name IN ({', '.join(['%s'] * len(groups))}) "
+            "AND InbredSet.SpeciesId = Species.Id "
+            "AND Species.TaxonomyId = Homologene.TaxonomyId")
+        with conn.cursor(cursorclass=DictCursor) as cursor:
+            cursor.execute(query, (tuple(geneids) + tuple(groups)))
+            results = {
+                row["group"]: {
+                    row["geneid"]: {
+                        key: val for key, val in row.items()
+                        if key not in ("group", "geneid")
+                    }
+                } for row in cursor.fetchall()
+            }
+            return tuple(
+                {
+                    **trait, **results.get(
+                        trait["db"]["group"], {}).get(trait["geneid"], {})
+                } for trait in traits)
+    return traits
+
+def traits_datasets(conn, threshold, traits):
+    """
+    Retrieve datasets for various `traits`.
+    """
+    dataset_fns = {
+        "Temp": temp_traits_datasets,
+        "Geno": geno_traits_datasets,
+        "Publish": publish_traits_datasets,
+        "ProbeSet": probeset_traits_datasets
+    }
+    def __organise_by_type__(acc, trait):
+        dataset_type = trait["db"]["dataset_type"]
+        return {
+            **acc,
+            dataset_type: acc.get(dataset_type, tuple()) + (trait,)
+        }
+    with_datasets = {
+        trait["trait_fullname"]: trait for trait in (
+            item for sublist in (
+                dataset_fns[dtype](conn, threshold, ttraits)
+                for dtype, ttraits
+                in reduce(__organise_by_type__, traits, {}).items())
+            for item in sublist)}
+    return tuple(
+        {**trait, **with_datasets.get(trait["trait_fullname"], {})}
+        for trait in traits)
+
+def traits_info(
+        conn: Any, threshold: int, traits_fullnames: Tuple[str, ...],
+        qtl=None) -> Tuple[Dict[str, Any], ...]:
+    """
+    Retrieve basic trait information for multiple `traits`.
+
+    This is a rework of the `gn3.db.traits.retrieve_trait_info` function.
+    """
+    def __organise_by_dataset_type__(acc, trait):
+        dataset_type = trait["db"]["dataset_type"]
+        return {
+            **acc,
+            dataset_type: acc.get(dataset_type, tuple()) + (trait,)
+        }
+    traits = traits_datasets(
+        conn, threshold,
+        tuple(build_trait_name(trait) for trait in traits_fullnames))
+    traits_fns = {
+        "Publish": compose(
+            set_confidential, partial(set_publish_qtl_info, conn, qtl),
+            partial(publish_traits_info, conn),
+            partial(publish_traits_datasets, conn, threshold)),
+        "ProbeSet": compose(
+            partial(set_sequence, conn),
+            partial(set_probeset_qtl_info, conn, qtl),
+            partial(set_homologene_id, conn),
+            partial(probeset_traits_info, conn),
+            partial(probeset_traits_datasets, conn, threshold)),
+        "Geno": compose(
+            partial(geno_traits_info, conn),
+            partial(geno_traits_datasets, conn, threshold)),
+        "Temp": compose(
+            partial(temp_traits_info, conn),
+            partial(temp_traits_datasets, conn, threshold))
+    }
+    return tuple(
+        trait for sublist in (# type: ignore[var-annotated]
+            traits_fns[dataset_type](traits)
+            for dataset_type, traits
+            in reduce(__organise_by_dataset_type__, traits, {}).items())
+        for trait in sublist)
diff --git a/gn3/db/sample_data.py b/gn3/db/sample_data.py
new file mode 100644
index 0000000..f73954f
--- /dev/null
+++ b/gn3/db/sample_data.py
@@ -0,0 +1,365 @@
+"""Module containing functions that work with sample data"""
+from typing import Any, Tuple, Dict, Callable
+
+import MySQLdb
+
+from gn3.csvcmp import extract_strain_name
+
+
+_MAP = {
+    "PublishData": ("StrainId", "Id", "value"),
+    "PublishSE": ("StrainId", "DataId", "error"),
+    "NStrain": ("StrainId", "DataId", "count"),
+}
+
+
+def __extract_actions(original_data: str,
+                      updated_data: str,
+                      csv_header: str) -> Dict:
+    """Return a dictionary containing elements that need to be deleted, inserted,
+or updated.
+
+    """
+    result: Dict[str, Any] = {
+        "delete": {"data": [], "csv_header": []},
+        "insert": {"data": [], "csv_header": []},
+        "update": {"data": [], "csv_header": []},
+    }
+    strain_name = ""
+    for _o, _u, _h in zip(original_data.strip().split(","),
+                          updated_data.strip().split(","),
+                          csv_header.strip().split(",")):
+        if _h == "Strain Name":
+            strain_name = _o
+        if _o == _u:  # No change
+            continue
+        if _o and _u == "x":  # Deletion
+            result["delete"]["data"].append(_o)
+            result["delete"]["csv_header"].append(_h)
+        elif _o == "x" and _u:  # Insert
+            result["insert"]["data"].append(_u)
+            result["insert"]["csv_header"].append(_h)
+        elif _o and _u:  # Update
+            result["update"]["data"].append(_u)
+            result["update"]["csv_header"].append(_h)
+    for key, val in result.items():
+        if not val["data"]:
+            result[key] = None
+        else:
+            result[key]["data"] = (f"{strain_name}," +
+                                   ",".join(result[key]["data"]))
+            result[key]["csv_header"] = ("Strain Name," +
+                                         ",".join(result[key]["csv_header"]))
+    return result
+
+
+def get_trait_csv_sample_data(conn: Any,
+                              trait_name: int, phenotype_id: int) -> str:
+    """Fetch a trait and return it as a csv string"""
+    __query = ("SELECT concat(st.Name, ',', ifnull(pd.value, 'x'), ',', "
+               "ifnull(ps.error, 'x'), ',', ifnull(ns.count, 'x')) as 'Data' "
+               ",ifnull(ca.Name, 'x') as 'CaseAttr', "
+               "ifnull(cxref.value, 'x') as 'Value' "
+               "FROM PublishFreeze pf "
+               "JOIN PublishXRef px ON px.InbredSetId = pf.InbredSetId "
+               "JOIN PublishData pd ON pd.Id = px.DataId "
+               "JOIN Strain st ON pd.StrainId = st.Id "
+               "LEFT JOIN PublishSE ps ON ps.DataId = pd.Id "
+               "AND ps.StrainId = pd.StrainId "
+               "LEFT JOIN NStrain ns ON ns.DataId = pd.Id "
+               "AND ns.StrainId = pd.StrainId "
+               "LEFT JOIN CaseAttributeXRefNew cxref ON "
+               "(cxref.InbredSetId = px.InbredSetId AND "
+               "cxref.StrainId = st.Id) "
+               "LEFT JOIN CaseAttribute ca ON ca.Id = cxref.CaseAttributeId "
+               "WHERE px.Id = %s AND px.PhenotypeId = %s ORDER BY st.Name")
+    case_attr_columns = set()
+    csv_data: Dict = {}
+    with conn.cursor() as cursor:
+        cursor.execute(__query, (trait_name, phenotype_id))
+        for data in cursor.fetchall():
+            if data[1] == "x":
+                csv_data[data[0]] = None
+            else:
+                sample, case_attr, value = data[0], data[1], data[2]
+                if not csv_data.get(sample):
+                    csv_data[sample] = {}
+                csv_data[sample][case_attr] = None if value == "x" else value
+                case_attr_columns.add(case_attr)
+        if not case_attr_columns:
+            return ("Strain Name,Value,SE,Count\n" +
+                    "\n".join(csv_data.keys()))
+        columns = sorted(case_attr_columns)
+        csv = ("Strain Name,Value,SE,Count," +
+               ",".join(columns) + "\n")
+        for key, value in csv_data.items():
+            if not value:
+                csv += (key + (len(case_attr_columns) * ",x") + "\n")
+            else:
+                vals = [str(value.get(column, "x")) for column in columns]
+                csv += (key + "," + ",".join(vals) + "\n")
+        return csv
+    return "No Sample Data Found"
+
+
+def get_sample_data_ids(conn: Any, publishxref_id: int,
+                        phenotype_id: int,
+                        strain_name: str) -> Tuple:
+    """Get the strain_id, publishdata_id and inbredset_id for a given strain"""
+    strain_id, publishdata_id, inbredset_id = None, None, None
+    with conn.cursor() as cursor:
+        cursor.execute("SELECT st.id, pd.Id, pf.InbredSetId "
+                       "FROM PublishData pd "
+                       "JOIN Strain st ON pd.StrainId = st.Id "
+                       "JOIN PublishXRef px ON px.DataId = pd.Id "
+                       "JOIN PublishFreeze pf ON pf.InbredSetId "
+                       "= px.InbredSetId WHERE px.Id = %s "
+                       "AND px.PhenotypeId = %s AND st.Name = %s",
+                       (publishxref_id, phenotype_id, strain_name))
+        if _result := cursor.fetchone():
+            strain_id, publishdata_id, inbredset_id = _result
+        if not all([strain_id, publishdata_id, inbredset_id]):
+            # Applies for data to be inserted:
+            cursor.execute("SELECT DataId, InbredSetId FROM PublishXRef "
+                           "WHERE Id = %s AND PhenotypeId = %s",
+                           (publishxref_id, phenotype_id))
+            publishdata_id, inbredset_id = cursor.fetchone()
+            cursor.execute("SELECT Id FROM Strain WHERE Name = %s",
+                           (strain_name,))
+            strain_id = cursor.fetchone()[0]
+    return (strain_id, publishdata_id, inbredset_id)
+
+
+# pylint: disable=[R0913, R0914]
+def update_sample_data(conn: Any,
+                       trait_name: str,
+                       original_data: str,
+                       updated_data: str,
+                       csv_header: str,
+                       phenotype_id: int) -> int:
+    """Given the right parameters, update sample-data from the relevant
+    table."""
+    def __update_data(conn, table, value):
+        if value and value != "x":
+            with conn.cursor() as cursor:
+                sub_query = (" = %s AND ".join(_MAP.get(table)[:2]) +
+                             " = %s")
+                _val = _MAP.get(table)[-1]
+                cursor.execute((f"UPDATE {table} SET {_val} = %s "
+                                f"WHERE {sub_query}"),
+                               (value, strain_id, data_id))
+                return cursor.rowcount
+        return 0
+
+    def __update_case_attribute(conn, value, strain_id,
+                                case_attr, inbredset_id):
+        if value != "x":
+            with conn.cursor() as cursor:
+                cursor.execute(
+                    "UPDATE CaseAttributeXRefNew "
+                    "SET Value = %s "
+                    "WHERE StrainId = %s AND CaseAttributeId = "
+                    "(SELECT CaseAttributeId FROM "
+                    "CaseAttribute WHERE Name = %s) "
+                    "AND InbredSetId = %s",
+                    (value, strain_id, case_attr, inbredset_id))
+                return cursor.rowcount
+        return 0
+
+    strain_id, data_id, inbredset_id = get_sample_data_ids(
+        conn=conn, publishxref_id=int(trait_name),
+        phenotype_id=phenotype_id,
+        strain_name=extract_strain_name(csv_header, original_data))
+
+    none_case_attrs: Dict[str, Callable] = {
+        "Strain Name": lambda x: 0,
+        "Value": lambda x: __update_data(conn, "PublishData", x),
+        "SE": lambda x: __update_data(conn, "PublishSE", x),
+        "Count": lambda x: __update_data(conn, "NStrain", x),
+    }
+    count = 0
+    try:
+        __actions = __extract_actions(original_data=original_data,
+                                      updated_data=updated_data,
+                                      csv_header=csv_header)
+        if __actions.get("update"):
+            _csv_header = __actions["update"]["csv_header"]
+            _data = __actions["update"]["data"]
+            # pylint: disable=[E1101]
+            for header, value in zip(_csv_header.split(","),
+                                     _data.split(",")):
+                header = header.strip()
+                value = value.strip()
+                if header in none_case_attrs:
+                    count += none_case_attrs[header](value)
+                else:
+                    count += __update_case_attribute(
+                        conn=conn,
+                        value=none_case_attrs[header](value),
+                        strain_id=strain_id,
+                        case_attr=header,
+                        inbredset_id=inbredset_id)
+        if __actions.get("delete"):
+            _rowcount = delete_sample_data(
+                conn=conn,
+                trait_name=trait_name,
+                data=__actions["delete"]["data"],
+                csv_header=__actions["delete"]["csv_header"],
+                phenotype_id=phenotype_id)
+            if _rowcount:
+                count += 1
+        if __actions.get("insert"):
+            _rowcount = insert_sample_data(
+                conn=conn,
+                trait_name=trait_name,
+                data=__actions["insert"]["data"],
+                csv_header=__actions["insert"]["csv_header"],
+                phenotype_id=phenotype_id)
+            if _rowcount:
+                count += 1
+    except Exception as _e:
+        conn.rollback()
+        raise MySQLdb.Error(_e) from _e
+    conn.commit()
+    return count
+
+
+def delete_sample_data(conn: Any,
+                       trait_name: str,
+                       data: str,
+                       csv_header: str,
+                       phenotype_id: int) -> int:
+    """Given the right parameters, delete sample-data from the relevant
+    tables."""
+    def __delete_data(conn, table):
+        sub_query = (" = %s AND ".join(_MAP.get(table)[:2]) + " = %s")
+        with conn.cursor() as cursor:
+            cursor.execute((f"DELETE FROM {table} "
+                            f"WHERE {sub_query}"),
+                           (strain_id, data_id))
+            return cursor.rowcount
+
+    def __delete_case_attribute(conn, strain_id,
+                                case_attr, inbredset_id):
+        with conn.cursor() as cursor:
+            cursor.execute(
+                "DELETE FROM CaseAttributeXRefNew "
+                "WHERE StrainId = %s AND CaseAttributeId = "
+                "(SELECT CaseAttributeId FROM "
+                "CaseAttribute WHERE Name = %s) "
+                "AND InbredSetId = %s",
+                (strain_id, case_attr, inbredset_id))
+            return cursor.rowcount
+
+    strain_id, data_id, inbredset_id = get_sample_data_ids(
+        conn=conn, publishxref_id=int(trait_name),
+        phenotype_id=phenotype_id,
+        strain_name=extract_strain_name(csv_header, data))
+
+    none_case_attrs: Dict[str, Any] = {
+        "Strain Name": lambda: 0,
+        "Value": lambda: __delete_data(conn, "PublishData"),
+        "SE": lambda: __delete_data(conn, "PublishSE"),
+        "Count": lambda: __delete_data(conn, "NStrain"),
+    }
+    count = 0
+
+    try:
+        for header in csv_header.split(","):
+            header = header.strip()
+            if header in none_case_attrs:
+                count += none_case_attrs[header]()
+            else:
+                count += __delete_case_attribute(
+                    conn=conn,
+                    strain_id=strain_id,
+                    case_attr=header,
+                    inbredset_id=inbredset_id)
+    except Exception as _e:
+        conn.rollback()
+        raise MySQLdb.Error(_e) from _e
+    conn.commit()
+    return count
+
+
+# pylint: disable=[R0913, R0914]
+def insert_sample_data(conn: Any,
+                       trait_name: str,
+                       data: str,
+                       csv_header: str,
+                       phenotype_id: int) -> int:
+    """Given the right parameters, insert sample-data to the relevant table.
+
+    """
+    def __insert_data(conn, table, value):
+        if value and value != "x":
+            with conn.cursor() as cursor:
+                columns = ", ".join(_MAP.get(table))
+                cursor.execute((f"INSERT INTO {table} "
+                                f"({columns}) "
+                                f"VALUES (%s, %s, %s)"),
+                               (strain_id, data_id, value))
+                return cursor.rowcount
+        return 0
+
+    def __insert_case_attribute(conn, case_attr, value):
+        if value != "x":
+            with conn.cursor() as cursor:
+                cursor.execute("SELECT Id FROM "
+                               "CaseAttribute WHERE Name = %s",
+                               (case_attr,))
+                if case_attr_id := cursor.fetchone():
+                    case_attr_id = case_attr_id[0]
+                cursor.execute("SELECT StrainId FROM "
+                               "CaseAttributeXRefNew WHERE StrainId = %s "
+                               "AND CaseAttributeId = %s "
+                               "AND InbredSetId = %s",
+                               (strain_id, case_attr_id, inbredset_id))
+                if (not cursor.fetchone()) and case_attr_id:
+                    cursor.execute(
+                        "INSERT INTO CaseAttributeXRefNew "
+                        "(StrainId, CaseAttributeId, Value, InbredSetId) "
+                        "VALUES (%s, %s, %s, %s)",
+                        (strain_id, case_attr_id, value, inbredset_id))
+                    row_count = cursor.rowcount
+                    return row_count
+        return 0
+
+    strain_id, data_id, inbredset_id = get_sample_data_ids(
+        conn=conn, publishxref_id=int(trait_name),
+        phenotype_id=phenotype_id,
+        strain_name=extract_strain_name(csv_header, data))
+
+    none_case_attrs: Dict[str, Any] = {
+        "Strain Name": lambda _: 0,
+        "Value": lambda x: __insert_data(conn, "PublishData", x),
+        "SE": lambda x: __insert_data(conn, "PublishSE", x),
+        "Count": lambda x: __insert_data(conn, "NStrain", x),
+    }
+
+    try:
+        count = 0
+
+        # Check if the data already exists:
+        with conn.cursor() as cursor:
+            cursor.execute(
+                "SELECT Id FROM PublishData where Id = %s "
+                "AND StrainId = %s",
+                (data_id, strain_id))
+        if cursor.fetchone():  # Data already exists
+            return count
+
+        for header, value in zip(csv_header.split(","), data.split(",")):
+            header = header.strip()
+            value = value.strip()
+            if header in none_case_attrs:
+                count += none_case_attrs[header](value)
+            else:
+                count += __insert_case_attribute(
+                    conn=conn,
+                    case_attr=header,
+                    value=value)
+        return count
+    except Exception as _e:
+        conn.rollback()
+        raise MySQLdb.Error(_e) from _e
diff --git a/gn3/db/species.py b/gn3/db/species.py
index 702a9a8..5b8e096 100644
--- a/gn3/db/species.py
+++ b/gn3/db/species.py
@@ -57,3 +57,20 @@ def translate_to_mouse_gene_id(species: str, geneid: int, conn: Any) -> int:
             return translated_gene_id[0]
 
     return 0 # default if all else fails
+
+def species_name(conn: Any, group: str) -> str:
+    """
+    Retrieve the name of the species, given the group (RISet).
+
+    This is a migration of the
+    `web.webqtl.dbFunction.webqtlDatabaseFunction.retrieveSpecies` function in
+    GeneNetwork1.
+    """
+    with conn.cursor() as cursor:
+        cursor.execute(
+            ("SELECT Species.Name FROM Species, InbredSet "
+             "WHERE InbredSet.Name = %(group_name)s "
+             "AND InbredSet.SpeciesId = Species.Id"),
+            {"group_name": group})
+        return cursor.fetchone()[0]
+    return None
diff --git a/gn3/db/traits.py b/gn3/db/traits.py
index 1c6aaa7..f722e24 100644
--- a/gn3/db/traits.py
+++ b/gn3/db/traits.py
@@ -1,7 +1,7 @@
 """This class contains functions relating to trait data manipulation"""
 import os
 from functools import reduce
-from typing import Any, Dict, Union, Sequence
+from typing import Any, Dict, Sequence
 
 from gn3.settings import TMPDIR
 from gn3.random import random_string
@@ -67,7 +67,7 @@ def export_trait_data(
                 return accumulator + (trait_data["data"][sample]["ndata"], )
             if dtype == "all":
                 return accumulator + __export_all_types(trait_data["data"], sample)
-            raise KeyError("Type `%s` is incorrect" % dtype)
+            raise KeyError(f"Type `{dtype}` is incorrect")
         if var_exists and n_exists:
             return accumulator + (None, None, None)
         if var_exists or n_exists:
@@ -76,80 +76,6 @@ def export_trait_data(
 
     return reduce(__exporter, samplelist, tuple())
 
-def get_trait_csv_sample_data(conn: Any,
-                              trait_name: int, phenotype_id: int):
-    """Fetch a trait and return it as a csv string"""
-    sql = ("SELECT DISTINCT Strain.Id, PublishData.Id, Strain.Name, "
-           "PublishData.value, "
-           "PublishSE.error, NStrain.count FROM "
-           "(PublishData, Strain, PublishXRef, PublishFreeze) "
-           "LEFT JOIN PublishSE ON "
-           "(PublishSE.DataId = PublishData.Id AND "
-           "PublishSE.StrainId = PublishData.StrainId) "
-           "LEFT JOIN NStrain ON (NStrain.DataId = PublishData.Id AND "
-           "NStrain.StrainId = PublishData.StrainId) WHERE "
-           "PublishXRef.InbredSetId = PublishFreeze.InbredSetId AND "
-           "PublishData.Id = PublishXRef.DataId AND "
-           "PublishXRef.Id = %s AND PublishXRef.PhenotypeId = %s "
-           "AND PublishData.StrainId = Strain.Id Order BY Strain.Name")
-    csv_data = ["Strain Id,Strain Name,Value,SE,Count"]
-    publishdata_id = ""
-    with conn.cursor() as cursor:
-        cursor.execute(sql, (trait_name, phenotype_id,))
-        for record in cursor.fetchall():
-            (strain_id, publishdata_id,
-             strain_name, value, error, count) = record
-            csv_data.append(
-                ",".join([str(val) if val else "x"
-                          for val in (strain_id, strain_name,
-                                      value, error, count)]))
-    return f"# Publish Data Id: {publishdata_id}\n\n" + "\n".join(csv_data)
-
-
-def update_sample_data(conn: Any,
-                       strain_name: str,
-                       strain_id: int,
-                       publish_data_id: int,
-                       value: Union[int, float, str],
-                       error: Union[int, float, str],
-                       count: Union[int, str]):
-    """Given the right parameters, update sample-data from the relevant
-    table."""
-    # pylint: disable=[R0913, R0914, C0103]
-    STRAIN_ID_SQL: str = "UPDATE Strain SET Name = %s WHERE Id = %s"
-    PUBLISH_DATA_SQL: str = ("UPDATE PublishData SET value = %s "
-                             "WHERE StrainId = %s AND Id = %s")
-    PUBLISH_SE_SQL: str = ("UPDATE PublishSE SET error = %s "
-                           "WHERE StrainId = %s AND DataId = %s")
-    N_STRAIN_SQL: str = ("UPDATE NStrain SET count = %s "
-                         "WHERE StrainId = %s AND DataId = %s")
-
-    updated_strains: int = 0
-    updated_published_data: int = 0
-    updated_se_data: int = 0
-    updated_n_strains: int = 0
-
-    with conn.cursor() as cursor:
-        # Update the Strains table
-        cursor.execute(STRAIN_ID_SQL, (strain_name, strain_id))
-        updated_strains = cursor.rowcount
-        # Update the PublishData table
-        cursor.execute(PUBLISH_DATA_SQL,
-                       (None if value == "x" else value,
-                        strain_id, publish_data_id))
-        updated_published_data = cursor.rowcount
-        # Update the PublishSE table
-        cursor.execute(PUBLISH_SE_SQL,
-                       (None if error == "x" else error,
-                        strain_id, publish_data_id))
-        updated_se_data = cursor.rowcount
-        # Update the NStrain table
-        cursor.execute(N_STRAIN_SQL,
-                       (None if count == "x" else count,
-                        strain_id, publish_data_id))
-        updated_n_strains = cursor.rowcount
-    return (updated_strains, updated_published_data,
-            updated_se_data, updated_n_strains)
 
 def retrieve_publish_trait_info(trait_data_source: Dict[str, Any], conn: Any):
     """Retrieve trait information for type `Publish` traits.
@@ -177,24 +103,24 @@ def retrieve_publish_trait_info(trait_data_source: Dict[str, Any], conn: Any):
         "PublishXRef.comments")
     query = (
         "SELECT "
-        "{columns} "
+        f"{columns} "
         "FROM "
-        "PublishXRef, Publication, Phenotype, PublishFreeze "
+        "PublishXRef, Publication, Phenotype "
         "WHERE "
         "PublishXRef.Id = %(trait_name)s AND "
         "Phenotype.Id = PublishXRef.PhenotypeId AND "
         "Publication.Id = PublishXRef.PublicationId AND "
-        "PublishXRef.InbredSetId = PublishFreeze.InbredSetId AND "
-        "PublishFreeze.Id =%(trait_dataset_id)s").format(columns=columns)
+        "PublishXRef.InbredSetId = %(trait_dataset_id)s")
     with conn.cursor() as cursor:
         cursor.execute(
             query,
             {
-                k:v for k, v in trait_data_source.items()
+                k: v for k, v in trait_data_source.items()
                 if k in ["trait_name", "trait_dataset_id"]
             })
         return dict(zip([k.lower() for k in keys], cursor.fetchone()))
 
+
 def set_confidential_field(trait_type, trait_info):
     """Post processing function for 'Publish' trait types.
 
@@ -207,6 +133,7 @@ def set_confidential_field(trait_type, trait_info):
                 and not trait_info.get("pubmed_id", None)) else 0}
     return trait_info
 
+
 def retrieve_probeset_trait_info(trait_data_source: Dict[str, Any], conn: Any):
     """Retrieve trait information for type `ProbeSet` traits.
 
@@ -219,67 +146,68 @@ def retrieve_probeset_trait_info(trait_data_source: Dict[str, Any], conn: Any):
         "probe_set_specificity", "probe_set_blat_score",
         "probe_set_blat_mb_start", "probe_set_blat_mb_end", "probe_set_strand",
         "probe_set_note_by_rw", "flag")
+    columns = (f"ProbeSet.{x}" for x in keys)
     query = (
-        "SELECT "
-        "{columns} "
+        f"SELECT {', '.join(columns)} "
         "FROM "
         "ProbeSet, ProbeSetFreeze, ProbeSetXRef "
         "WHERE "
         "ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id AND "
         "ProbeSetXRef.ProbeSetId = ProbeSet.Id AND "
         "ProbeSetFreeze.Name = %(trait_dataset_name)s AND "
-        "ProbeSet.Name = %(trait_name)s").format(
-            columns=", ".join(["ProbeSet.{}".format(x) for x in keys]))
+        "ProbeSet.Name = %(trait_name)s")
     with conn.cursor() as cursor:
         cursor.execute(
             query,
             {
-                k:v for k, v in trait_data_source.items()
+                k: v for k, v in trait_data_source.items()
                 if k in ["trait_name", "trait_dataset_name"]
             })
         return dict(zip(keys, cursor.fetchone()))
 
+
 def retrieve_geno_trait_info(trait_data_source: Dict[str, Any], conn: Any):
     """Retrieve trait information for type `Geno` traits.
 
     https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L438-L449"""
     keys = ("name", "chr", "mb", "source2", "sequence")
+    columns = ", ".join(f"Geno.{x}" for x in keys)
     query = (
-        "SELECT "
-        "{columns} "
+        f"SELECT {columns} "
         "FROM "
-        "Geno, GenoFreeze, GenoXRef "
+        "Geno INNER JOIN GenoXRef ON GenoXRef.GenoId = Geno.Id "
+        "INNER JOIN GenoFreeze ON GenoFreeze.Id = GenoXRef.GenoFreezeId "
         "WHERE "
-        "GenoXRef.GenoFreezeId = GenoFreeze.Id AND GenoXRef.GenoId = Geno.Id AND "
         "GenoFreeze.Name = %(trait_dataset_name)s AND "
-        "Geno.Name = %(trait_name)s").format(
-            columns=", ".join(["Geno.{}".format(x) for x in keys]))
+        "Geno.Name = %(trait_name)s")
     with conn.cursor() as cursor:
         cursor.execute(
             query,
             {
-                k:v for k, v in trait_data_source.items()
+                k: v for k, v in trait_data_source.items()
                 if k in ["trait_name", "trait_dataset_name"]
             })
         return dict(zip(keys, cursor.fetchone()))
 
+
 def retrieve_temp_trait_info(trait_data_source: Dict[str, Any], conn: Any):
     """Retrieve trait information for type `Temp` traits.
 
     https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L450-452"""
     keys = ("name", "description")
     query = (
-        "SELECT {columns} FROM Temp "
-        "WHERE Name = %(trait_name)s").format(columns=", ".join(keys))
+        f"SELECT {', '.join(keys)} FROM Temp "
+        "WHERE Name = %(trait_name)s")
     with conn.cursor() as cursor:
         cursor.execute(
             query,
             {
-                k:v for k, v in trait_data_source.items()
+                k: v for k, v in trait_data_source.items()
                 if k in ["trait_name"]
             })
         return dict(zip(keys, cursor.fetchone()))
 
+
 def set_haveinfo_field(trait_info):
     """
     Common postprocessing function for all trait types.
@@ -287,6 +215,7 @@ def set_haveinfo_field(trait_info):
     Sets the value for the 'haveinfo' field."""
     return {**trait_info, "haveinfo": 1 if trait_info else 0}
 
+
 def set_homologene_id_field_probeset(trait_info, conn):
     """
     Postprocessing function for 'ProbeSet' traits.
@@ -302,7 +231,7 @@ def set_homologene_id_field_probeset(trait_info, conn):
         cursor.execute(
             query,
             {
-                k:v for k, v in trait_info.items()
+                k: v for k, v in trait_info.items()
                 if k in ["geneid", "group"]
             })
         res = cursor.fetchone()
@@ -310,12 +239,13 @@ def set_homologene_id_field_probeset(trait_info, conn):
             return {**trait_info, "homologeneid": res[0]}
     return {**trait_info, "homologeneid": None}
 
+
 def set_homologene_id_field(trait_type, trait_info, conn):
     """
     Common postprocessing function for all trait types.
 
     Sets the value for the 'homologene' key."""
-    set_to_null = lambda ti: {**ti, "homologeneid": None}
+    def set_to_null(ti): return {**ti, "homologeneid": None} # pylint: disable=[C0103, C0321]
     functions_table = {
         "Temp": set_to_null,
         "Geno": set_to_null,
@@ -324,6 +254,7 @@ def set_homologene_id_field(trait_type, trait_info, conn):
     }
     return functions_table[trait_type](trait_info)
 
+
 def load_publish_qtl_info(trait_info, conn):
     """
     Load extra QTL information for `Publish` traits
@@ -344,6 +275,7 @@ def load_publish_qtl_info(trait_info, conn):
         return dict(zip(["locus", "lrs", "additive"], cursor.fetchone()))
     return {"locus": "", "lrs": "", "additive": ""}
 
+
 def load_probeset_qtl_info(trait_info, conn):
     """
     Load extra QTL information for `ProbeSet` traits
@@ -366,6 +298,7 @@ def load_probeset_qtl_info(trait_info, conn):
             ["locus", "lrs", "pvalue", "mean", "additive"], cursor.fetchone()))
     return {"locus": "", "lrs": "", "pvalue": "", "mean": "", "additive": ""}
 
+
 def load_qtl_info(qtl, trait_type, trait_info, conn):
     """
     Load extra QTL information for traits
@@ -389,11 +322,12 @@ def load_qtl_info(qtl, trait_type, trait_info, conn):
         "Publish": load_publish_qtl_info,
         "ProbeSet": load_probeset_qtl_info
     }
-    if trait_info["name"] not in qtl_info_functions.keys():
+    if trait_info["name"] not in qtl_info_functions:
         return trait_info
 
     return qtl_info_functions[trait_type](trait_info, conn)
 
+
 def build_trait_name(trait_fullname):
     """
     Initialises the trait's name, and other values from the search data provided
@@ -408,7 +342,7 @@ def build_trait_name(trait_fullname):
         return "ProbeSet"
 
     name_parts = trait_fullname.split("::")
-    assert len(name_parts) >= 2, "Name format error"
+    assert len(name_parts) >= 2, f"Name format error: '{trait_fullname}'"
     dataset_name = name_parts[0]
     dataset_type = dataset_type(dataset_name)
     return {
@@ -420,6 +354,7 @@ def build_trait_name(trait_fullname):
         "cellid": name_parts[2] if len(name_parts) == 3 else ""
     }
 
+
 def retrieve_probeset_sequence(trait, conn):
     """
     Retrieve a 'ProbeSet' trait's sequence information
@@ -441,6 +376,7 @@ def retrieve_probeset_sequence(trait, conn):
         seq = cursor.fetchone()
         return {**trait, "sequence": seq[0] if seq else ""}
 
+
 def retrieve_trait_info(
         threshold: int, trait_full_name: str, conn: Any,
         qtl=None):
@@ -496,6 +432,7 @@ def retrieve_trait_info(
         }
     return trait_info
 
+
 def retrieve_temp_trait_data(trait_info: dict, conn: Any):
     """
     Retrieve trait data for `Temp` traits.
@@ -514,10 +451,12 @@ def retrieve_temp_trait_data(trait_info: dict, conn: Any):
             query,
             {"trait_name": trait_info["trait_name"]})
         return [dict(zip(
-            ["sample_name", "value", "se_error", "nstrain", "id"], row))
+            ["sample_name", "value", "se_error", "nstrain", "id"],
+            row))
                 for row in cursor.fetchall()]
     return []
 
+
 def retrieve_species_id(group, conn: Any):
     """
     Retrieve a species id given the Group value
@@ -529,6 +468,7 @@ def retrieve_species_id(group, conn: Any):
         return cursor.fetchone()[0]
     return None
 
+
 def retrieve_geno_trait_data(trait_info: Dict, conn: Any):
     """
     Retrieve trait data for `Geno` traits.
@@ -552,11 +492,14 @@ def retrieve_geno_trait_data(trait_info: Dict, conn: Any):
              "dataset_name": trait_info["db"]["dataset_name"],
              "species_id": retrieve_species_id(
                  trait_info["db"]["group"], conn)})
-        return [dict(zip(
-            ["sample_name", "value", "se_error", "id"], row))
-                for row in cursor.fetchall()]
+        return [
+            dict(zip(
+                ["sample_name", "value", "se_error", "id"],
+                row))
+            for row in cursor.fetchall()]
     return []
 
+
 def retrieve_publish_trait_data(trait_info: Dict, conn: Any):
     """
     Retrieve trait data for `Publish` traits.
@@ -565,17 +508,16 @@ def retrieve_publish_trait_data(trait_info: Dict, conn: Any):
         "SELECT "
         "Strain.Name, PublishData.value, PublishSE.error, NStrain.count, "
         "PublishData.Id "
-        "FROM (PublishData, Strain, PublishXRef, PublishFreeze) "
+        "FROM (PublishData, Strain, PublishXRef) "
         "LEFT JOIN PublishSE ON "
         "(PublishSE.DataId = PublishData.Id "
         "AND PublishSE.StrainId = PublishData.StrainId) "
         "LEFT JOIN NStrain ON "
         "(NStrain.DataId = PublishData.Id "
         "AND NStrain.StrainId = PublishData.StrainId) "
-        "WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId "
-        "AND PublishData.Id = PublishXRef.DataId "
+        "WHERE PublishData.Id = PublishXRef.DataId "
         "AND PublishXRef.Id = %(trait_name)s "
-        "AND PublishFreeze.Id = %(dataset_id)s "
+        "AND PublishXRef.InbredSetId = %(dataset_id)s "
         "AND PublishData.StrainId = Strain.Id "
         "ORDER BY Strain.Name")
     with conn.cursor() as cursor:
@@ -583,11 +525,13 @@ def retrieve_publish_trait_data(trait_info: Dict, conn: Any):
             query,
             {"trait_name": trait_info["trait_name"],
              "dataset_id": trait_info["db"]["dataset_id"]})
-        return [dict(zip(
-            ["sample_name", "value", "se_error", "nstrain", "id"], row))
-                for row in cursor.fetchall()]
+        return [
+            dict(zip(
+                ["sample_name", "value", "se_error", "nstrain", "id"], row))
+            for row in cursor.fetchall()]
     return []
 
+
 def retrieve_cellid_trait_data(trait_info: Dict, conn: Any):
     """
     Retrieve trait data for `Probe Data` types.
@@ -616,11 +560,13 @@ def retrieve_cellid_trait_data(trait_info: Dict, conn: Any):
             {"cellid": trait_info["cellid"],
              "trait_name": trait_info["trait_name"],
              "dataset_id": trait_info["db"]["dataset_id"]})
-        return [dict(zip(
-            ["sample_name", "value", "se_error", "id"], row))
-                for row in cursor.fetchall()]
+        return [
+            dict(zip(
+                ["sample_name", "value", "se_error", "id"], row))
+            for row in cursor.fetchall()]
     return []
 
+
 def retrieve_probeset_trait_data(trait_info: Dict, conn: Any):
     """
     Retrieve trait data for `ProbeSet` traits.
@@ -645,11 +591,13 @@ def retrieve_probeset_trait_data(trait_info: Dict, conn: Any):
             query,
             {"trait_name": trait_info["trait_name"],
              "dataset_name": trait_info["db"]["dataset_name"]})
-        return [dict(zip(
-            ["sample_name", "value", "se_error", "id"], row))
-                for row in cursor.fetchall()]
+        return [
+            dict(zip(
+                ["sample_name", "value", "se_error", "id"], row))
+            for row in cursor.fetchall()]
     return []
 
+
 def with_samplelist_data_setup(samplelist: Sequence[str]):
     """
     Build function that computes the trait data from provided list of samples.
@@ -676,6 +624,7 @@ def with_samplelist_data_setup(samplelist: Sequence[str]):
         return None
     return setup_fn
 
+
 def without_samplelist_data_setup():
     """
     Build function that computes the trait data.
@@ -696,6 +645,7 @@ def without_samplelist_data_setup():
         return None
     return setup_fn
 
+
 def retrieve_trait_data(trait: dict, conn: Any, samplelist: Sequence[str] = tuple()):
     """
     Retrieve trait data
@@ -735,14 +685,16 @@ def retrieve_trait_data(trait: dict, conn: Any, samplelist: Sequence[str] = tupl
             "data": dict(map(
                 lambda x: (
                     x["sample_name"],
-                    {k:v for k, v in x.items() if x != "sample_name"}),
+                    {k: v for k, v in x.items() if x != "sample_name"}),
                 data))}
     return {}
 
+
 def generate_traits_filename(base_path: str = TMPDIR):
     """Generate a unique filename for use with generated traits files."""
-    return "{}/traits_test_file_{}.txt".format(
-        os.path.abspath(base_path), random_string(10))
+    return (
+        f"{os.path.abspath(base_path)}/traits_test_file_{random_string(10)}.txt")
+
 
 def export_informative(trait_data: dict, inc_var: bool = False) -> tuple:
     """
@@ -765,5 +717,6 @@ def export_informative(trait_data: dict, inc_var: bool = False) -> tuple:
         return acc
     return reduce(
         __exporter__,
-        filter(lambda td: td["value"] is not None, trait_data["data"].values()),
+        filter(lambda td: td["value"] is not None,
+               trait_data["data"].values()),
         (tuple(), tuple(), tuple()))
diff --git a/gn3/db_utils.py b/gn3/db_utils.py
index 7263705..3b72d28 100644
--- a/gn3/db_utils.py
+++ b/gn3/db_utils.py
@@ -14,10 +14,7 @@ def parse_db_url() -> Tuple:
             parsed_db.password, parsed_db.path[1:])
 
 
-def database_connector() -> Tuple:
+def database_connector() -> mdb.Connection:
     """function to create db connector"""
     host, user, passwd, db_name = parse_db_url()
-    conn = mdb.connect(host, user, passwd, db_name)
-    cursor = conn.cursor()
-
-    return (conn, cursor)
+    return mdb.connect(host, user, passwd, db_name)
diff --git a/gn3/fs_helpers.py b/gn3/fs_helpers.py
index 73f6567..f313086 100644
--- a/gn3/fs_helpers.py
+++ b/gn3/fs_helpers.py
@@ -41,7 +41,7 @@ def get_dir_hash(directory: str) -> str:
 
 def jsonfile_to_dict(json_file: str) -> Dict:
     """Give a JSON_FILE, return a python dict"""
-    with open(json_file) as _file:
+    with open(json_file, encoding="utf-8") as _file:
         data = json.load(_file)
         return data
     raise FileNotFoundError
@@ -71,9 +71,8 @@ contents to TARGET_DIR/<dir-hash>.
             os.mkdir(os.path.join(target_dir, token))
         gzipped_file.save(tar_target_loc)
         # Extract to "tar_target_loc/token"
-        tar = tarfile.open(tar_target_loc)
-        tar.extractall(path=os.path.join(target_dir, token))
-        tar.close()
+        with tarfile.open(tar_target_loc) as tar:
+            tar.extractall(path=os.path.join(target_dir, token))
     # pylint: disable=W0703
     except Exception:
         return {"status": 128, "error": "gzip failed to unpack file"}
diff --git a/gn3/heatmaps.py b/gn3/heatmaps.py
index bf9dfd1..91437bb 100644
--- a/gn3/heatmaps.py
+++ b/gn3/heatmaps.py
@@ -40,16 +40,15 @@ def trait_display_name(trait: Dict):
         if trait["db"]["dataset_type"] == "Temp":
             desc = trait["description"]
             if desc.find("PCA") >= 0:
-                return "%s::%s" % (
-                    trait["db"]["displayname"],
-                    desc[desc.rindex(':')+1:].strip())
-            return "%s::%s" % (
-                trait["db"]["displayname"],
-                desc[:desc.index('entered')].strip())
-        prefix = "%s::%s" % (
-            trait["db"]["dataset_name"], trait["trait_name"])
+                return (
+                    f'{trait["db"]["displayname"]}::'
+                    f'{desc[desc.rindex(":")+1:].strip()}')
+            return (
+                f'{trait["db"]["displayname"]}::'
+                f'{desc[:desc.index("entered")].strip()}')
+        prefix = f'{trait["db"]["dataset_name"]}::{trait["trait_name"]}'
         if trait["cellid"]:
-            return "%s::%s" % (prefix, trait["cellid"])
+            return '{prefix}::{trait["cellid"]}'
         return prefix
     return trait["description"]
 
@@ -64,11 +63,7 @@ def cluster_traits(traits_data_list: Sequence[Dict]):
     def __compute_corr(tdata_i, tdata_j):
         if tdata_i[0] == tdata_j[0]:
             return 0.0
-        corr_vals = compute_correlation(tdata_i[1], tdata_j[1])
-        corr = corr_vals[0]
-        if (1 - corr) < 0:
-            return 0.0
-        return 1 - corr
+        return 1 - compute_correlation(tdata_i[1], tdata_j[1])[0]
 
     def __cluster(tdata_i):
         return tuple(
@@ -136,8 +131,7 @@ def build_heatmap(
     traits_order = compute_traits_order(slinked)
     samples_and_values = retrieve_samples_and_values(
         traits_order, samples, exported_traits_data_list)
-    traits_filename = "{}/traits_test_file_{}.txt".format(
-        TMPDIR, random_string(10))
+    traits_filename = f"{TMPDIR}/traits_test_file_{random_string(10)}.txt"
     generate_traits_file(
         samples_and_values[0][1],
         [t[2] for t in samples_and_values],
@@ -314,7 +308,7 @@ def clustered_heatmap(
         vertical_spacing=0.010,
         horizontal_spacing=0.001,
         subplot_titles=["" if vertical else x_axis["label"]] + [
-            "Chromosome: {}".format(chromo) if vertical else chromo
+            f"Chromosome: {chromo}" if vertical else chromo
             for chromo in x_axis_data],#+ x_axis_data,
         figure=ff.create_dendrogram(
             np.array(clustering_data),
@@ -336,7 +330,7 @@ def clustered_heatmap(
             col=(1 if vertical else (i + 2)))
 
     axes_layouts = {
-        "{axis}axis{count}".format(
+        "{axis}axis{count}".format( # pylint: disable=[C0209]
             axis=("y" if vertical else "x"),
             count=(i+1 if i > 0 else "")): {
                 "mirror": False,
@@ -345,12 +339,10 @@ def clustered_heatmap(
             }
         for i in range(num_plots)}
 
-    print("vertical?: {} ==> {}".format("T" if vertical else "F", axes_layouts))
-
     fig.update_layout({
         "width": 800 if vertical else 4000,
         "height": 4000 if vertical else 800,
-        "{}axis".format("x" if vertical else "y"): {
+        "{}axis".format("x" if vertical else "y"): { # pylint: disable=[C0209]
             "mirror": False,
             "ticks": "",
             "side": "top" if vertical else "left",
@@ -358,7 +350,7 @@ def clustered_heatmap(
             "tickangle": 90 if vertical else 0,
             "ticklabelposition": "outside top" if vertical else "outside left"
         },
-        "{}axis".format("y" if vertical else "x"): {
+        "{}axis".format("y" if vertical else "x"): { # pylint: disable=[C0209]
             "mirror": False,
             "showgrid": True,
             "title": "Distance",
diff --git a/gn3/responses/__init__.py b/gn3/responses/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/gn3/responses/__init__.py
diff --git a/gn3/responses/pcorrs_responses.py b/gn3/responses/pcorrs_responses.py
new file mode 100644
index 0000000..d6fd9d7
--- /dev/null
+++ b/gn3/responses/pcorrs_responses.py
@@ -0,0 +1,24 @@
+"""Functions and classes that deal with responses and conversion to JSON."""
+import json
+
+from flask import make_response
+
+class OutputEncoder(json.JSONEncoder):
+    """
+    Class to encode output into JSON, for objects which the default
+    json.JSONEncoder class does not have default encoding for.
+    """
+    def default(self, o):
+        if isinstance(o, bytes):
+            return str(o, encoding="utf-8")
+        return json.JSONEncoder.default(self, o)
+
+def build_response(data):
+    """Build the responses for the API"""
+    status_codes = {
+        "error": 400, "not-found": 404, "success": 200, "exception": 500}
+    response = make_response(
+            json.dumps(data, cls=OutputEncoder),
+            status_codes[data["status"]])
+    response.headers["Content-Type"] = "application/json"
+    return response
diff --git a/gn3/settings.py b/gn3/settings.py
index 57c63df..6eec2a1 100644
--- a/gn3/settings.py
+++ b/gn3/settings.py
@@ -13,11 +13,13 @@ REDIS_JOB_QUEUE = "GN3::job-queue"
 TMPDIR = os.environ.get("TMPDIR", tempfile.gettempdir())
 RQTL_WRAPPER = "rqtl_wrapper.R"
 
+# SPARQL endpoint
+SPARQL_ENDPOINT = "http://localhost:8891/sparql"
+
 # SQL confs
 SQL_URI = os.environ.get(
     "SQL_URI", "mysql://webqtlout:webqtlout@localhost/db_webqtl")
 SECRET_KEY = "password"
-SQLALCHEMY_TRACK_MODIFICATIONS = False
 # gn2 results only used in fetching dataset info
 
 GN2_BASE_URL = "http://www.genenetwork.org/"
@@ -25,11 +27,11 @@ GN2_BASE_URL = "http://www.genenetwork.org/"
 # wgcna script
 WGCNA_RSCRIPT = "wgcna_analysis.R"
 # qtlreaper command
-REAPER_COMMAND = "{}/bin/qtlreaper".format(os.environ.get("GUIX_ENVIRONMENT"))
+REAPER_COMMAND = f"{os.environ.get('GUIX_ENVIRONMENT')}/bin/qtlreaper"
 
 # genotype files
 GENOTYPE_FILES = os.environ.get(
-    "GENOTYPE_FILES", "{}/genotype_files/genotype".format(os.environ.get("HOME")))
+    "GENOTYPE_FILES", f"{os.environ.get('HOME')}/genotype_files/genotype")
 
 # CROSS-ORIGIN SETUP
 def parse_env_cors(default):
@@ -53,3 +55,7 @@ CORS_HEADERS = [
 
 GNSHARE = os.environ.get("GNSHARE", "/gnshare/gn/")
 TEXTDIR = f"{GNSHARE}/web/ProbeSetFreeze_DataMatrix"
+
+ROUND_TO = 10
+
+MULTIPROCESSOR_PROCS = 6 # Number of processes to spawn