about summary refs log tree commit diff
path: root/gn3
diff options
context:
space:
mode:
Diffstat (limited to 'gn3')
-rw-r--r--gn3/api/correlation.py8
-rw-r--r--gn3/api/general.py4
-rw-r--r--gn3/api/rqtl.py4
-rw-r--r--gn3/computations/correlations.py36
-rw-r--r--gn3/computations/correlations2.py50
-rw-r--r--gn3/computations/heatmap.py177
-rw-r--r--gn3/computations/rqtl.py77
-rw-r--r--gn3/computations/slink.py198
-rw-r--r--gn3/db/__init__.py2
-rw-r--r--gn3/db/datasets.py291
-rw-r--r--gn3/db/traits.py736
-rw-r--r--gn3/function_helpers.py36
-rw-r--r--gn3/heatmaps/heatmaps.py54
13 files changed, 1558 insertions, 115 deletions
diff --git a/gn3/api/correlation.py b/gn3/api/correlation.py
index e7e89cf..46121f8 100644
--- a/gn3/api/correlation.py
+++ b/gn3/api/correlation.py
@@ -5,7 +5,7 @@ from flask import request
 
 from gn3.computations.correlations import compute_all_sample_correlation
 from gn3.computations.correlations import compute_all_lit_correlation
-from gn3.computations.correlations import compute_all_tissue_correlation
+from gn3.computations.correlations import compute_tissue_correlation
 from gn3.computations.correlations import map_shared_keys_to_values
 from gn3.db_utils import database_connector
 
@@ -78,8 +78,8 @@ def compute_tissue_corr(corr_method="pearson"):
     primary_tissue_dict = tissue_input_data["primary_tissue"]
     target_tissues_dict = tissue_input_data["target_tissues_dict"]
 
-    results = compute_all_tissue_correlation(primary_tissue_dict=primary_tissue_dict,
-                                             target_tissues_data=target_tissues_dict,
-                                             corr_method=corr_method)
+    results = compute_tissue_correlation(primary_tissue_dict=primary_tissue_dict,
+                                         target_tissues_data=target_tissues_dict,
+                                         corr_method=corr_method)
 
     return jsonify(results)
diff --git a/gn3/api/general.py b/gn3/api/general.py
index cebb2e3..69ec343 100644
--- a/gn3/api/general.py
+++ b/gn3/api/general.py
@@ -11,6 +11,10 @@ from gn3.commands import run_cmd
 
 general = Blueprint("general", __name__)
 
+@general.route("/version")
+def version():
+    """Get API version."""
+    return jsonify("1.0")
 
 @general.route("/metadata/upload/", methods=["POST"],
                strict_slashes=False)
diff --git a/gn3/api/rqtl.py b/gn3/api/rqtl.py
index b0405f4..6548e1a 100644
--- a/gn3/api/rqtl.py
+++ b/gn3/api/rqtl.py
@@ -48,8 +48,8 @@ run the rqtl_wrapper script and return the results as JSON
                                        "output", rqtl_cmd.get('output_file'))):
         os.system(rqtl_cmd.get('rqtl_cmd'))
 
-    if "pairscan" in boolean_kwargs:
-        rqtl_output['results'] = process_rqtl_pairscan(rqtl_cmd.get('output_file'))
+    if "pairscan" in rqtl_bool_kwargs:
+        rqtl_output['results'] = process_rqtl_pairscan(rqtl_cmd.get('output_file'), genofile)
     else:
         rqtl_output['results'] = process_rqtl_mapping(rqtl_cmd.get('output_file'))
 
diff --git a/gn3/computations/correlations.py b/gn3/computations/correlations.py
index bc738a7..bb13ff1 100644
--- a/gn3/computations/correlations.py
+++ b/gn3/computations/correlations.py
@@ -1,4 +1,5 @@
 """module contains code for correlations"""
+import math
 import multiprocessing
 
 from typing import List
@@ -90,7 +91,7 @@ def compute_sample_r_correlation(trait_name, corr_method, trait_vals,
                                        target_values=sanitized_target_vals,
                                        corr_method=corr_method)
 
-        if corr_coefficient is not None:
+        if corr_coefficient is not None and not math.isnan(corr_coefficient):
             return (trait_name, corr_coefficient, p_value, num_overlap)
     return None
 
@@ -123,11 +124,12 @@ def filter_shared_sample_keys(this_samplelist,
     return (this_vals, target_vals)
 
 
-def compute_all_sample_correlation(this_trait,
-                                   target_dataset,
-                                   corr_method="pearson") -> List:
+def fast_compute_all_sample_correlation(this_trait,
+                                        target_dataset,
+                                        corr_method="pearson") -> List:
     """Given a trait data sample-list and target__datasets compute all sample
     correlation
+    this functions uses multiprocessing if not use the normal fun
 
     """
     # xtodo fix trait_name currently returning single one
@@ -159,9 +161,9 @@ def compute_all_sample_correlation(this_trait,
         key=lambda trait_name: -abs(list(trait_name.values())[0]["corr_coefficient"]))
 
 
-def benchmark_compute_all_sample(this_trait,
-                                 target_dataset,
-                                 corr_method="pearson") -> List:
+def compute_all_sample_correlation(this_trait,
+                                   target_dataset,
+                                   corr_method="pearson") -> List:
     """Temp function to benchmark with compute_all_sample_r alternative to
     compute_all_sample_r where we use multiprocessing
 
@@ -173,6 +175,7 @@ def benchmark_compute_all_sample(this_trait,
         target_trait_data = target_trait["trait_sample_data"]
         this_vals, target_vals = filter_shared_sample_keys(
             this_trait_samples, target_trait_data)
+
         sample_correlation = compute_sample_r_correlation(
             trait_name=trait_name,
             corr_method=corr_method,
@@ -189,7 +192,9 @@ def benchmark_compute_all_sample(this_trait,
             "num_overlap": num_overlap
         }
         corr_results.append({trait_name: corr_result})
-    return corr_results
+    return sorted(
+        corr_results,
+        key=lambda trait_name: -abs(list(trait_name.values())[0]["corr_coefficient"]))
 
 
 def tissue_correlation_for_trait(
@@ -335,9 +340,9 @@ def compute_all_lit_correlation(conn, trait_lists: List,
     return sorted_lit_results
 
 
-def compute_all_tissue_correlation(primary_tissue_dict: dict,
-                                   target_tissues_data: dict,
-                                   corr_method: str):
+def compute_tissue_correlation(primary_tissue_dict: dict,
+                               target_tissues_data: dict,
+                               corr_method: str):
     """Function acts as an abstraction for tissue_correlation_for_trait\
     required input are target tissue object and primary tissue trait\
     target tissues data contains the trait_symbol_dict and symbol_tissue_vals
@@ -357,8 +362,7 @@ def compute_all_tissue_correlation(primary_tissue_dict: dict,
             target_tissues_values=target_tissue_vals,
             trait_id=trait_id,
             corr_method=corr_method)
-        tissue_result_dict = {trait_id: tissue_result}
-        tissues_results.append(tissue_result_dict)
+        tissues_results.append(tissue_result)
     return sorted(
         tissues_results,
         key=lambda trait_name: -abs(list(trait_name.values())[0]["tissue_corr"]))
@@ -381,9 +385,9 @@ def process_trait_symbol_dict(trait_symbol_dict, symbol_tissue_vals_dict) -> Lis
     return traits_tissue_vals
 
 
-def compute_tissue_correlation(primary_tissue_dict: dict,
-                               target_tissues_data: dict,
-                               corr_method: str):
+def fast_compute_tissue_correlation(primary_tissue_dict: dict,
+                                    target_tissues_data: dict,
+                                    corr_method: str):
     """Experimental function that uses multiprocessing for computing tissue
     correlation
 
diff --git a/gn3/computations/correlations2.py b/gn3/computations/correlations2.py
new file mode 100644
index 0000000..93db3fa
--- /dev/null
+++ b/gn3/computations/correlations2.py
@@ -0,0 +1,50 @@
+"""
+DESCRIPTION:
+    TODO: Add a description for the module
+
+FUNCTIONS:
+compute_correlation:
+    TODO: Describe what the function does..."""
+
+from math import sqrt
+from functools import reduce
+## From GN1: mostly for clustering and heatmap generation
+
+def __items_with_values(dbdata, userdata):
+    """Retains only corresponding items in the data items that are not `None` values.
+    This should probably be renamed to something sensible"""
+    def both_not_none(item1, item2):
+        """Check that both items are not the value `None`."""
+        if (item1 is not None) and (item2 is not None):
+            return (item1, item2)
+        return None
+    def split_lists(accumulator, item):
+        """Separate the 'x' and 'y' items."""
+        return [accumulator[0] + [item[0]], accumulator[1] + [item[1]]]
+    return reduce(
+        split_lists,
+        filter(lambda x: x is not None, map(both_not_none, dbdata, userdata)),
+        [[], []])
+
+def compute_correlation(dbdata, userdata):
+    """Compute some form of correlation.
+
+    This is extracted from
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/utility/webqtlUtil.py#L622-L647
+    """
+    x_items, y_items = __items_with_values(dbdata, userdata)
+    if len(x_items) < 6:
+        return (0.0, len(x_items))
+    meanx = sum(x_items)/len(x_items)
+    meany = sum(y_items)/len(y_items)
+    def cal_corr_vals(acc, item):
+        xitem, yitem = item
+        return [
+            acc[0] + ((xitem - meanx) * (yitem - meany)),
+            acc[1] + ((xitem - meanx) * (xitem - meanx)),
+            acc[2] + ((yitem - meany) * (yitem - meany))]
+    xyd, sxd, syd = reduce(cal_corr_vals, zip(x_items, y_items), [0.0, 0.0, 0.0])
+    try:
+        return ((xyd/(sqrt(sxd)*sqrt(syd))), len(x_items))
+    except ZeroDivisionError:
+        return(0, len(x_items))
diff --git a/gn3/computations/heatmap.py b/gn3/computations/heatmap.py
new file mode 100644
index 0000000..3c35029
--- /dev/null
+++ b/gn3/computations/heatmap.py
@@ -0,0 +1,177 @@
+"""
+This module will contain functions to be used in computation of the data used to
+generate various kinds of heatmaps.
+"""
+
+from functools import reduce
+from typing import Any, Dict, Sequence
+from gn3.computations.slink import slink
+from gn3.db.traits import retrieve_trait_data, retrieve_trait_info
+from gn3.computations.correlations2 import compute_correlation
+
+def export_trait_data(
+        trait_data: dict, strainlist: Sequence[str], dtype: str = "val",
+        var_exists: bool = False, n_exists: bool = False):
+    """
+    Export data according to `strainlist`. Mostly used in calculating
+    correlations.
+
+    DESCRIPTION:
+    Migrated from
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L166-L211
+
+    PARAMETERS
+    trait: (dict)
+      The dictionary of key-value pairs representing a trait
+    strainlist: (list)
+      A list of strain names
+    type: (str)
+      ... verify what this is ...
+    var_exists: (bool)
+      A flag indicating existence of variance
+    n_exists: (bool)
+      A flag indicating existence of ndata
+    """
+    def __export_all_types(tdata, strain):
+        sample_data = []
+        if tdata[strain]["value"]:
+            sample_data.append(tdata[strain]["value"])
+            if var_exists:
+                if tdata[strain]["variance"]:
+                    sample_data.append(tdata[strain]["variance"])
+                else:
+                    sample_data.append(None)
+            if n_exists:
+                if tdata[strain]["ndata"]:
+                    sample_data.append(tdata[strain]["ndata"])
+                else:
+                    sample_data.append(None)
+        else:
+            if var_exists and n_exists:
+                sample_data += [None, None, None]
+            elif var_exists or n_exists:
+                sample_data += [None, None]
+            else:
+                sample_data.append(None)
+
+        return tuple(sample_data)
+
+    def __exporter(accumulator, strain):
+        # pylint: disable=[R0911]
+        if strain in trait_data["data"]:
+            if dtype == "val":
+                return accumulator + (trait_data["data"][strain]["value"], )
+            if dtype == "var":
+                return accumulator + (trait_data["data"][strain]["variance"], )
+            if dtype == "N":
+                return accumulator + (trait_data["data"][strain]["ndata"], )
+            if dtype == "all":
+                return accumulator + __export_all_types(trait_data["data"], strain)
+            raise KeyError("Type `%s` is incorrect" % dtype)
+        if var_exists and n_exists:
+            return accumulator + (None, None, None)
+        if var_exists or n_exists:
+            return accumulator + (None, None)
+        return accumulator + (None,)
+
+    return reduce(__exporter, strainlist, tuple())
+
+def trait_display_name(trait: Dict):
+    """
+    Given a trait, return a name to use to display the trait on a heatmap.
+
+    DESCRIPTION
+    Migrated from
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L141-L157
+    """
+    if trait.get("db", None) and trait.get("trait_name", None):
+        if trait["db"]["dataset_type"] == "Temp":
+            desc = trait["description"]
+            if desc.find("PCA") >= 0:
+                return "%s::%s" % (
+                    trait["db"]["displayname"],
+                    desc[desc.rindex(':')+1:].strip())
+            return "%s::%s" % (
+                trait["db"]["displayname"],
+                desc[:desc.index('entered')].strip())
+        prefix = "%s::%s" % (
+            trait["db"]["dataset_name"], trait["trait_name"])
+        if trait["cellid"]:
+            return "%s::%s" % (prefix, trait["cellid"])
+        return prefix
+    return trait["description"]
+
+def cluster_traits(traits_data_list: Sequence[Dict]):
+    """
+    Clusters the trait values.
+
+    DESCRIPTION
+    Attempts to replicate the clustering of the traits, as done at
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/heatmap/Heatmap.py#L138-L162
+    """
+    def __compute_corr(tdata_i, tdata_j):
+        if tdata_i[0] == tdata_j[0]:
+            return 0.0
+        corr_vals = compute_correlation(tdata_i[1], tdata_j[1])
+        corr = corr_vals[0]
+        if (1 - corr) < 0:
+            return 0.0
+        return 1 - corr
+
+    def __cluster(tdata_i):
+        return tuple(
+            __compute_corr(tdata_i, tdata_j)
+            for tdata_j in enumerate(traits_data_list))
+
+    return tuple(__cluster(tdata_i) for tdata_i in enumerate(traits_data_list))
+
+def heatmap_data(formd, search_result, conn: Any):
+    """
+    heatmap function
+
+    DESCRIPTION
+    This function is an attempt to reproduce the initialisation at
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/heatmap/Heatmap.py#L46-L64
+    and also the clustering and slink computations at
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/heatmap/Heatmap.py#L138-L165
+    with the help of the `gn3.computations.heatmap.cluster_traits` function.
+
+    It does not try to actually draw the heatmap image.
+
+    PARAMETERS:
+    TODO: Elaborate on the parameters here...
+    """
+    threshold = 0 # webqtlConfig.PUBLICTHRESH
+    cluster_checked = formd.formdata.getvalue("clusterCheck", "")
+    strainlist = [
+        strain for strain in formd.strainlist if strain not in formd.parlist]
+    genotype = formd.genotype
+
+    def __retrieve_traitlist_and_datalist(threshold, fullname):
+        trait = retrieve_trait_info(threshold, fullname, conn)
+        return (
+            trait,
+            export_trait_data(retrieve_trait_data(trait, conn), strainlist))
+
+    traits_details = [
+        __retrieve_traitlist_and_datalist(threshold, fullname)
+        for fullname in search_result]
+    traits_list = map(lambda x: x[0], traits_details)
+    traits_data_list = map(lambda x: x[1], traits_details)
+
+    return {
+        "target_description_checked": formd.formdata.getvalue(
+            "targetDescriptionCheck", ""),
+        "cluster_checked": cluster_checked,
+        "slink_data": (
+            slink(cluster_traits(traits_data_list))
+            if cluster_checked else False),
+        "sessionfile": formd.formdata.getvalue("session"),
+        "genotype": genotype,
+        "nLoci": sum(map(len, genotype)),
+        "strainlist": strainlist,
+        "ppolar": formd.ppolar,
+        "mpolar":formd.mpolar,
+        "traits_list": traits_list,
+        "traits_data_list": traits_data_list
+    }
diff --git a/gn3/computations/rqtl.py b/gn3/computations/rqtl.py
index 00e1db9..38c5000 100644
--- a/gn3/computations/rqtl.py
+++ b/gn3/computations/rqtl.py
@@ -1,6 +1,7 @@
 """Procedures related rqtl computations"""
 import os
-from typing import Dict, List, Union
+from bisect import bisect
+from typing import Dict, List, Tuple, Union
 
 import numpy as np
 
@@ -80,15 +81,15 @@ def process_rqtl_mapping(file_name: str) -> List:
 
     return marker_obs
 
-def process_rqtl_pairscan(file_name: str) -> List:
+def process_rqtl_pairscan(file_name: str, geno_file: str) -> List:
     """Given an output file name, read in R/qtl pair-scan results and return
     a list of both the JSON needed for the d3panels figure and a list of results
     to be used when generating the results table (which will include marker names)
 
     """
 
-    figure_data = pairscan_results_for_figure(file_name)
-    table_data = pairscan_results_for_table(file_name)
+    figure_data = pairscan_for_figure(file_name)
+    table_data = pairscan_for_table(file_name, geno_file)
 
     return [figure_data, table_data]
 
@@ -119,15 +120,14 @@ def pairscan_for_figure(file_name: str) -> Dict:
             if i == 0: # Skip first line
                 continue
             line_items = [item.rstrip('\n') for item in line.split(",")]
-            chr_list.append(line_items[1])
+            chr_list.append(line_items[1][1:-1])
             pos_list.append(line_items[2])
         figure_data['chr'] = chr_list
         figure_data['pos'] = pos_list
 
     return figure_data
 
-
-def pairscan_for_table(file_name: str) -> List:
+def pairscan_for_table(file_name: str, geno_file: str) -> List:
     """Given an output file name, read in R/qtl pair-scan results and return
     a list of results to be used when generating the results table (which will include marker names)
 
@@ -148,32 +148,85 @@ def pairscan_for_table(file_name: str) -> List:
 
             marker_list.append(this_marker)
 
+    # Get the list of original markers from the .geno file
+    original_markers = build_marker_pos_dict(geno_file)
+
     # Open the file with the actual results and write the results as
     # they will be displayed in the results table
     with open(os.path.join(current_app.config.get("TMPDIR", "/tmp"),
                            "output", file_name), "r") as the_file:
         for i, line in enumerate(the_file.readlines()[1:]):
             marker_1 = marker_list[i]
+            proximal1, distal1 = find_nearest_marker(marker_1['chr'], marker_1['pos'], original_markers)
             line_items = [item.rstrip('\n') for item in line.split(",")]
             for j, item in enumerate(line_items[1:]):
                 marker_2 = marker_list[j]
+                proximal2, distal2 = find_nearest_marker(marker_2['chr'], marker_2['pos'], original_markers)
                 try:
                     lod_score = f"{float(item):.3f}"
                 except:
                     lod_score = f"{item}"
                 this_line = {
-                    'marker1': f"{marker_1['name']}",
+                    'proximal1': proximal1,
+                    'distal1': distal1,
                     'pos1': f"Chr {marker_1['chr']} @ {float(marker_1['pos']):.1f} cM",
                     'lod': lod_score,
-                    'marker2': f"{marker_2['name']}",
+                    'proximal2': proximal2,
+                    'distal2': distal2,
                     'pos2': f"Chr {marker_2['chr']} @ {float(marker_2['pos']):.1f} cM"
                 }
-            table_data.append(this_line)
 
-    return table_data
+                table_data.append(this_line)
+
+    return sorted(table_data, key = lambda i: float(i['lod']), reverse=True)[:500]
+
+def build_marker_pos_dict(genotype_file: str) -> Dict:
+    """
+    Gets list of markers and their positions from .geno file
+
+    Basically a pared-down version of parse_genotype_file for R/qtl pair-scan
+    """
+
+    with open(genotype_file, "r") as infile:
+        contents = infile.readlines()
+
+    # Get all lines after the metadata
+    lines = tuple(line for line in contents if
+                  ((not line.strip().startswith("#")) and
+                   (not line.strip().startswith("@")) and
+                   (not line.strip() == "")))
+
+    header_items = lines[0].split("\t")
+    mb_exists = "Mb" in header_items
+    pos_column = header_items.index("Mb") if mb_exists else header_items.index("cM")
+
+    the_markers = {}
+    for line in lines[1:]: # The lines with markers
+        line_items = line.split("\t")
+        this_chr = line_items[0]
+        if this_chr not in the_markers:
+            the_markers[this_chr] = {}
+        the_markers[this_chr][str(float(line_items[pos_column]))] = line_items[1]
+
+    return the_markers
+
+def find_nearest_marker(the_chr: str, the_pos: str, marker_list: Dict) -> Tuple[str, str]:
+    """
+    Given a chromosome and position of a pseudomarker (from R/qtl pair-scan results),
+    return the nearest real marker
+    """
+
+    pos_list = [float(pos) for pos in marker_list[the_chr]]
+
+    # Get the position of the pseudomarker in the list of markers for the chr
+    the_pos_index = bisect(pos_list, float(the_pos))
+
+    proximal_marker = marker_list[the_chr][str(pos_list[the_pos_index-1])]
+    distal_marker = marker_list[the_chr][str(pos_list[the_pos_index])]
 
+    return proximal_marker, distal_marker
 
-def process_perm_output(file_name: str):
+def process_perm_output(file_name: str) -> Tuple[List, float, float]:
     """Given base filename, read in R/qtl permutation output and calculate
     suggestive and significant thresholds
 
diff --git a/gn3/computations/slink.py b/gn3/computations/slink.py
new file mode 100644
index 0000000..3d7a576
--- /dev/null
+++ b/gn3/computations/slink.py
@@ -0,0 +1,198 @@
+"""
+DESCRIPTION:
+    TODO: Add a description for the module
+
+FUNCTIONS:
+slink:
+    TODO: Describe what the function does...
+"""
+import logging
+from typing import Union, Sequence
+
+NumType = Union[int, float]
+SeqOfNums = Sequence[NumType]
+
+class LengthError(BaseException):
+    """Raised whenever child lists/tuples are not the same length as the parent
+    list of tuple."""
+
+class MirrorError(BaseException):
+    """Raised if the distance from child A to child B is not the same as the
+    distance from child B to child A."""
+
+def __is_list_or_tuple(item):
+    return type(item) in [list, tuple]
+
+def __raise_valueerror_if_data_is_not_lists_or_tuples(lists):
+    """Check that `lists` is a list of lists: If not, raise an exception."""
+
+    if (not __is_list_or_tuple(lists)) or (not all(map(__is_list_or_tuple, lists))):
+        raise ValueError("Expected list or tuple")
+
+def __raise_valueerror_if_lists_empty(lists):
+    """Check that the list and its direct children are not empty."""
+    def empty(lst):
+        return len(lst) == 0
+    if (empty(lists)) or not all(map(lambda x: not empty(x), lists)):
+        raise ValueError("List/Tuple should NOT be empty!")
+
+def __raise_lengtherror_if_child_lists_are_not_same_as_parent(lists):
+    def len_is_same_as_parent(lst):
+        return len(lst) == len(lists)
+    if not all(map(len_is_same_as_parent, lists)):
+        raise LengthError("All children lists should be same length as the parent.")
+
+def __raise_valueerror_if_child_list_distance_from_itself_is_not_zero(lists):
+    def get_child_distance(child):
+        idx = lists.index(child)
+        return lists[idx][idx]
+    def distance_is_zero(dist):
+        return dist == 0
+    children_distances = map(get_child_distance, lists)
+    if not all(map(distance_is_zero, children_distances)):
+        raise ValueError("Distance of each child list/tuple from itself should be zero!")
+
+def __raise_mirrorerror_of_distances_one_way_are_not_same_other_way(lists):
+    """Check that the distance from A to B, is the same as the distance from B to A.
+If the two distances are different, throw an exception."""
+    inner_coords = range(len(lists))
+    coords = ((i, j) for i in inner_coords for j in inner_coords)
+    def __is_same_reversed(coord):
+        return lists[coord[0]][coord[1]] == lists[coord[1]][coord[0]]
+    if not all(map(__is_same_reversed, coords)):
+        raise MirrorError((
+            "Distance from one child to the other should be the same in both "
+            "directions."))
+
+def __raise_valueerror_on_negative_distances(lists):
+    """Check that distances between 'somethings' are all positive, otherwise,
+raise an exception."""
+    def zero_or_positive(val):
+        return val >= 0
+    # flatten lists
+    flattened = __flatten_list_of_lists(lists)
+    if not all(map(zero_or_positive, flattened)):
+        raise ValueError("Distances should be positive.")
+
+def __flatten_list_of_lists(parent):
+    return [item for child in parent for item in child]
+
+# i and j are Union[SeqOfNums, NumType], but that leads to errors where the
+# values of i or j are indexed, since the NumType type is not indexable.
+# I don't know how to type this so that it does not fail on running `mypy .`
+def nearest(lists: Sequence[SeqOfNums], i, j) -> NumType:
+    """
+    Computes shortest distance between member(s) in `i` and member(s) in `j`.
+
+    Description:
+    This is 'copied' over from genenetwork1, from
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/heatmap/slink.py#L42-L64.
+
+    This description should be updated to better describe what 'member' means in
+    the context where the function is used.
+
+    Parameters:
+    lists (list of lists of distances): Represents a list of members and their
+        distances from each other.
+        Each inner list represents the distances the member at that coordinate
+        is from other members in the list: for example, a member at index 0 with
+        the values [0, 9, 1, 7] indicates that the member is:
+        - 0 units of distance away from itself
+        - 9 units of distance away from member at coordinate 1
+        - 1 unit of distance away from member at coordinate 2
+        - 7 units of distance away from member at coordinate 3
+    i (int or list of ints): Represents the coordinate of a member, or a list of
+        coordinates of members on the `lists` list.
+    j (int or list of ints): Represents the coordinate of a member, or a list of
+        coordinates of members on the `lists` list.
+
+    Returns:
+    int: Represents the shortest distance between member(s) in `i` and member(s)
+        in `j`."""
+
+    #### Guard Functions: Should we do this a different way? ####
+    __raise_valueerror_if_data_is_not_lists_or_tuples(lists)
+    __raise_valueerror_if_lists_empty(lists)
+    __raise_lengtherror_if_child_lists_are_not_same_as_parent(lists)
+    __raise_valueerror_if_child_list_distance_from_itself_is_not_zero(lists)
+    __raise_mirrorerror_of_distances_one_way_are_not_same_other_way(lists)
+    __raise_valueerror_on_negative_distances(lists)
+    #### END: Guard Functions ####
+    if isinstance(i, int) and isinstance(j, int): # From member i to member j
+        return lists[i][j]
+
+    if isinstance(i, int) and __is_list_or_tuple(j):
+        return min(map(lambda j_new: nearest(lists, i, j_new), j[:-1]))
+    if isinstance(j, int) and __is_list_or_tuple(i):
+        return min(map(lambda i_new: nearest(lists, i_new, j), i[:-1]))
+
+    if __is_list_or_tuple(i) and __is_list_or_tuple(j):
+        coordinate_pairs = __flatten_list_of_lists(
+            [[(itemi, itemj) for itemj in j[:-1]] for itemi in i[:-1]])
+        return min(map(lambda x: nearest(lists, x[0], x[1]), coordinate_pairs))
+
+    raise ValueError("member values (i or j) should be lists/tuples of integers or integers")
+
+# `lists` here could be Sequence[SeqOfNums], but that leads to errors I do not
+# understand down the line
+# Might have to re-implement the function especially since the errors are thrown
+# where `listindexcopy` is involved
+def slink(lists):
+    """
+    DESCRIPTION:
+    TODO: Not quite sure what this function does. Work through the code with a
+        fine tooth comb, once we understand the context of its use, so as to
+        give a better description
+
+        The name of the function does not clearly establish what the function
+        does either, meaning, once that is established, the function should be
+        renamed to give the user an idea of what it does without necessarily
+        reading through a ton of code.
+
+        We should also look into refactoring the function to reduce/eliminate
+        the multiple levels of nested-loops and conditionals
+
+    PARAMETERS:
+    lists (list of lists of numbers): Give this a better name.
+        Each item of this list is a list of coordinates of the members in the
+        group.
+        What 'member' and 'group' in this context means, is not yet established.
+    """
+    try:
+        size = len(lists)
+        listindexcopy = list(range(size))
+        listscopy = [list(child[:]) for child in lists]
+        init_size = size
+        candidate = []
+        while init_size > 2:
+            mindist = 1e10
+            for i in range(init_size):
+                for j in range(i+1, init_size):
+                    if listscopy[i][j] < mindist:
+                        mindist = listscopy[i][j]
+                        candidate = [[i, j]]
+                    elif listscopy[i][j] == mindist:
+                        mindist = listscopy[i][j]
+                        candidate.append([i, j])
+                    else:
+                        pass
+            newmem = (
+                listindexcopy[candidate[0][0]], listindexcopy[candidate[0][1]],
+                mindist)
+            listindexcopy.pop(candidate[0][1])
+            listindexcopy[candidate[0][0]] = newmem
+
+            init_size -= 1
+            for i in range(init_size):
+                for j in range(i+1, init_size):
+                    listscopy[i][j] = nearest(
+                        lists, listindexcopy[i], listindexcopy[j])
+                    listscopy[j][i] = listscopy[i][j]
+        listindexcopy.append(
+            nearest(lists, listindexcopy[0], listindexcopy[1]))
+        return listindexcopy
+    except (LengthError, MirrorError, TypeError, IndexError) as exc:
+        # Look into making the logging log output to the system's
+        #   configured logger(s)
+        logging.warning("Exception: %s, %s", type(exc), exc)
+        return []
diff --git a/gn3/db/__init__.py b/gn3/db/__init__.py
index 5ab9f3c..149a344 100644
--- a/gn3/db/__init__.py
+++ b/gn3/db/__init__.py
@@ -1,7 +1,7 @@
 # pylint: disable=[R0902, R0903]
 """Module that exposes common db operations"""
 from dataclasses import asdict, astuple
-from typing import Any, Dict, List, Optional, Generator, Union
+from typing import Any, Dict, List, Optional, Generator, Tuple, Union
 from typing_extensions import Protocol
 
 from gn3.db.metadata_audit import MetadataAudit
diff --git a/gn3/db/datasets.py b/gn3/db/datasets.py
new file mode 100644
index 0000000..4a05499
--- /dev/null
+++ b/gn3/db/datasets.py
@@ -0,0 +1,291 @@
+"""
+This module contains functions relating to specific trait dataset manipulation
+"""
+from typing import Any
+
+def retrieve_probeset_trait_dataset_name(
+        threshold: int, name: str, connection: Any):
+    """
+    Get the ID, DataScale and various name formats for a `ProbeSet` trait.
+    """
+    query = (
+        "SELECT Id, Name, FullName, ShortName, DataScale "
+        "FROM ProbeSetFreeze "
+        "WHERE "
+        "public > %(threshold)s "
+        "AND "
+        "(Name = %(name)s OR FullName = %(name)s OR ShortName = %(name)s)")
+    with connection.cursor() as cursor:
+        cursor.execute(
+            query,
+            {
+                "threshold": threshold,
+                "name": name
+            })
+        return dict(zip(
+            ["dataset_id", "dataset_name", "dataset_fullname",
+             "dataset_shortname", "dataset_datascale"],
+            cursor.fetchone()))
+
+def retrieve_publish_trait_dataset_name(
+        threshold: int, name: str, connection: Any):
+    """
+    Get the ID, DataScale and various name formats for a `Publish` trait.
+    """
+    query = (
+        "SELECT Id, Name, FullName, ShortName "
+        "FROM PublishFreeze "
+        "WHERE "
+        "public > %(threshold)s "
+        "AND "
+        "(Name = %(name)s OR FullName = %(name)s OR ShortName = %(name)s)")
+    with connection.cursor() as cursor:
+        cursor.execute(
+            query,
+            {
+                "threshold": threshold,
+                "name": name
+            })
+        return dict(zip(
+            ["dataset_id", "dataset_name", "dataset_fullname",
+             "dataset_shortname"],
+            cursor.fetchone()))
+
+def retrieve_geno_trait_dataset_name(
+        threshold: int, name: str, connection: Any):
+    """
+    Get the ID, DataScale and various name formats for a `Geno` trait.
+    """
+    query = (
+        "SELECT Id, Name, FullName, ShortName "
+        "FROM GenoFreeze "
+        "WHERE "
+        "public > %(threshold)s "
+        "AND "
+        "(Name = %(name)s OR FullName = %(name)s OR ShortName = %(name)s)")
+    with connection.cursor() as cursor:
+        cursor.execute(
+            query,
+            {
+                "threshold": threshold,
+                "name": name
+            })
+        return dict(zip(
+            ["dataset_id", "dataset_name", "dataset_fullname",
+             "dataset_shortname"],
+            cursor.fetchone()))
+
+def retrieve_temp_trait_dataset_name(
+        threshold: int, name: str, connection: Any):
+    """
+    Get the ID, DataScale and various name formats for a `Temp` trait.
+    """
+    query = (
+        "SELECT Id, Name, FullName, ShortName "
+        "FROM TempFreeze "
+        "WHERE "
+        "public > %(threshold)s "
+        "AND "
+        "(Name = %(name)s OR FullName = %(name)s OR ShortName = %(name)s)")
+    with connection.cursor() as cursor:
+        cursor.execute(
+            query,
+            {
+                "threshold": threshold,
+                "name": name
+            })
+        return dict(zip(
+            ["dataset_id", "dataset_name", "dataset_fullname",
+             "dataset_shortname"],
+            cursor.fetchone()))
+
+def retrieve_dataset_name(
+        trait_type: str, threshold: int, trait_name: str, dataset_name: str,
+        conn: Any):
+    """
+    Retrieve the name of a trait given the trait's name
+
+    This is extracted from the `webqtlDataset.retrieveName` function as is
+    implemented at
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlDataset.py#L140-L169
+    """
+    fn_map = {
+        "ProbeSet": retrieve_probeset_trait_dataset_name,
+        "Publish": retrieve_publish_trait_dataset_name,
+        "Geno": retrieve_geno_trait_dataset_name,
+        "Temp": retrieve_temp_trait_dataset_name}
+    if trait_type == "Temp":
+        return retrieve_temp_trait_dataset_name(threshold, trait_name, conn)
+    return fn_map[trait_type](threshold, dataset_name, conn)
+
+
+def retrieve_geno_riset_fields(name, conn):
+    """
+    Retrieve the RISet, and RISetID values for various Geno trait types.
+    """
+    query = (
+        "SELECT InbredSet.Name, InbredSet.Id "
+        "FROM InbredSet, GenoFreeze "
+        "WHERE GenoFreeze.InbredSetId = InbredSet.Id "
+        "AND GenoFreeze.Name = %(name)s")
+    with conn.cursor() as cursor:
+        cursor.execute(query, {"name": name})
+        return dict(zip(["riset", "risetid"], cursor.fetchone()))
+    return {}
+
+def retrieve_publish_riset_fields(name, conn):
+    """
+    Retrieve the RISet, and RISetID values for various Publish trait types.
+    """
+    query = (
+        "SELECT InbredSet.Name, InbredSet.Id "
+        "FROM InbredSet, PublishFreeze "
+        "WHERE PublishFreeze.InbredSetId = InbredSet.Id "
+        "AND PublishFreeze.Name = %(name)s")
+    with conn.cursor() as cursor:
+        cursor.execute(query, {"name": name})
+        return dict(zip(["riset", "risetid"], cursor.fetchone()))
+    return {}
+
+def retrieve_probeset_riset_fields(name, conn):
+    """
+    Retrieve the RISet, and RISetID values for various ProbeSet trait types.
+    """
+    query = (
+        "SELECT InbredSet.Name, InbredSet.Id "
+        "FROM InbredSet, ProbeSetFreeze, ProbeFreeze "
+        "WHERE ProbeFreeze.InbredSetId = InbredSet.Id "
+        "AND ProbeFreeze.Id = ProbeSetFreeze.ProbeFreezeId "
+        "AND ProbeSetFreeze.Name = %(name)s")
+    with conn.cursor() as cursor:
+        cursor.execute(query, {"name": name})
+        return dict(zip(["riset", "risetid"], cursor.fetchone()))
+    return {}
+
+def retrieve_temp_riset_fields(name, conn):
+    """
+    Retrieve the RISet, and RISetID values for `Temp` trait types.
+    """
+    query = (
+        "SELECT InbredSet.Name, InbredSet.Id "
+        "FROM InbredSet, Temp "
+        "WHERE Temp.InbredSetId = InbredSet.Id "
+        "AND Temp.Name = %(name)s")
+    with conn.cursor() as cursor:
+        cursor.execute(query, {"name": name})
+        return dict(zip(["riset", "risetid"], cursor.fetchone()))
+    return {}
+
+def retrieve_riset_fields(trait_type, trait_name, dataset_info, conn):
+    """
+    Retrieve the RISet, and RISetID values for various trait types.
+    """
+    riset_fns_map = {
+        "Geno": retrieve_geno_riset_fields,
+        "Publish": retrieve_publish_riset_fields,
+        "ProbeSet": retrieve_probeset_riset_fields
+    }
+
+    if trait_type == "Temp":
+        riset_info = retrieve_temp_riset_fields(trait_name, conn)
+    else:
+        riset_info = riset_fns_map[trait_type](dataset_info["dataset_name"], conn)
+
+    return {
+        **dataset_info,
+        **riset_info,
+        "riset": (
+            "BXD" if riset_info.get("riset") == "BXD300"
+            else riset_info.get("riset", ""))
+    }
+
+def retrieve_temp_trait_dataset():
+    """
+    Retrieve the dataset that relates to `Temp` traits
+    """
+    # pylint: disable=[C0330]
+    return {
+        "searchfield": ["name", "description"],
+        "disfield": ["name", "description"],
+        "type": "Temp",
+        "dataset_id": 1,
+        "fullname": "Temporary Storage",
+        "shortname": "Temp"
+    }
+
+def retrieve_geno_trait_dataset():
+    """
+    Retrieve the dataset that relates to `Geno` traits
+    """
+    # pylint: disable=[C0330]
+    return {
+        "searchfield": ["name", "chr"],
+	"disfield": ["name", "chr", "mb", "source2", "sequence"],
+	"type": "Geno"
+    }
+
+def retrieve_publish_trait_dataset():
+    """
+    Retrieve the dataset that relates to `Publish` traits
+    """
+    # pylint: disable=[C0330]
+    return {
+        "searchfield": [
+            "name", "post_publication_description", "abstract", "title",
+            "authors"],
+        "disfield": [
+            "name", "pubmed_id", "pre_publication_description",
+            "post_publication_description", "original_description",
+	    "pre_publication_abbreviation", "post_publication_abbreviation",
+	    "lab_code", "submitter", "owner", "authorized_users",
+	    "authors", "title", "abstract", "journal", "volume", "pages",
+            "month", "year", "sequence", "units", "comments"],
+        "type": "Publish"
+    }
+
+def retrieve_probeset_trait_dataset():
+    """
+    Retrieve the dataset that relates to `ProbeSet` traits
+    """
+    # pylint: disable=[C0330]
+    return {
+        "searchfield": [
+            "name", "description", "probe_target_description", "symbol",
+            "alias", "genbankid", "unigeneid", "omim", "refseq_transcriptid",
+            "probe_set_specificity", "probe_set_blat_score"],
+	"disfield": [
+            "name", "symbol", "description", "probe_target_description", "chr",
+            "mb", "alias", "geneid", "genbankid", "unigeneid", "omim",
+            "refseq_transcriptid", "blatseq", "targetseq", "chipid", "comments",
+            "strand_probe", "strand_gene", "probe_set_target_region",
+            "proteinid", "probe_set_specificity", "probe_set_blat_score",
+            "probe_set_blat_mb_start", "probe_set_blat_mb_end",
+            "probe_set_strand", "probe_set_note_by_rw", "flag"],
+	"type": "ProbeSet"
+    }
+
+def retrieve_trait_dataset(trait_type, trait, threshold, conn):
+    """
+    Retrieve the dataset that relates to a specific trait.
+    """
+    dataset_fns = {
+        "Temp": retrieve_temp_trait_dataset,
+        "Geno": retrieve_geno_trait_dataset,
+        "Publish": retrieve_publish_trait_dataset,
+        "ProbeSet": retrieve_probeset_trait_dataset
+    }
+    dataset_name_info = {
+        "dataset_id": None,
+        "dataset_name": trait["db"]["dataset_name"],
+        **retrieve_dataset_name(
+            trait_type, threshold, trait["trait_name"],
+            trait["db"]["dataset_name"], conn)
+    }
+    riset = retrieve_riset_fields(
+        trait_type, trait["trait_name"], dataset_name_info, conn)
+    return {
+        "display_name": dataset_name_info["dataset_name"],
+        **dataset_name_info,
+        **dataset_fns[trait_type](),
+        **riset
+    }
diff --git a/gn3/db/traits.py b/gn3/db/traits.py
index 4860a07..1031e44 100644
--- a/gn3/db/traits.py
+++ b/gn3/db/traits.py
@@ -1,92 +1,668 @@
-"""This contains all the necessary functions that are required to add traits
-to the published database"""
-from dataclasses import dataclass
-from typing import Any, Dict, Optional
+"""This class contains functions relating to trait data manipulation"""
+from typing import Any, Dict, Union, Sequence
+from gn3.function_helpers import compose
+from gn3.db.datasets import retrieve_trait_dataset
 
 
-@dataclass(frozen=True)
-class Riset:
-    """Class for keeping track of riset. A riset is a group e.g. rat HSNIH-Palmer,
-BXD
+def get_trait_csv_sample_data(conn: Any,
+                              trait_name: int, phenotype_id: int):
+    """Fetch a trait and return it as a csv string"""
+    sql = ("SELECT DISTINCT Strain.Id, PublishData.Id, Strain.Name, "
+           "PublishData.value, "
+           "PublishSE.error, NStrain.count FROM "
+           "(PublishData, Strain, PublishXRef, PublishFreeze) "
+           "LEFT JOIN PublishSE ON "
+           "(PublishSE.DataId = PublishData.Id AND "
+           "PublishSE.StrainId = PublishData.StrainId) "
+           "LEFT JOIN NStrain ON (NStrain.DataId = PublishData.Id AND "
+           "NStrain.StrainId = PublishData.StrainId) WHERE "
+           "PublishXRef.InbredSetId = PublishFreeze.InbredSetId AND "
+           "PublishData.Id = PublishXRef.DataId AND "
+           "PublishXRef.Id = %s AND PublishXRef.PhenotypeId = %s "
+           "AND PublishData.StrainId = Strain.Id Order BY Strain.Name")
+    csv_data = ["Strain Id,Strain Name,Value,SE,Count"]
+    publishdata_id = ""
+    with conn.cursor() as cursor:
+        cursor.execute(sql, (trait_name, phenotype_id,))
+        for record in cursor.fetchall():
+            (strain_id, publishdata_id,
+             strain_name, value, error, count) = record
+            csv_data.append(
+                ",".join([str(val) if val else "x"
+                          for val in (strain_id, strain_name,
+                                      value, error, count)]))
+    return f"# Publish Data Id: {publishdata_id}\n\n" + "\n".join(csv_data)
+
+
+def update_sample_data(conn: Any,
+                       strain_name: str,
+                       strain_id: int,
+                       publish_data_id: int,
+                       value: Union[int, float, str],
+                       error: Union[int, float, str],
+                       count: Union[int, str]):
+    """Given the right parameters, update sample-data from the relevant
+    table."""
+    # pylint: disable=[R0913, R0914]
+    STRAIN_ID_SQL: str = "UPDATE Strain SET Name = %s WHERE Id = %s"
+    PUBLISH_DATA_SQL: str = ("UPDATE PublishData SET value = %s "
+                             "WHERE StrainId = %s AND Id = %s")
+    PUBLISH_SE_SQL: str = ("UPDATE PublishSE SET error = %s "
+                           "WHERE StrainId = %s AND DataId = %s")
+    N_STRAIN_SQL: str = ("UPDATE NStrain SET count = %s "
+                         "WHERE StrainId = %s AND DataId = %s")
+
+    updated_strains: int = 0
+    updated_published_data: int = 0
+    updated_se_data: int = 0
+    updated_n_strains: int = 0
+
+    with conn.cursor() as cursor:
+        # Update the Strains table
+        cursor.execute(STRAIN_ID_SQL, (strain_name, strain_id))
+        updated_strains: int = cursor.rowcount
+        # Update the PublishData table
+        cursor.execute(PUBLISH_DATA_SQL,
+                       (None if value == "x" else value,
+                        strain_id, publish_data_id))
+        updated_published_data: int = cursor.rowcount
+        # Update the PublishSE table
+        cursor.execute(PUBLISH_SE_SQL,
+                       (None if error == "x" else error,
+                        strain_id, publish_data_id))
+        updated_se_data: int = cursor.rowcount
+        # Update the NStrain table
+        cursor.execute(N_STRAIN_SQL,
+                       (None if count == "x" else count,
+                        strain_id, publish_data_id))
+        updated_n_strains: int = cursor.rowcount
+    return (updated_strains, updated_published_data,
+            updated_se_data, updated_n_strains)
+
+def retrieve_publish_trait_info(trait_data_source: Dict[str, Any], conn: Any):
+    """Retrieve trait information for type `Publish` traits.
+
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L399-L421"""
+    keys = (
+        "Id", "PubMed_ID", "Pre_publication_description",
+        "Post_publication_description", "Original_description",
+        "Pre_publication_abbreviation", "Post_publication_abbreviation",
+        "Lab_code", "Submitter", "Owner", "Authorized_Users", "Authors",
+        "Title", "Abstract", "Journal", "Volume", "Pages", "Month", "Year",
+        "Sequence", "Units", "comments")
+    columns = (
+        "PublishXRef.Id, Publication.PubMed_ID, "
+        "Phenotype.Pre_publication_description, "
+        "Phenotype.Post_publication_description, "
+        "Phenotype.Original_description, "
+        "Phenotype.Pre_publication_abbreviation, "
+        "Phenotype.Post_publication_abbreviation, "
+        "Phenotype.Lab_code, Phenotype.Submitter, Phenotype.Owner, "
+        "Phenotype.Authorized_Users, CAST(Publication.Authors AS BINARY), "
+        "Publication.Title, Publication.Abstract, Publication.Journal, "
+        "Publication.Volume, Publication.Pages, Publication.Month, "
+        "Publication.Year, PublishXRef.Sequence, Phenotype.Units, "
+        "PublishXRef.comments")
+    query = (
+        "SELECT "
+        "{columns} "
+        "FROM "
+        "PublishXRef, Publication, Phenotype, PublishFreeze "
+        "WHERE "
+        "PublishXRef.Id = %(trait_name)s AND "
+        "Phenotype.Id = PublishXRef.PhenotypeId AND "
+        "Publication.Id = PublishXRef.PublicationId AND "
+        "PublishXRef.InbredSetId = PublishFreeze.InbredSetId AND "
+        "PublishFreeze.Id =%(trait_dataset_id)s").format(columns=columns)
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            {
+                k:v for k, v in trait_data_source.items()
+                if k in ["trait_name", "trait_dataset_id"]
+            })
+        return dict(zip([k.lower() for k in keys], cursor.fetchone()))
+
+def set_confidential_field(trait_type, trait_info):
+    """Post processing function for 'Publish' trait types.
+
+    It sets the value for the 'confidential' key."""
+    if trait_type == "Publish":
+        return {
+            **trait_info,
+            "confidential": 1 if (
+                trait_info.get("pre_publication_description", None)
+                and not trait_info.get("pubmed_id", None)) else 0}
+    return trait_info
+
+def retrieve_probeset_trait_info(trait_data_source: Dict[str, Any], conn: Any):
+    """Retrieve trait information for type `ProbeSet` traits.
+
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L424-L435"""
+    keys = (
+        "name", "symbol", "description", "probe_target_description", "chr",
+        "mb", "alias", "geneid", "genbankid", "unigeneid", "omim",
+        "refseq_transcriptid", "blatseq", "targetseq", "chipid", "comments",
+        "strand_probe", "strand_gene", "probe_set_target_region", "proteinid",
+        "probe_set_specificity", "probe_set_blat_score",
+        "probe_set_blat_mb_start", "probe_set_blat_mb_end", "probe_set_strand",
+        "probe_set_note_by_rw", "flag")
+    query = (
+        "SELECT "
+        "{columns} "
+        "FROM "
+        "ProbeSet, ProbeSetFreeze, ProbeSetXRef "
+        "WHERE "
+        "ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id AND "
+        "ProbeSetXRef.ProbeSetId = ProbeSet.Id AND "
+        "ProbeSetFreeze.Name = %(trait_dataset_name)s AND "
+        "ProbeSet.Name = %(trait_name)s").format(
+            columns=", ".join(["ProbeSet.{}".format(x) for x in keys]))
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            {
+                k:v for k, v in trait_data_source.items()
+                if k in ["trait_name", "trait_dataset_name"]
+            })
+        return dict(zip(keys, cursor.fetchone()))
+
+def retrieve_geno_trait_info(trait_data_source: Dict[str, Any], conn: Any):
+    """Retrieve trait information for type `Geno` traits.
+
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L438-L449"""
+    keys = ("name", "chr", "mb", "source2", "sequence")
+    query = (
+        "SELECT "
+        "{columns} "
+        "FROM "
+        "Geno, GenoFreeze, GenoXRef "
+        "WHERE "
+        "GenoXRef.GenoFreezeId = GenoFreeze.Id AND GenoXRef.GenoId = Geno.Id AND "
+        "GenoFreeze.Name = %(trait_dataset_name)s AND "
+        "Geno.Name = %(trait_name)s").format(
+            columns=", ".join(["Geno.{}".format(x) for x in keys]))
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            {
+                k:v for k, v in trait_data_source.items()
+                if k in ["trait_name", "trait_dataset_name"]
+            })
+        return dict(zip(keys, cursor.fetchone()))
+
+def retrieve_temp_trait_info(trait_data_source: Dict[str, Any], conn: Any):
+    """Retrieve trait information for type `Temp` traits.
+
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L450-452"""
+    keys = ("name", "description")
+    query = (
+        "SELECT {columns} FROM Temp "
+        "WHERE Name = %(trait_name)s").format(columns=", ".join(keys))
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            {
+                k:v for k, v in trait_data_source.items()
+                if k in ["trait_name"]
+            })
+        return dict(zip(keys, cursor.fetchone()))
+
+def set_haveinfo_field(trait_info):
+    """
+    Common postprocessing function for all trait types.
 
+    Sets the value for the 'haveinfo' field."""
+    return {**trait_info, "haveinfo": 1 if trait_info else 0}
+
+def set_homologene_id_field_probeset(trait_info, conn):
     """
-    name: Optional[str]
-    r_id: Optional[int]
+    Postprocessing function for 'ProbeSet' traits.
 
+    Sets the value for the 'homologene' key.
+    """
+    query = (
+        "SELECT HomologeneId FROM Homologene, Species, InbredSet"
+        " WHERE Homologene.GeneId = %(geneid)s AND InbredSet.Name = %(riset)s"
+        " AND InbredSet.SpeciesId = Species.Id AND"
+        " Species.TaxonomyId = Homologene.TaxonomyId")
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            {
+                k:v for k, v in trait_info.items()
+                if k in ["geneid", "riset"]
+            })
+        res = cursor.fetchone()
+        if res:
+            return {**trait_info, "homologeneid": res[0]}
+    return {**trait_info, "homologeneid": None}
 
-@dataclass(frozen=True)
-class WebqtlCaseData:
-    """Class for keeping track of one case data in one trait"""
-    value: Optional[float] = None
-    variance: Optional[float] = None
-    count: Optional[int] = None  # Number of Individuals
+def set_homologene_id_field(trait_type, trait_info, conn):
+    """
+    Common postprocessing function for all trait types.
 
-    def __str__(self):
-        _str = ""
-        if self.value:
-            _str += f"value={self.value:.3f}"
-        if self.variance:
-            _str += f" variance={self.variance:.3f}"
-        if self.count:
-            _str += " n_data={self.count}"
-        return _str
+    Sets the value for the 'homologene' key."""
+    set_to_null = lambda ti: {**ti, "homologeneid": None}
+    functions_table = {
+        "Temp": set_to_null,
+        "Geno": set_to_null,
+        "Publish": set_to_null,
+        "ProbeSet": lambda ti: set_homologene_id_field_probeset(ti, conn)
+    }
+    return functions_table[trait_type](trait_info)
 
+def load_publish_qtl_info(trait_info, conn):
+    """
+    Load extra QTL information for `Publish` traits
+    """
+    query = (
+        "SELECT PublishXRef.Locus, PublishXRef.LRS, PublishXRef.additive "
+        "FROM PublishXRef, PublishFreeze "
+        "WHERE PublishXRef.Id = %(trait_name)s "
+        "AND PublishXRef.InbredSetId = PublishFreeze.InbredSetId "
+        "AND PublishFreeze.Id = %(dataset_id)s")
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            {
+                "trait_name": trait_info["trait_name"],
+                "dataset_id": trait_info["db"]["dataset_id"]
+            })
+        return dict(zip(["locus", "lrs", "additive"], cursor.fetchone()))
+    return {"locus": "", "lrs": "", "additive": ""}
 
-def lookup_webqtldataset_name(riset_name: str, conn: Any):
-    """Given a group name(riset), return it's name e.g. BXDPublish,
-HLCPublish."""
+def load_probeset_qtl_info(trait_info, conn):
+    """
+    Load extra QTL information for `ProbeSet` traits
+    """
+    query = (
+        "SELECT ProbeSetXRef.Locus, ProbeSetXRef.LRS, ProbeSetXRef.pValue, "
+        "ProbeSetXRef.mean, ProbeSetXRef.additive "
+        "FROM ProbeSetXRef, ProbeSet "
+        "WHERE ProbeSetXRef.ProbeSetId = ProbeSet.Id "
+        " AND ProbeSet.Name = %(trait_name)s "
+        "AND ProbeSetXRef.ProbeSetFreezeId = %(dataset_id)s")
     with conn.cursor() as cursor:
         cursor.execute(
-            "SELECT PublishFreeze.Name FROM "
-            "PublishFreeze, InbredSet WHERE "
-            "PublishFreeze.InbredSetId = InbredSet.Id "
-            "AND InbredSet.Name = '%s'" % riset_name)
-        _result, *_ = cursor.fetchone()
-        return _result
-
-
-def get_riset(data_type: str, name: str, conn: Any):
-    """Get the groups given the data type and it's PublishFreeze or GenoFreeze
-name
-
-    """
-    query, _name, _id = None, None, None
-    if data_type == "Publish":
-        query = ("SELECT InbredSet.Name, InbredSet.Id FROM InbredSet, "
-                 "PublishFreeze WHERE PublishFreeze.InbredSetId = "
-                 "InbredSet.Id AND PublishFreeze.Name = '%s'" % name)
-    elif data_type == "Geno":
-        query = ("SELECT InbredSet.Name, InbredSet.Id FROM InbredSet, "
-                 "GenoFreeze WHERE GenoFreeze.InbredSetId = "
-                 "InbredSet.Id AND GenoFreeze.Name = '%s'" % name)
-    elif data_type == "ProbeSet":
-        query = ("SELECT InbredSet.Name, InbredSet.Id FROM "
-                 "InbredSet, ProbeSetFreeze, ProbeFreeze WHERE "
-                 "ProbeFreeze.InbredSetId = InbredSet.Id AND "
-                 "ProbeFreeze.Id = ProbeSetFreeze.ProbeFreezeId AND "
-                 "ProbeSetFreeze.Name = '%s'" % name)
-    if query:
-        with conn.cursor() as cursor:
-            _name, _id = cursor.fetchone()
-            if _name == "BXD300":
-                _name = "BXD"
-    return Riset(_name, _id)
-
-
-def insert_publication(pubmed_id: int, publication: Optional[Dict],
-                       conn: Any):
-    """Creates a new publication record if it's not available"""
-    sql = ("SELECT Id FROM Publication where "
-           "PubMed_ID = %d" % pubmed_id)
-    _id = None
+            query,
+            {
+                "trait_name": trait_info["trait_name"],
+                "dataset_id": trait_info["db"]["dataset_id"]
+            })
+        return dict(zip(
+            ["locus", "lrs", "pvalue", "mean", "additive"], cursor.fetchone()))
+    return {"locus": "", "lrs": "", "pvalue": "", "mean": "", "additive": ""}
+
+def load_qtl_info(qtl, trait_type, trait_info, conn):
+    """
+    Load extra QTL information for traits
+
+    DESCRIPTION:
+    Migrated from
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L500-L534
+
+    PARAMETERS:
+    qtl: boolean
+    trait_type: string
+      The type of the trait in consideration
+    trait_info: map/dictionary
+      A dictionary of the trait's key-value pairs
+    conn:
+      A database connection object
+    """
+    if not qtl:
+        return trait_info
+    qtl_info_functions = {
+        "Publish": load_publish_qtl_info,
+        "ProbeSet": load_probeset_qtl_info
+    }
+    if trait_info["name"] not in qtl_info_functions.keys():
+        return trait_info
+
+    return qtl_info_functions[trait_type](trait_info, conn)
+
+def build_trait_name(trait_fullname):
+    """
+    Initialises the trait's name, and other values from the search data provided
+    """
+    def dataset_type(dset_name):
+        if dset_name.find('Temp') >= 0:
+            return "Temp"
+        if dset_name.find('Geno') >= 0:
+            return "Geno"
+        if dset_name.find('Publish') >= 0:
+            return "Publish"
+        return "ProbeSet"
+
+    name_parts = trait_fullname.split("::")
+    assert len(name_parts) >= 2, "Name format error"
+    dataset_name = name_parts[0]
+    dataset_type = dataset_type(dataset_name)
+    return {
+        "db": {
+            "dataset_name": dataset_name,
+            "dataset_type": dataset_type},
+        "trait_fullname": trait_fullname,
+        "trait_name": name_parts[1],
+        "cellid": name_parts[2] if len(name_parts) == 3 else ""
+    }
+
+def retrieve_probeset_sequence(trait, conn):
+    """
+    Retrieve a 'ProbeSet' trait's sequence information
+    """
+    query = (
+        "SELECT ProbeSet.BlatSeq "
+        "FROM ProbeSet, ProbeSetFreeze, ProbeSetXRef "
+        "WHERE ProbeSet.Id=ProbeSetXRef.ProbeSetId "
+        "AND ProbeSetFreeze.Id = ProbeSetXRef.ProbeSetFreezeId "
+        "AND ProbeSet.Name = %(trait_name)s "
+        "AND ProbeSetFreeze.Name = %(dataset_name)s")
     with conn.cursor() as cursor:
-        cursor.execute(sql)
-        _id = cursor.fetchone()
-    if not _id and publication:
-        # The Publication contains the fields: 'authors', 'title', 'abstract',
-        # 'journal','volume','pages','month','year'
-        insert_query = ("INSERT into Publication (%s) Values (%s)" %
-                        (", ".join(publication.keys()),
-                         ", ".join(['%s'] * len(publication))))
-        with conn.cursor() as cursor:
-            cursor.execute(insert_query, tuple(publication.values()))
+        cursor.execute(
+            query,
+            {
+                "trait_name": trait["trait_name"],
+                "dataset_name": trait["db"]["dataset_name"]
+            })
+        seq = cursor.fetchone()
+        return {**trait, "sequence": seq[0] if seq else ""}
+
+def retrieve_trait_info(
+        threshold: int, trait_full_name: str, conn: Any,
+        qtl=None):
+    """Retrieves the trait information.
+
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L397-L456
+
+    This function, or the dependent functions, might be incomplete as they are
+    currently."""
+    trait = build_trait_name(trait_full_name)
+    trait_dataset_type = trait["db"]["dataset_type"]
+    trait_info_function_table = {
+        "Publish": retrieve_publish_trait_info,
+        "ProbeSet": retrieve_probeset_trait_info,
+        "Geno": retrieve_geno_trait_info,
+        "Temp": retrieve_temp_trait_info
+    }
+
+    common_post_processing_fn = compose(
+        lambda ti: load_qtl_info(qtl, trait_dataset_type, ti, conn),
+        lambda ti: set_homologene_id_field(trait_dataset_type, ti, conn),
+        lambda ti: {"trait_type": trait_dataset_type, **ti},
+        lambda ti: {**trait, **ti})
+
+    trait_post_processing_functions_table = {
+        "Publish": compose(
+            lambda ti: set_confidential_field(trait_dataset_type, ti),
+            common_post_processing_fn),
+        "ProbeSet": compose(
+            lambda ti: retrieve_probeset_sequence(ti, conn),
+            common_post_processing_fn),
+        "Geno": common_post_processing_fn,
+        "Temp": common_post_processing_fn
+    }
+
+    retrieve_info = compose(
+        set_haveinfo_field, trait_info_function_table[trait_dataset_type])
+
+    trait_dataset = retrieve_trait_dataset(
+        trait_dataset_type, trait, threshold, conn)
+    trait_info = retrieve_info(
+        {
+            "trait_name": trait["trait_name"],
+            "trait_dataset_id": trait_dataset["dataset_id"],
+            "trait_dataset_name": trait_dataset["dataset_name"]
+        },
+        conn)
+    if trait_info["haveinfo"]:
+        return {
+            **trait_post_processing_functions_table[trait_dataset_type](
+                {**trait_info, "riset": trait_dataset["riset"]}),
+            "db": {**trait["db"], **trait_dataset}
+        }
+    return trait_info
+
+def retrieve_temp_trait_data(trait_info: dict, conn: Any):
+    """
+    Retrieve trait data for `Temp` traits.
+    """
+    query = (
+        "SELECT "
+        "Strain.Name, TempData.value, TempData.SE, TempData.NStrain, "
+        "TempData.Id "
+        "FROM TempData, Temp, Strain "
+        "WHERE TempData.StrainId = Strain.Id "
+        "AND TempData.Id = Temp.DataId "
+        "AND Temp.name = %(trait_name)s "
+        "ORDER BY Strain.Name")
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            {"trait_name": trait_info["trait_name"]})
+        return [dict(zip(
+            ["strain_name", "value", "se_error", "nstrain", "id"], row))
+                for row in cursor.fetchall()]
+    return []
+
+def retrieve_species_id(riset, conn: Any):
+    """
+    Retrieve a species id given the RISet value
+    """
+    with conn.cursor as cursor:
+        cursor.execute(
+            "SELECT SpeciesId from InbredSet WHERE Name = %(riset)s",
+            {"riset": riset})
+        return cursor.fetchone()[0]
+    return None
+
+def retrieve_geno_trait_data(trait_info: Dict, conn: Any):
+    """
+    Retrieve trait data for `Geno` traits.
+    """
+    query = (
+        "SELECT Strain.Name, GenoData.value, GenoSE.error, GenoData.Id "
+        "FROM (GenoData, GenoFreeze, Strain, Geno, GenoXRef) "
+        "LEFT JOIN GenoSE ON "
+        "(GenoSE.DataId = GenoData.Id AND GenoSE.StrainId = GenoData.StrainId) "
+        "WHERE Geno.SpeciesId = %(species_id)s "
+        "AND Geno.Name = %(trait_name)s AND GenoXRef.GenoId = Geno.Id "
+        "AND GenoXRef.GenoFreezeId = GenoFreeze.Id "
+        "AND GenoFreeze.Name = %(dataset_name)s "
+        "AND GenoXRef.DataId = GenoData.Id "
+        "AND GenoData.StrainId = Strain.Id "
+        "ORDER BY Strain.Name")
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            {"trait_name": trait_info["trait_name"],
+             "dataset_name": trait_info["db"]["dataset_name"],
+             "species_id": retrieve_species_id(
+                 trait_info["db"]["riset"], conn)})
+        return [dict(zip(
+            ["strain_name", "value", "se_error", "id"], row))
+                for row in cursor.fetchall()]
+    return []
+
+def retrieve_publish_trait_data(trait_info: Dict, conn: Any):
+    """
+    Retrieve trait data for `Publish` traits.
+    """
+    query = (
+        "SELECT "
+        "Strain.Name, PublishData.value, PublishSE.error, NStrain.count, "
+        "PublishData.Id "
+        "FROM (PublishData, Strain, PublishXRef, PublishFreeze) "
+        "LEFT JOIN PublishSE ON "
+        "(PublishSE.DataId = PublishData.Id "
+        "AND PublishSE.StrainId = PublishData.StrainId) "
+        "LEFT JOIN NStrain ON "
+        "(NStrain.DataId = PublishData.Id "
+        "AND NStrain.StrainId = PublishData.StrainId) "
+        "WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId "
+        "AND PublishData.Id = PublishXRef.DataId "
+        "AND PublishXRef.Id = %(trait_name)s "
+        "AND PublishFreeze.Id = %(dataset_id)s "
+        "AND PublishData.StrainId = Strain.Id "
+        "ORDER BY Strain.Name")
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            {"trait_name": trait_info["trait_name"],
+             "dataset_id": trait_info["db"]["dataset_id"]})
+        return [dict(zip(
+            ["strain_name", "value", "se_error", "nstrain", "id"], row))
+                for row in cursor.fetchall()]
+    return []
+
+def retrieve_cellid_trait_data(trait_info: Dict, conn: Any):
+    """
+    Retrieve trait data for `Probe Data` types.
+    """
+    query = (
+        "SELECT "
+        "Strain.Name, ProbeData.value, ProbeSE.error, ProbeData.Id "
+        "FROM (ProbeData, ProbeFreeze, ProbeSetFreeze, ProbeXRef, Strain,"
+        " Probe, ProbeSet) "
+        "LEFT JOIN ProbeSE ON "
+        "(ProbeSE.DataId = ProbeData.Id "
+        " AND ProbeSE.StrainId = ProbeData.StrainId) "
+        "WHERE Probe.Name = %(cellid)s "
+        "AND ProbeSet.Name = %(trait_name)s "
+        "AND Probe.ProbeSetId = ProbeSet.Id "
+        "AND ProbeXRef.ProbeId = Probe.Id "
+        "AND ProbeXRef.ProbeFreezeId = ProbeFreeze.Id "
+        "AND ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id "
+        "AND ProbeSetFreeze.Name = %(dataset_name)s "
+        "AND ProbeXRef.DataId = ProbeData.Id "
+        "AND ProbeData.StrainId = Strain.Id "
+        "ORDER BY Strain.Name")
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            {"cellid": trait_info["cellid"],
+             "trait_name": trait_info["trait_name"],
+             "dataset_id": trait_info["db"]["dataset_id"]})
+        return [dict(zip(
+            ["strain_name", "value", "se_error", "id"], row))
+                for row in cursor.fetchall()]
+    return []
+
+def retrieve_probeset_trait_data(trait_info: Dict, conn: Any):
+    """
+    Retrieve trait data for `ProbeSet` traits.
+    """
+    query = (
+        "SELECT Strain.Name, ProbeSetData.value, ProbeSetSE.error, "
+        "ProbeSetData.Id "
+        "FROM (ProbeSetData, ProbeSetFreeze, Strain, ProbeSet, ProbeSetXRef) "
+        "LEFT JOIN ProbeSetSE ON "
+        "(ProbeSetSE.DataId = ProbeSetData.Id "
+        "AND ProbeSetSE.StrainId = ProbeSetData.StrainId) "
+        "WHERE ProbeSet.Name = %(trait_name)s "
+        "AND ProbeSetXRef.ProbeSetId = ProbeSet.Id "
+        "AND ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id "
+        "AND ProbeSetFreeze.Name = %(dataset_name)s "
+        "AND ProbeSetXRef.DataId = ProbeSetData.Id "
+        "AND ProbeSetData.StrainId = Strain.Id "
+        "ORDER BY Strain.Name")
+
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            {"trait_name": trait_info["trait_name"],
+             "dataset_name": trait_info["db"]["dataset_name"]})
+        return [dict(zip(
+            ["strain_name", "value", "se_error", "id"], row))
+                for row in cursor.fetchall()]
+    return []
+
+def with_strainlist_data_setup(strainlist: Sequence[str]):
+    """
+    Build function that computes the trait data from provided list of strains.
+
+    PARAMETERS
+    strainlist: (list)
+      A list of strain names
+
+    RETURNS:
+      Returns a function that given some data from the database, computes the
+      strain's value, variance and ndata values, only if the strain is present
+      in the provided `strainlist` variable.
+    """
+    def setup_fn(tdata):
+        if tdata["strain_name"] in strainlist:
+            val = tdata["value"]
+            if val is not None:
+                return {
+                    "strain_name": tdata["strain_name"],
+                    "value": val,
+                    "variance": tdata["se_error"],
+                    "ndata": tdata.get("nstrain", None)
+                }
+        return None
+    return setup_fn
+
+def without_strainlist_data_setup():
+    """
+    Build function that computes the trait data.
+
+    RETURNS:
+      Returns a function that given some data from the database, computes the
+      strain's value, variance and ndata values.
+    """
+    def setup_fn(tdata):
+        val = tdata["value"]
+        if val is not None:
+            return {
+                "strain_name": tdata["strain_name"],
+                "value": val,
+                "variance": tdata["se_error"],
+                "ndata": tdata.get("nstrain", None)
+            }
+        return None
+    return setup_fn
+
+def retrieve_trait_data(trait: dict, conn: Any, strainlist: Sequence[str] = tuple()):
+    """
+    Retrieve trait data
+
+    DESCRIPTION
+    Retrieve trait data as is done in
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L258-L386
+    """
+    # I do not like this section, but it retains the flow in the old codebase
+    if trait["db"]["dataset_type"] == "Temp":
+        results = retrieve_temp_trait_data(trait, conn)
+    elif trait["db"]["dataset_type"] == "Publish":
+        results = retrieve_publish_trait_data(trait, conn)
+    elif trait["cellid"]:
+        results = retrieve_cellid_trait_data(trait, conn)
+    elif trait["db"]["dataset_type"] == "ProbeSet":
+        results = retrieve_probeset_trait_data(trait, conn)
+    else:
+        results = retrieve_geno_trait_data(trait, conn)
+
+    if results:
+        # do something with mysqlid
+        mysqlid = results[0]["id"]
+        if strainlist:
+            data = [
+                item for item in
+                map(with_strainlist_data_setup(strainlist), results)
+                if item is not None]
+        else:
+            data = [
+                item for item in
+                map(without_strainlist_data_setup(), results)
+                if item is not None]
+
+        return {
+            "mysqlid": mysqlid,
+            "data": dict(map(
+                lambda x: (
+                    x["strain_name"],
+                    {k:v for k, v in x.items() if x != "strain_name"}),
+                data))}
+    return {}
diff --git a/gn3/function_helpers.py b/gn3/function_helpers.py
new file mode 100644
index 0000000..397b2da
--- /dev/null
+++ b/gn3/function_helpers.py
@@ -0,0 +1,36 @@
+"""
+This module will contain helper functions that should assist in maintaining a
+mostly functional way of programming.
+
+It will also contain miscellaneous functions that can be used globally, and thus
+do not fit well in any other module.
+
+FUNCTIONS:
+compose: This function is used to compose multiple functions into a single
+    function. It passes the results of calling one function to the other until
+    all the functions to be composed are called.
+"""
+from functools import reduce
+
+def compose(*functions):
+    """Compose multiple functions into a single function.
+
+    The utility in this function is not specific to this module, and as such,
+    this function can, and probably should, be moved to a more global module.
+
+    DESCRIPTION:
+    Given `cfn = compose(f_1, f_2, ... f_(n-1), f_n )`, calling
+    `cfn(arg_1, arg_2, ..., arg_m)` should call `f_n` with the arguments passed
+    to `cfn` and the results of that should be passed as arguments to `f_(n-1)`
+    and so on until `f_1` is called with the results of the cumulative calls and
+    that is the result of the entire chain of calls.
+
+    PARAMETERS:
+    functions: a variable argument list of function.
+    """
+    def composed_function(*args, **kwargs):
+        return reduce(
+            lambda res, fn: fn(res),
+            reversed(functions[:-1]),
+            functions[-1](*args, **kwargs))
+    return composed_function
diff --git a/gn3/heatmaps/heatmaps.py b/gn3/heatmaps/heatmaps.py
new file mode 100644
index 0000000..3bf7917
--- /dev/null
+++ b/gn3/heatmaps/heatmaps.py
@@ -0,0 +1,54 @@
+import random
+import plotly.express as px
+
+#### Remove these ####
+
+heatmap_dir = "heatmap_images"
+
+def generate_random_data(data_stop: float = 2, width: int = 10, height: int = 30):
+    """
+    This is mostly a utility function to be used to generate random data, useful
+    for development of the heatmap generation code, without access to the actual
+    database data.
+    """
+    return [[random.uniform(0,data_stop) for i in range(0, width)]
+            for j in range(0, height)]
+
+def heatmap_x_axis_names():
+    return [
+        "UCLA_BXDBXH_CARTILAGE_V2::ILM103710672",
+        "UCLA_BXDBXH_CARTILAGE_V2::ILM2260338",
+        "UCLA_BXDBXH_CARTILAGE_V2::ILM3140576",
+        "UCLA_BXDBXH_CARTILAGE_V2::ILM5670577",
+        "UCLA_BXDBXH_CARTILAGE_V2::ILM2070121",
+        "UCLA_BXDBXH_CARTILAGE_V2::ILM103990541",
+        "UCLA_BXDBXH_CARTILAGE_V2::ILM1190722",
+        "UCLA_BXDBXH_CARTILAGE_V2::ILM6590722",
+        "UCLA_BXDBXH_CARTILAGE_V2::ILM4200064",
+        "UCLA_BXDBXH_CARTILAGE_V2::ILM3140463"]
+#### END: Remove these ####
+
+# Grey + Blue + Red
+def generate_heatmap():
+    rows = 20
+    data = generate_random_data(height=rows)
+    y = (["%s"%x for x in range(1, rows+1)][:-1] + ["X"]) #replace last item with x for now
+    fig = px.imshow(
+        data,
+        x=heatmap_x_axis_names(),
+        y=y,
+        width=500)
+    fig.update_traces(xtype="array")
+    fig.update_traces(ytype="array")
+    # fig.update_traces(xgap=10)
+    fig.update_xaxes(
+        visible=True,
+        title_text="Traits",
+        title_font_size=16)
+    fig.update_layout(
+        coloraxis_colorscale=[
+            [0.0, '#3B3B3B'], [0.4999999999999999, '#ABABAB'],
+            [0.5, '#F5DE11'], [1.0, '#FF0D00']])
+
+    fig.write_html("%s/%s"%(heatmap_dir, "test_image.html"))
+    return fig