about summary refs log tree commit diff
path: root/gn3
diff options
context:
space:
mode:
Diffstat (limited to 'gn3')
-rw-r--r--gn3/db/traits.py93
-rw-r--r--gn3/heatmaps.py67
-rw-r--r--gn3/partial_correlations.py88
3 files changed, 182 insertions, 66 deletions
diff --git a/gn3/db/traits.py b/gn3/db/traits.py
index f2673c8..1c6aaa7 100644
--- a/gn3/db/traits.py
+++ b/gn3/db/traits.py
@@ -1,12 +1,81 @@
 """This class contains functions relating to trait data manipulation"""
 import os
+from functools import reduce
 from typing import Any, Dict, Union, Sequence
+
 from gn3.settings import TMPDIR
 from gn3.random import random_string
 from gn3.function_helpers import compose
 from gn3.db.datasets import retrieve_trait_dataset
 
 
+def export_trait_data(
+        trait_data: dict, samplelist: Sequence[str], dtype: str = "val",
+        var_exists: bool = False, n_exists: bool = False):
+    """
+    Export data according to `samplelist`. Mostly used in calculating
+    correlations.
+
+    DESCRIPTION:
+    Migrated from
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L166-L211
+
+    PARAMETERS
+    trait: (dict)
+      The dictionary of key-value pairs representing a trait
+    samplelist: (list)
+      A list of sample names
+    dtype: (str)
+      ... verify what this is ...
+    var_exists: (bool)
+      A flag indicating existence of variance
+    n_exists: (bool)
+      A flag indicating existence of ndata
+    """
+    def __export_all_types(tdata, sample):
+        sample_data = []
+        if tdata[sample]["value"]:
+            sample_data.append(tdata[sample]["value"])
+            if var_exists:
+                if tdata[sample]["variance"]:
+                    sample_data.append(tdata[sample]["variance"])
+                else:
+                    sample_data.append(None)
+            if n_exists:
+                if tdata[sample]["ndata"]:
+                    sample_data.append(tdata[sample]["ndata"])
+                else:
+                    sample_data.append(None)
+        else:
+            if var_exists and n_exists:
+                sample_data += [None, None, None]
+            elif var_exists or n_exists:
+                sample_data += [None, None]
+            else:
+                sample_data.append(None)
+
+        return tuple(sample_data)
+
+    def __exporter(accumulator, sample):
+        # pylint: disable=[R0911]
+        if sample in trait_data["data"]:
+            if dtype == "val":
+                return accumulator + (trait_data["data"][sample]["value"], )
+            if dtype == "var":
+                return accumulator + (trait_data["data"][sample]["variance"], )
+            if dtype == "N":
+                return accumulator + (trait_data["data"][sample]["ndata"], )
+            if dtype == "all":
+                return accumulator + __export_all_types(trait_data["data"], sample)
+            raise KeyError("Type `%s` is incorrect" % dtype)
+        if var_exists and n_exists:
+            return accumulator + (None, None, None)
+        if var_exists or n_exists:
+            return accumulator + (None, None)
+        return accumulator + (None,)
+
+    return reduce(__exporter, samplelist, tuple())
+
 def get_trait_csv_sample_data(conn: Any,
                               trait_name: int, phenotype_id: int):
     """Fetch a trait and return it as a csv string"""
@@ -674,3 +743,27 @@ def generate_traits_filename(base_path: str = TMPDIR):
     """Generate a unique filename for use with generated traits files."""
     return "{}/traits_test_file_{}.txt".format(
         os.path.abspath(base_path), random_string(10))
+
+def export_informative(trait_data: dict, inc_var: bool = False) -> tuple:
+    """
+    Export informative strain
+
+    This is a migration of the `exportInformative` function in
+    web/webqtl/base/webqtlTrait.py module in GeneNetwork1.
+
+    There is a chance that the original implementation has a bug, especially
+    dealing with the `inc_var` value. It the `inc_var` value is meant to control
+    the inclusion of the `variance` value, then the current implementation, and
+    that one in GN1 have a bug.
+    """
+    def __exporter__(acc, data_item):
+        if not inc_var or data_item["variance"] is not None:
+            return (
+                acc[0] + (data_item["sample_name"],),
+                acc[1] + (data_item["value"],),
+                acc[2] + (data_item["variance"],))
+        return acc
+    return reduce(
+        __exporter__,
+        filter(lambda td: td["value"] is not None, trait_data["data"].values()),
+        (tuple(), tuple(), tuple()))
diff --git a/gn3/heatmaps.py b/gn3/heatmaps.py
index 2dd9d07..bf9dfd1 100644
--- a/gn3/heatmaps.py
+++ b/gn3/heatmaps.py
@@ -14,6 +14,7 @@ from plotly.subplots import make_subplots # type: ignore
 from gn3.settings import TMPDIR
 from gn3.random import random_string
 from gn3.computations.slink import slink
+from gn3.db.traits import export_trait_data
 from gn3.computations.correlations2 import compute_correlation
 from gn3.db.genotypes import (
     build_genotype_file, load_genotype_samples)
@@ -26,72 +27,6 @@ from gn3.computations.qtlreaper import (
     parse_reaper_main_results,
     organise_reaper_main_results)
 
-def export_trait_data(
-        trait_data: dict, samplelist: Sequence[str], dtype: str = "val",
-        var_exists: bool = False, n_exists: bool = False):
-    """
-    Export data according to `samplelist`. Mostly used in calculating
-    correlations.
-
-    DESCRIPTION:
-    Migrated from
-    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L166-L211
-
-    PARAMETERS
-    trait: (dict)
-      The dictionary of key-value pairs representing a trait
-    samplelist: (list)
-      A list of sample names
-    dtype: (str)
-      ... verify what this is ...
-    var_exists: (bool)
-      A flag indicating existence of variance
-    n_exists: (bool)
-      A flag indicating existence of ndata
-    """
-    def __export_all_types(tdata, sample):
-        sample_data = []
-        if tdata[sample]["value"]:
-            sample_data.append(tdata[sample]["value"])
-            if var_exists:
-                if tdata[sample]["variance"]:
-                    sample_data.append(tdata[sample]["variance"])
-                else:
-                    sample_data.append(None)
-            if n_exists:
-                if tdata[sample]["ndata"]:
-                    sample_data.append(tdata[sample]["ndata"])
-                else:
-                    sample_data.append(None)
-        else:
-            if var_exists and n_exists:
-                sample_data += [None, None, None]
-            elif var_exists or n_exists:
-                sample_data += [None, None]
-            else:
-                sample_data.append(None)
-
-        return tuple(sample_data)
-
-    def __exporter(accumulator, sample):
-        # pylint: disable=[R0911]
-        if sample in trait_data["data"]:
-            if dtype == "val":
-                return accumulator + (trait_data["data"][sample]["value"], )
-            if dtype == "var":
-                return accumulator + (trait_data["data"][sample]["variance"], )
-            if dtype == "N":
-                return accumulator + (trait_data["data"][sample]["ndata"], )
-            if dtype == "all":
-                return accumulator + __export_all_types(trait_data["data"], sample)
-            raise KeyError("Type `%s` is incorrect" % dtype)
-        if var_exists and n_exists:
-            return accumulator + (None, None, None)
-        if var_exists or n_exists:
-            return accumulator + (None, None)
-        return accumulator + (None,)
-
-    return reduce(__exporter, samplelist, tuple())
 
 def trait_display_name(trait: Dict):
     """
diff --git a/gn3/partial_correlations.py b/gn3/partial_correlations.py
new file mode 100644
index 0000000..c556d10
--- /dev/null
+++ b/gn3/partial_correlations.py
@@ -0,0 +1,88 @@
+"""
+This module deals with partial correlations.
+
+It is an attempt to migrate over the partial correlations feature from
+GeneNetwork1.
+"""
+
+from functools import reduce
+from typing import Any, Sequence
+
+def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
+    """
+    Fetches data for the control traits.
+
+    This migrates `web/webqtl/correlation/correlationFunction.controlStrain` in
+    GN1, with a few modifications to the arguments passed in.
+
+    PARAMETERS:
+    controls: A map of sample names to trait data. Equivalent to the `cvals`
+        value in the corresponding source function in GN1.
+    sampleslist: A list of samples. Equivalent to `strainlst` in the
+        corresponding source function in GN1
+    """
+    def __process_control__(trait_data):
+        def __process_sample__(acc, sample):
+            if sample in trait_data["data"].keys():
+                sample_item = trait_data["data"][sample]
+                val = sample_item["value"]
+                if val is not None:
+                    return (
+                        acc[0] + (sample,),
+                        acc[1] + (val,),
+                        acc[2] + (sample_item["variance"],))
+            return acc
+        return reduce(
+            __process_sample__, sampleslist, (tuple(), tuple(), tuple()))
+
+    return reduce(
+        lambda acc, item: (
+            acc[0] + (item[0],),
+            acc[1] + (item[1],),
+            acc[2] + (item[2],),
+            acc[3] + (len(item[0]),),
+        ),
+        [__process_control__(trait_data) for trait_data in controls],
+        (tuple(), tuple(), tuple(), tuple()))
+
+def dictify_by_samples(samples_vals_vars: Sequence[Sequence]) -> Sequence[dict]:
+    """
+    Build a sequence of dictionaries from a sequence of separate sequences of
+    samples, values and variances.
+
+    This is a partial migration of
+    `web.webqtl.correlation.correlationFunction.fixStrains` function in GN1.
+    This implementation extracts code that will find common use, and that will
+    find use in more than one place.
+    """
+    return tuple(
+        {
+            sample: {"sample_name": sample, "value": val, "variance": var}
+            for sample, val, var in zip(*trait_line)
+        } for trait_line in zip(*(samples_vals_vars[0:3])))
+
+def fix_samples(primary_trait: dict, control_traits: Sequence[dict]) -> Sequence[Sequence[Any]]:
+    """
+    Corrects sample_names, values and variance such that they all contain only
+    those samples that are common to the reference trait and all control traits.
+
+    This is a partial migration of the
+    `web.webqtl.correlation.correlationFunction.fixStrain` function in GN1.
+    """
+    primary_samples = tuple(
+        present[0] for present in
+        ((sample, all(sample in control.keys() for control in control_traits))
+         for sample in primary_trait.keys())
+        if present[1])
+    control_vals_vars: tuple = reduce(
+        lambda acc, x: (acc[0] + (x[0],), acc[1] + (x[1],)),
+        ((item["value"], item["variance"])
+         for sublist in [tuple(control.values()) for control in control_traits]
+         for item in sublist),
+        (tuple(), tuple()))
+    return (
+        primary_samples,
+        tuple(primary_trait[sample]["value"] for sample in primary_samples),
+        control_vals_vars[0],
+        tuple(primary_trait[sample]["variance"] for sample in primary_samples),
+        control_vals_vars[1])