about summary refs log tree commit diff
path: root/gn3/db
diff options
context:
space:
mode:
Diffstat (limited to 'gn3/db')
-rw-r--r--gn3/db/correlations.py381
-rw-r--r--gn3/db/species.py27
-rw-r--r--gn3/db/traits.py93
3 files changed, 501 insertions, 0 deletions
diff --git a/gn3/db/correlations.py b/gn3/db/correlations.py
new file mode 100644
index 0000000..06b3310
--- /dev/null
+++ b/gn3/db/correlations.py
@@ -0,0 +1,381 @@
+"""
+This module will hold functions that are used in the (partial) correlations
+feature to access the database to retrieve data needed for computations.
+"""
+
+from functools import reduce
+from typing import Any, Dict, Tuple
+
+from gn3.random import random_string
+from gn3.data_helpers import partition_all
+from gn3.db.species import translate_to_mouse_gene_id
+
+from gn3.computations.partial_correlations import correlations_of_all_tissue_traits
+
+def get_filename(target_db_name: str, conn: Any) -> str:
+    """
+    Retrieve the name of the reference database file with which correlations are
+    computed.
+
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.getFileName` function in
+    GeneNetwork1.
+    """
+    with conn.cursor() as cursor:
+        cursor.execute(
+            "SELECT Id, FullName from ProbeSetFreeze WHERE Name-%s",
+            target_db_name)
+        result = cursor.fetchone()
+        if result:
+            return "ProbeSetFreezeId_{tid}_FullName_{fname}.txt".format(
+                tid=result[0],
+                fname=result[1].replace(' ', '_').replace('/', '_'))
+
+    return ""
+
+def build_temporary_literature_table(
+        species: str, gene_id: int, return_number: int, conn: Any) -> str:
+    """
+    Build and populate a temporary table to hold the literature correlation data
+    to be used in computations.
+
+    "This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.getTempLiteratureTable` function in
+    GeneNetwork1.
+    """
+    def __translated_species_id(row, cursor):
+        if species == "mouse":
+            return row[1]
+        query = {
+            "rat": "SELECT rat FROM GeneIDXRef WHERE mouse=%s",
+            "human": "SELECT human FROM GeneIDXRef WHERE mouse=%d"}
+        if species in query.keys():
+            cursor.execute(query[species], row[1])
+            record = cursor.fetchone()
+            if record:
+                return record[0]
+            return None
+        return None
+
+    temp_table_name = f"TOPLITERATURE{random_string(8)}"
+    with conn.cursor as cursor:
+        mouse_geneid = translate_to_mouse_gene_id(species, gene_id, conn)
+        data_query = (
+            "SELECT GeneId1, GeneId2, value FROM LCorrRamin3 "
+            "WHERE GeneId1 = %(mouse_gene_id)s "
+            "UNION ALL "
+            "SELECT GeneId2, GeneId1, value FROM LCorrRamin3 "
+            "WHERE GeneId2 = %(mouse_gene_id)s "
+            "AND GeneId1 != %(mouse_gene_id)s")
+        cursor.execute(
+            (f"CREATE TEMPORARY TABLE {temp_table_name} ("
+             "GeneId1 int(12) unsigned, "
+             "GeneId2 int(12) unsigned PRIMARY KEY, "
+             "value double)"))
+        cursor.execute(data_query, mouse_gene_id=mouse_geneid)
+        literature_data = [
+            {"GeneId1": row[0], "GeneId2": row[1], "value": row[2]}
+            for row in cursor.fetchall()
+            if __translated_species_id(row, cursor)]
+
+        cursor.execute(
+            (f"INSERT INTO {temp_table_name} "
+             "VALUES (%(GeneId1)s, %(GeneId2)s, %(value)s)"),
+            literature_data[0:(2 * return_number)])
+
+    return temp_table_name
+
+def fetch_geno_literature_correlations(temp_table: str) -> str:
+    """
+    Helper function for `fetch_literature_correlations` below, to build query
+    for `Geno*` tables.
+    """
+    return (
+        f"SELECT Geno.Name, {temp_table}.value "
+        "FROM Geno, GenoXRef, GenoFreeze "
+        f"LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId "
+        "WHERE ProbeSet.GeneId IS NOT NULL "
+        f"AND {temp_table}.value IS NOT NULL "
+        "AND GenoXRef.GenoFreezeId = GenoFreeze.Id "
+        "AND GenoFreeze.Name = %(db_name)s "
+        "AND Geno.Id=GenoXRef.GenoId "
+        "ORDER BY Geno.Id")
+
+def fetch_probeset_literature_correlations(temp_table: str) -> str:
+    """
+    Helper function for `fetch_literature_correlations` below, to build query
+    for `ProbeSet*` tables.
+    """
+    return (
+        f"SELECT ProbeSet.Name, {temp_table}.value "
+        "FROM ProbeSet, ProbeSetXRef, ProbeSetFreeze "
+        "LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId "
+        "WHERE ProbeSet.GeneId IS NOT NULL "
+        "AND {temp_table}.value IS NOT NULL "
+        "AND ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id "
+        "AND ProbeSetFreeze.Name = %(db_name)s "
+        "AND ProbeSet.Id=ProbeSetXRef.ProbeSetId "
+        "ORDER BY ProbeSet.Id")
+
+def fetch_literature_correlations(
+        species: str, gene_id: int, dataset: dict, return_number: int,
+        conn: Any) -> dict:
+    """
+    Gather the literature correlation data and pair it with trait id string(s).
+
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.fetchLitCorrelations` function in
+    GeneNetwork1.
+    """
+    temp_table = build_temporary_literature_table(
+        species, gene_id, return_number, conn)
+    query_fns = {
+        "Geno": fetch_geno_literature_correlations,
+        # "Temp": fetch_temp_literature_correlations,
+        # "Publish": fetch_publish_literature_correlations,
+        "ProbeSet": fetch_probeset_literature_correlations}
+    with conn.cursor as cursor:
+        cursor.execute(
+            query_fns[dataset["dataset_type"]](temp_table),
+            db_name=dataset["dataset_name"])
+        results = cursor.fetchall()
+        cursor.execute("DROP TEMPORARY TABLE %s", temp_table)
+        return dict(results)
+
+def fetch_symbol_value_pair_dict(
+        symbol_list: Tuple[str, ...], data_id_dict: dict,
+        conn: Any) -> Dict[str, Tuple[float, ...]]:
+    """
+    Map each gene symbols to the corresponding tissue expression data.
+
+    This is a migration of the
+    `web.webqtl.correlation.correlationFunction.getSymbolValuePairDict` function
+    in GeneNetwork1.
+    """
+    data_ids = {
+        symbol: data_id_dict.get(symbol) for symbol in symbol_list
+        if data_id_dict.get(symbol) is not None
+    }
+    query = "SELECT Id, value FROM TissueProbeSetData WHERE Id IN %(data_ids)s"
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            data_ids=tuple(data_ids.values()))
+        value_results = cursor.fetchall()
+        return {
+            key: tuple(row[1] for row in value_results if row[0] == key)
+            for key in data_ids.keys()
+        }
+
+    return {}
+
+def fetch_gene_symbol_tissue_value_dict(
+        symbol_list: Tuple[str, ...], data_id_dict: dict, conn: Any,
+        limit_num: int = 1000) -> dict:#getGeneSymbolTissueValueDict
+    """
+    Wrapper function for `gn3.db.correlations.fetch_symbol_value_pair_dict`.
+
+    This is a migrations of the
+    `web.webqtl.correlation.correlationFunction.getGeneSymbolTissueValueDict` in
+    GeneNetwork1.
+    """
+    count = len(symbol_list)
+    if count != 0 and count <= limit_num:
+        return fetch_symbol_value_pair_dict(symbol_list, data_id_dict, conn)
+
+    if count > limit_num:
+        return {
+            key: value for dct in [
+                fetch_symbol_value_pair_dict(sl, data_id_dict, conn)
+                for sl in partition_all(limit_num, symbol_list)]
+            for key, value in dct.items()
+        }
+
+    return {}
+
+def fetch_tissue_probeset_xref_info(
+        gene_name_list: Tuple[str, ...], probeset_freeze_id: int,
+        conn: Any) -> Tuple[tuple, dict, dict, dict, dict, dict, dict]:
+    """
+    Retrieve the ProbeSet XRef information for tissues.
+
+    This is a migration of the
+    `web.webqtl.correlation.correlationFunction.getTissueProbeSetXRefInfo`
+    function in GeneNetwork1."""
+    with conn.cursor() as cursor:
+        if len(gene_name_list) == 0:
+            query = (
+                "SELECT t.Symbol, t.GeneId, t.DataId, t.Chr, t.Mb, "
+                "t.description, t.Probe_Target_Description "
+                "FROM "
+                "("
+                "  SELECT Symbol, max(Mean) AS maxmean "
+                "  FROM TissueProbeSetXRef "
+                "  WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+                "  AND Symbol != '' "
+                "  AND Symbol IS NOT NULL "
+                "  GROUP BY Symbol"
+                ") AS x "
+                "INNER JOIN TissueProbeSetXRef AS t ON t.Symbol = x.Symbol "
+                "AND t.Mean = x.maxmean")
+            cursor.execute(query, probeset_freeze_id=probeset_freeze_id)
+        else:
+            query = (
+                "SELECT t.Symbol, t.GeneId, t.DataId, t.Chr, t.Mb, "
+                "t.description, t.Probe_Target_Description "
+                "FROM "
+                "("
+                "  SELECT Symbol, max(Mean) AS maxmean "
+                "  FROM TissueProbeSetXRef "
+                "  WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+                "  AND Symbol in %(symbols)s "
+                "  GROUP BY Symbol"
+                ") AS x "
+                "INNER JOIN TissueProbeSetXRef AS t ON t.Symbol = x.Symbol "
+                "AND t.Mean = x.maxmean")
+            cursor.execute(
+                query, probeset_freeze_id=probeset_freeze_id,
+                symbols=tuple(gene_name_list))
+
+        results = cursor.fetchall()
+
+    return reduce(
+        lambda acc, item: (
+            acc[0] + (item[0],),
+            {**acc[1], item[0].lower(): item[1]},
+            {**acc[1], item[0].lower(): item[2]},
+            {**acc[1], item[0].lower(): item[3]},
+            {**acc[1], item[0].lower(): item[4]},
+            {**acc[1], item[0].lower(): item[5]},
+            {**acc[1], item[0].lower(): item[6]}),
+        results or tuple(),
+        (tuple(), {}, {}, {}, {}, {}, {}))
+
+def fetch_gene_symbol_tissue_value_dict_for_trait(
+        gene_name_list: Tuple[str, ...], probeset_freeze_id: int,
+        conn: Any) -> dict:
+    """
+    Fetches a map of the gene symbols to the tissue values.
+
+    This is a migration of the
+    `web.webqtl.correlation.correlationFunction.getGeneSymbolTissueValueDictForTrait`
+    function in GeneNetwork1.
+    """
+    xref_info = fetch_tissue_probeset_xref_info(
+        gene_name_list, probeset_freeze_id, conn)
+    if xref_info[0]:
+        return fetch_gene_symbol_tissue_value_dict(xref_info[0], xref_info[2], conn)
+    return {}
+
+def build_temporary_tissue_correlations_table(
+        trait_symbol: str, probeset_freeze_id: int, method: str,
+        return_number: int, conn: Any) -> str:
+    """
+    Build a temporary table to hold the tissue correlations data.
+
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.getTempTissueCorrTable` function in
+    GeneNetwork1."""
+    # We should probably pass the `correlations_of_all_tissue_traits` function
+    # as an argument to this function and get rid of the one call immediately
+    # following this comment.
+    symbol_corr_dict, symbol_p_value_dict = correlations_of_all_tissue_traits(
+        fetch_gene_symbol_tissue_value_dict_for_trait(
+            (trait_symbol,), probeset_freeze_id, conn),
+        fetch_gene_symbol_tissue_value_dict_for_trait(
+            tuple(), probeset_freeze_id, conn),
+        method)
+
+    symbol_corr_list = sorted(
+        symbol_corr_dict.items(), key=lambda key_val: key_val[1])
+
+    temp_table_name = f"TOPTISSUE{random_string(8)}"
+    create_query = (
+        "CREATE TEMPORARY TABLE {temp_table_name}"
+        "(Symbol varchar(100) PRIMARY KEY, Correlation float, PValue float)")
+    insert_query = (
+        f"INSERT INTO {temp_table_name}(Symbol, Correlation, PValue) "
+        " VALUES (%(symbol)s, %(correlation)s, %(pvalue)s)")
+
+    with conn.cursor() as cursor:
+        cursor.execute(create_query)
+        cursor.execute(
+            insert_query,
+            tuple({
+                "symbol": symbol,
+                "correlation": corr,
+                "pvalue": symbol_p_value_dict[symbol]
+            } for symbol, corr in symbol_corr_list[0: 2 * return_number]))
+
+    return temp_table_name
+
+def fetch_tissue_correlations(# pylint: disable=R0913
+        dataset: dict, trait_symbol: str, probeset_freeze_id: int, method: str,
+        return_number: int, conn: Any) -> dict:
+    """
+    Pair tissue correlations data with a trait id string.
+
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.fetchTissueCorrelations` function in
+    GeneNetwork1.
+    """
+    temp_table = build_temporary_tissue_correlations_table(
+        trait_symbol, probeset_freeze_id, method, return_number, conn)
+    with conn.cursor() as cursor:
+        cursor.execute(
+            (
+                f"SELECT ProbeSet.Name, {temp_table}.Correlation, "
+                f"{temp_table}.PValue "
+                "FROM (ProbeSet, ProbeSetXRef, ProbeSetFreeze) "
+                "LEFT JOIN {temp_table} ON {temp_table}.Symbol=ProbeSet.Symbol "
+                "WHERE ProbeSetFreeze.Name = %(db_name) "
+                "AND ProbeSetFreeze.Id=ProbeSetXRef.ProbeSetFreezeId "
+                "AND ProbeSet.Id = ProbeSetXRef.ProbeSetId "
+                "AND ProbeSet.Symbol IS NOT NULL "
+                "AND %s.Correlation IS NOT NULL"),
+            db_name=dataset["dataset_name"])
+        results = cursor.fetchall()
+        cursor.execute("DROP TEMPORARY TABLE %s", temp_table)
+        return {
+            trait_name: (tiss_corr, tiss_p_val)
+            for trait_name, tiss_corr, tiss_p_val in results}
+
+def check_for_literature_info(conn: Any, geneid: int) -> bool:
+    """
+    Checks the database to find out whether the trait with `geneid` has any
+    associated literature.
+
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.checkForLitInfo` function in
+    GeneNetwork1.
+    """
+    query = "SELECT 1 FROM LCorrRamin3 WHERE GeneId1=%s LIMIT 1"
+    with conn.cursor() as cursor:
+        cursor.execute(query, geneid)
+        result = cursor.fetchone()
+        if result:
+            return True
+
+    return False
+
+def check_symbol_for_tissue_correlation(
+        conn: Any, tissue_probeset_freeze_id: int, symbol: str = "") -> bool:
+    """
+    Checks whether a symbol has any associated tissue correlations.
+
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.checkSymbolForTissueCorr` function
+    in GeneNetwork1.
+    """
+    query = (
+        "SELECT 1 FROM  TissueProbeSetXRef "
+        "WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+        "AND Symbol=%(symbol)s LIMIT 1")
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query, probeset_freeze_id=tissue_probeset_freeze_id, symbol=symbol)
+        result = cursor.fetchone()
+        if result:
+            return True
+
+    return False
diff --git a/gn3/db/species.py b/gn3/db/species.py
index 0deae4e..702a9a8 100644
--- a/gn3/db/species.py
+++ b/gn3/db/species.py
@@ -30,3 +30,30 @@ def get_chromosome(name: str, is_species: bool, conn: Any) -> Optional[Tuple]:
     with conn.cursor() as cursor:
         cursor.execute(_sql)
         return cursor.fetchall()
+
+def translate_to_mouse_gene_id(species: str, geneid: int, conn: Any) -> int:
+    """
+    Translate rat or human geneid to mouse geneid
+
+    This is a migration of the
+    `web.webqtl.correlation/CorrelationPage.translateToMouseGeneID` function in
+    GN1
+    """
+    assert species in ("rat", "mouse", "human"), "Invalid species"
+    if geneid is None:
+        return 0
+
+    if species == "mouse":
+        return geneid
+
+    with conn.cursor as cursor:
+        query = {
+            "rat": "SELECT mouse FROM GeneIDXRef WHERE rat = %s",
+            "human": "SELECT mouse FROM GeneIDXRef WHERE human = %s"
+        }
+        cursor.execute(query[species], geneid)
+        translated_gene_id = cursor.fetchone()
+        if translated_gene_id:
+            return translated_gene_id[0]
+
+    return 0 # default if all else fails
diff --git a/gn3/db/traits.py b/gn3/db/traits.py
index f2673c8..1c6aaa7 100644
--- a/gn3/db/traits.py
+++ b/gn3/db/traits.py
@@ -1,12 +1,81 @@
 """This class contains functions relating to trait data manipulation"""
 import os
+from functools import reduce
 from typing import Any, Dict, Union, Sequence
+
 from gn3.settings import TMPDIR
 from gn3.random import random_string
 from gn3.function_helpers import compose
 from gn3.db.datasets import retrieve_trait_dataset
 
 
+def export_trait_data(
+        trait_data: dict, samplelist: Sequence[str], dtype: str = "val",
+        var_exists: bool = False, n_exists: bool = False):
+    """
+    Export data according to `samplelist`. Mostly used in calculating
+    correlations.
+
+    DESCRIPTION:
+    Migrated from
+    https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L166-L211
+
+    PARAMETERS
+    trait: (dict)
+      The dictionary of key-value pairs representing a trait
+    samplelist: (list)
+      A list of sample names
+    dtype: (str)
+      ... verify what this is ...
+    var_exists: (bool)
+      A flag indicating existence of variance
+    n_exists: (bool)
+      A flag indicating existence of ndata
+    """
+    def __export_all_types(tdata, sample):
+        sample_data = []
+        if tdata[sample]["value"]:
+            sample_data.append(tdata[sample]["value"])
+            if var_exists:
+                if tdata[sample]["variance"]:
+                    sample_data.append(tdata[sample]["variance"])
+                else:
+                    sample_data.append(None)
+            if n_exists:
+                if tdata[sample]["ndata"]:
+                    sample_data.append(tdata[sample]["ndata"])
+                else:
+                    sample_data.append(None)
+        else:
+            if var_exists and n_exists:
+                sample_data += [None, None, None]
+            elif var_exists or n_exists:
+                sample_data += [None, None]
+            else:
+                sample_data.append(None)
+
+        return tuple(sample_data)
+
+    def __exporter(accumulator, sample):
+        # pylint: disable=[R0911]
+        if sample in trait_data["data"]:
+            if dtype == "val":
+                return accumulator + (trait_data["data"][sample]["value"], )
+            if dtype == "var":
+                return accumulator + (trait_data["data"][sample]["variance"], )
+            if dtype == "N":
+                return accumulator + (trait_data["data"][sample]["ndata"], )
+            if dtype == "all":
+                return accumulator + __export_all_types(trait_data["data"], sample)
+            raise KeyError("Type `%s` is incorrect" % dtype)
+        if var_exists and n_exists:
+            return accumulator + (None, None, None)
+        if var_exists or n_exists:
+            return accumulator + (None, None)
+        return accumulator + (None,)
+
+    return reduce(__exporter, samplelist, tuple())
+
 def get_trait_csv_sample_data(conn: Any,
                               trait_name: int, phenotype_id: int):
     """Fetch a trait and return it as a csv string"""
@@ -674,3 +743,27 @@ def generate_traits_filename(base_path: str = TMPDIR):
     """Generate a unique filename for use with generated traits files."""
     return "{}/traits_test_file_{}.txt".format(
         os.path.abspath(base_path), random_string(10))
+
+def export_informative(trait_data: dict, inc_var: bool = False) -> tuple:
+    """
+    Export informative strain
+
+    This is a migration of the `exportInformative` function in
+    web/webqtl/base/webqtlTrait.py module in GeneNetwork1.
+
+    There is a chance that the original implementation has a bug, especially
+    dealing with the `inc_var` value. It the `inc_var` value is meant to control
+    the inclusion of the `variance` value, then the current implementation, and
+    that one in GN1 have a bug.
+    """
+    def __exporter__(acc, data_item):
+        if not inc_var or data_item["variance"] is not None:
+            return (
+                acc[0] + (data_item["sample_name"],),
+                acc[1] + (data_item["value"],),
+                acc[2] + (data_item["variance"],))
+        return acc
+    return reduce(
+        __exporter__,
+        filter(lambda td: td["value"] is not None, trait_data["data"].values()),
+        (tuple(), tuple(), tuple()))