diff options
Diffstat (limited to 'gn3/db/correlations.py')
-rw-r--r-- | gn3/db/correlations.py | 564 |
1 files changed, 564 insertions, 0 deletions
diff --git a/gn3/db/correlations.py b/gn3/db/correlations.py new file mode 100644 index 0000000..3d12019 --- /dev/null +++ b/gn3/db/correlations.py @@ -0,0 +1,564 @@ +""" +This module will hold functions that are used in the (partial) correlations +feature to access the database to retrieve data needed for computations. +""" +import os +from functools import reduce +from typing import Any, Dict, Tuple, Union + +from gn3.random import random_string +from gn3.data_helpers import partition_all +from gn3.db.species import translate_to_mouse_gene_id + +def get_filename(conn: Any, target_db_name: str, text_files_dir: str) -> Union[ + str, bool]: + """ + Retrieve the name of the reference database file with which correlations are + computed. + + This is a migration of the + `web.webqtl.correlation.CorrelationPage.getFileName` function in + GeneNetwork1. + """ + with conn.cursor() as cursor: + cursor.execute( + "SELECT Id, FullName from ProbeSetFreeze WHERE Name=%s", + (target_db_name,)) + result = cursor.fetchone() + if result: + filename = "ProbeSetFreezeId_{tid}_FullName_{fname}.txt".format( + tid=result[0], + fname=result[1].replace(' ', '_').replace('/', '_')) + return ((filename in os.listdir(text_files_dir)) + and f"{text_files_dir}/{filename}") + + return False + +def build_temporary_literature_table( + conn: Any, species: str, gene_id: int, return_number: int) -> str: + """ + Build and populate a temporary table to hold the literature correlation data + to be used in computations. + + "This is a migration of the + `web.webqtl.correlation.CorrelationPage.getTempLiteratureTable` function in + GeneNetwork1. + """ + def __translated_species_id(row, cursor): + if species == "mouse": + return row[1] + query = { + "rat": "SELECT rat FROM GeneIDXRef WHERE mouse=%s", + "human": "SELECT human FROM GeneIDXRef WHERE mouse=%d"} + if species in query.keys(): + cursor.execute(query[species], row[1]) + record = cursor.fetchone() + if record: + return record[0] + return None + return None + + temp_table_name = f"TOPLITERATURE{random_string(8)}" + with conn.cursor as cursor: + mouse_geneid = translate_to_mouse_gene_id(species, gene_id, conn) + data_query = ( + "SELECT GeneId1, GeneId2, value FROM LCorrRamin3 " + "WHERE GeneId1 = %(mouse_gene_id)s " + "UNION ALL " + "SELECT GeneId2, GeneId1, value FROM LCorrRamin3 " + "WHERE GeneId2 = %(mouse_gene_id)s " + "AND GeneId1 != %(mouse_gene_id)s") + cursor.execute( + (f"CREATE TEMPORARY TABLE {temp_table_name} (" + "GeneId1 int(12) unsigned, " + "GeneId2 int(12) unsigned PRIMARY KEY, " + "value double)")) + cursor.execute(data_query, mouse_gene_id=mouse_geneid) + literature_data = [ + {"GeneId1": row[0], "GeneId2": row[1], "value": row[2]} + for row in cursor.fetchall() + if __translated_species_id(row, cursor)] + + cursor.execute( + (f"INSERT INTO {temp_table_name} " + "VALUES (%(GeneId1)s, %(GeneId2)s, %(value)s)"), + literature_data[0:(2 * return_number)]) + + return temp_table_name + +def fetch_geno_literature_correlations(temp_table: str) -> str: + """ + Helper function for `fetch_literature_correlations` below, to build query + for `Geno*` tables. + """ + return ( + f"SELECT Geno.Name, {temp_table}.value " + "FROM Geno, GenoXRef, GenoFreeze " + f"LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId " + "WHERE ProbeSet.GeneId IS NOT NULL " + f"AND {temp_table}.value IS NOT NULL " + "AND GenoXRef.GenoFreezeId = GenoFreeze.Id " + "AND GenoFreeze.Name = %(db_name)s " + "AND Geno.Id=GenoXRef.GenoId " + "ORDER BY Geno.Id") + +def fetch_probeset_literature_correlations(temp_table: str) -> str: + """ + Helper function for `fetch_literature_correlations` below, to build query + for `ProbeSet*` tables. + """ + return ( + f"SELECT ProbeSet.Name, {temp_table}.value " + "FROM ProbeSet, ProbeSetXRef, ProbeSetFreeze " + "LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId " + "WHERE ProbeSet.GeneId IS NOT NULL " + "AND {temp_table}.value IS NOT NULL " + "AND ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id " + "AND ProbeSetFreeze.Name = %(db_name)s " + "AND ProbeSet.Id=ProbeSetXRef.ProbeSetId " + "ORDER BY ProbeSet.Id") + +def fetch_literature_correlations( + species: str, gene_id: int, dataset: dict, return_number: int, + conn: Any) -> dict: + """ + Gather the literature correlation data and pair it with trait id string(s). + + This is a migration of the + `web.webqtl.correlation.CorrelationPage.fetchLitCorrelations` function in + GeneNetwork1. + """ + temp_table = build_temporary_literature_table( + conn, species, gene_id, return_number) + query_fns = { + "Geno": fetch_geno_literature_correlations, + # "Temp": fetch_temp_literature_correlations, + # "Publish": fetch_publish_literature_correlations, + "ProbeSet": fetch_probeset_literature_correlations} + with conn.cursor as cursor: + cursor.execute( + query_fns[dataset["dataset_type"]](temp_table), + db_name=dataset["dataset_name"]) + results = cursor.fetchall() + cursor.execute("DROP TEMPORARY TABLE %s", temp_table) + return dict(results) + +def fetch_symbol_value_pair_dict( + symbol_list: Tuple[str, ...], data_id_dict: dict, + conn: Any) -> Dict[str, Tuple[float, ...]]: + """ + Map each gene symbols to the corresponding tissue expression data. + + This is a migration of the + `web.webqtl.correlation.correlationFunction.getSymbolValuePairDict` function + in GeneNetwork1. + """ + data_ids = { + symbol: data_id_dict.get(symbol) for symbol in symbol_list + if data_id_dict.get(symbol) is not None + } + query = "SELECT Id, value FROM TissueProbeSetData WHERE Id IN %(data_ids)s" + with conn.cursor() as cursor: + cursor.execute( + query, + data_ids=tuple(data_ids.values())) + value_results = cursor.fetchall() + return { + key: tuple(row[1] for row in value_results if row[0] == key) + for key in data_ids.keys() + } + + return {} + +def fetch_gene_symbol_tissue_value_dict( + symbol_list: Tuple[str, ...], data_id_dict: dict, conn: Any, + limit_num: int = 1000) -> dict:#getGeneSymbolTissueValueDict + """ + Wrapper function for `gn3.db.correlations.fetch_symbol_value_pair_dict`. + + This is a migrations of the + `web.webqtl.correlation.correlationFunction.getGeneSymbolTissueValueDict` in + GeneNetwork1. + """ + count = len(symbol_list) + if count != 0 and count <= limit_num: + return fetch_symbol_value_pair_dict(symbol_list, data_id_dict, conn) + + if count > limit_num: + return { + key: value for dct in [ + fetch_symbol_value_pair_dict(sl, data_id_dict, conn) + for sl in partition_all(limit_num, symbol_list)] + for key, value in dct.items() + } + + return {} + +def fetch_tissue_probeset_xref_info( + gene_name_list: Tuple[str, ...], probeset_freeze_id: int, + conn: Any) -> Tuple[tuple, dict, dict, dict, dict, dict, dict]: + """ + Retrieve the ProbeSet XRef information for tissues. + + This is a migration of the + `web.webqtl.correlation.correlationFunction.getTissueProbeSetXRefInfo` + function in GeneNetwork1.""" + with conn.cursor() as cursor: + if len(gene_name_list) == 0: + query = ( + "SELECT t.Symbol, t.GeneId, t.DataId, t.Chr, t.Mb, " + "t.description, t.Probe_Target_Description " + "FROM " + "(" + " SELECT Symbol, max(Mean) AS maxmean " + " FROM TissueProbeSetXRef " + " WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s " + " AND Symbol != '' " + " AND Symbol IS NOT NULL " + " GROUP BY Symbol" + ") AS x " + "INNER JOIN TissueProbeSetXRef AS t ON t.Symbol = x.Symbol " + "AND t.Mean = x.maxmean") + cursor.execute(query, probeset_freeze_id=probeset_freeze_id) + else: + query = ( + "SELECT t.Symbol, t.GeneId, t.DataId, t.Chr, t.Mb, " + "t.description, t.Probe_Target_Description " + "FROM " + "(" + " SELECT Symbol, max(Mean) AS maxmean " + " FROM TissueProbeSetXRef " + " WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s " + " AND Symbol in %(symbols)s " + " GROUP BY Symbol" + ") AS x " + "INNER JOIN TissueProbeSetXRef AS t ON t.Symbol = x.Symbol " + "AND t.Mean = x.maxmean") + cursor.execute( + query, probeset_freeze_id=probeset_freeze_id, + symbols=tuple(gene_name_list)) + + results = cursor.fetchall() + + return reduce( + lambda acc, item: ( + acc[0] + (item[0],), + {**acc[1], item[0].lower(): item[1]}, + {**acc[1], item[0].lower(): item[2]}, + {**acc[1], item[0].lower(): item[3]}, + {**acc[1], item[0].lower(): item[4]}, + {**acc[1], item[0].lower(): item[5]}, + {**acc[1], item[0].lower(): item[6]}), + results or tuple(), + (tuple(), {}, {}, {}, {}, {}, {})) + +def fetch_gene_symbol_tissue_value_dict_for_trait( + gene_name_list: Tuple[str, ...], probeset_freeze_id: int, + conn: Any) -> dict: + """ + Fetches a map of the gene symbols to the tissue values. + + This is a migration of the + `web.webqtl.correlation.correlationFunction.getGeneSymbolTissueValueDictForTrait` + function in GeneNetwork1. + """ + xref_info = fetch_tissue_probeset_xref_info( + gene_name_list, probeset_freeze_id, conn) + if xref_info[0]: + return fetch_gene_symbol_tissue_value_dict(xref_info[0], xref_info[2], conn) + return {} + +def build_temporary_tissue_correlations_table( + conn: Any, trait_symbol: str, probeset_freeze_id: int, method: str, + return_number: int) -> str: + """ + Build a temporary table to hold the tissue correlations data. + + This is a migration of the + `web.webqtl.correlation.CorrelationPage.getTempTissueCorrTable` function in + GeneNetwork1.""" + # We should probably pass the `correlations_of_all_tissue_traits` function + # as an argument to this function and get rid of the one call immediately + # following this comment. + from gn3.computations.partial_correlations import (#pylint: disable=[C0415, R0401] + correlations_of_all_tissue_traits) + # This import above is necessary within the function to avoid + # circular-imports. + # + # + # This import above is indicative of convoluted code, with the computation + # being interwoven with the data retrieval. This needs to be changed, such + # that the function being imported here is no longer necessary, or have the + # imported function passed to this function as an argument. + symbol_corr_dict, symbol_p_value_dict = correlations_of_all_tissue_traits( + fetch_gene_symbol_tissue_value_dict_for_trait( + (trait_symbol,), probeset_freeze_id, conn), + fetch_gene_symbol_tissue_value_dict_for_trait( + tuple(), probeset_freeze_id, conn), + method) + + symbol_corr_list = sorted( + symbol_corr_dict.items(), key=lambda key_val: key_val[1]) + + temp_table_name = f"TOPTISSUE{random_string(8)}" + create_query = ( + "CREATE TEMPORARY TABLE {temp_table_name}" + "(Symbol varchar(100) PRIMARY KEY, Correlation float, PValue float)") + insert_query = ( + f"INSERT INTO {temp_table_name}(Symbol, Correlation, PValue) " + " VALUES (%(symbol)s, %(correlation)s, %(pvalue)s)") + + with conn.cursor() as cursor: + cursor.execute(create_query) + cursor.execute( + insert_query, + tuple({ + "symbol": symbol, + "correlation": corr, + "pvalue": symbol_p_value_dict[symbol] + } for symbol, corr in symbol_corr_list[0: 2 * return_number])) + + return temp_table_name + +def fetch_tissue_correlations(# pylint: disable=R0913 + dataset: dict, trait_symbol: str, probeset_freeze_id: int, method: str, + return_number: int, conn: Any) -> dict: + """ + Pair tissue correlations data with a trait id string. + + This is a migration of the + `web.webqtl.correlation.CorrelationPage.fetchTissueCorrelations` function in + GeneNetwork1. + """ + temp_table = build_temporary_tissue_correlations_table( + conn, trait_symbol, probeset_freeze_id, method, return_number) + with conn.cursor() as cursor: + cursor.execute( + ( + f"SELECT ProbeSet.Name, {temp_table}.Correlation, " + f"{temp_table}.PValue " + "FROM (ProbeSet, ProbeSetXRef, ProbeSetFreeze) " + "LEFT JOIN {temp_table} ON {temp_table}.Symbol=ProbeSet.Symbol " + "WHERE ProbeSetFreeze.Name = %(db_name) " + "AND ProbeSetFreeze.Id=ProbeSetXRef.ProbeSetFreezeId " + "AND ProbeSet.Id = ProbeSetXRef.ProbeSetId " + "AND ProbeSet.Symbol IS NOT NULL " + "AND %s.Correlation IS NOT NULL"), + db_name=dataset["dataset_name"]) + results = cursor.fetchall() + cursor.execute("DROP TEMPORARY TABLE %s", temp_table) + return { + trait_name: (tiss_corr, tiss_p_val) + for trait_name, tiss_corr, tiss_p_val in results} + +def check_for_literature_info(conn: Any, geneid: int) -> bool: + """ + Checks the database to find out whether the trait with `geneid` has any + associated literature. + + This is a migration of the + `web.webqtl.correlation.CorrelationPage.checkForLitInfo` function in + GeneNetwork1. + """ + query = "SELECT 1 FROM LCorrRamin3 WHERE GeneId1=%s LIMIT 1" + with conn.cursor() as cursor: + cursor.execute(query, geneid) + result = cursor.fetchone() + if result: + return True + + return False + +def check_symbol_for_tissue_correlation( + conn: Any, tissue_probeset_freeze_id: int, symbol: str = "") -> bool: + """ + Checks whether a symbol has any associated tissue correlations. + + This is a migration of the + `web.webqtl.correlation.CorrelationPage.checkSymbolForTissueCorr` function + in GeneNetwork1. + """ + query = ( + "SELECT 1 FROM TissueProbeSetXRef " + "WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s " + "AND Symbol=%(symbol)s LIMIT 1") + with conn.cursor() as cursor: + cursor.execute( + query, probeset_freeze_id=tissue_probeset_freeze_id, symbol=symbol) + result = cursor.fetchone() + if result: + return True + + return False + +def fetch_sample_ids( + conn: Any, sample_names: Tuple[str, ...], species_name: str) -> Tuple[ + int, ...]: + """ + Given a sequence of sample names, and a species name, return the sample ids + that correspond to both. + + This is a partial migration of the + `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in + GeneNetwork1. + """ + query = ( + "SELECT Strain.Id FROM Strain, Species " + "WHERE Strain.Name IN %(samples_names)s " + "AND Strain.SpeciesId=Species.Id " + "AND Species.name=%(species_name)s") + with conn.cursor() as cursor: + cursor.execute( + query, + { + "samples_names": tuple(sample_names), + "species_name": species_name + }) + return tuple(row[0] for row in cursor.fetchall()) + +def build_query_sgo_lit_corr( + db_type: str, temp_table: str, sample_id_columns: str, + joins: Tuple[str, ...]) -> str: + """ + Build query for `SGO Literature Correlation` data, when querying the given + `temp_table` temporary table. + + This is a partial migration of the + `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in + GeneNetwork1. + """ + return ( + (f"SELECT {db_type}.Name, {temp_table}.value, " + + sample_id_columns + + f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " + + f"LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId " + + " ".join(joins) + + " WHERE ProbeSet.GeneId IS NOT NULL " + + f"AND {temp_table}.value IS NOT NULL " + + f"AND {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " + + f"AND {db_type}Freeze.Name = %(db_name)s " + + f"AND {db_type}.Id = {db_type}XRef.{db_type}Id " + + f"ORDER BY {db_type}.Id"), + 2) + +def build_query_tissue_corr(db_type, temp_table, sample_id_columns, joins): + """ + Build query for `Tissue Correlation` data, when querying the given + `temp_table` temporary table. + + This is a partial migration of the + `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in + GeneNetwork1. + """ + return ( + (f"SELECT {db_type}.Name, {temp_table}.Correlation, " + + f"{temp_table}.PValue, " + + sample_id_columns + + f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " + + f"LEFT JOIN {temp_table} ON {temp_table}.Symbol=ProbeSet.Symbol " + + " ".join(joins) + + " WHERE ProbeSet.Symbol IS NOT NULL " + + f"AND {temp_table}.Correlation IS NOT NULL " + + f"AND {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " + + f"AND {db_type}Freeze.Name = %(db_name)s " + + f"AND {db_type}.Id = {db_type}XRef.{db_type}Id " + f"ORDER BY {db_type}.Id"), + 3) + +def fetch_all_database_data(# pylint: disable=[R0913, R0914] + conn: Any, species: str, gene_id: int, trait_symbol: str, + samples: Tuple[str, ...], dataset: dict, method: str, + return_number: int, probeset_freeze_id: int) -> Tuple[ + Tuple[float], int]: + """ + This is a migration of the + `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in + GeneNetwork1. + """ + db_type = dataset["dataset_type"] + db_name = dataset["dataset_name"] + def __build_query__(sample_ids, temp_table): + sample_id_columns = ", ".join(f"T{smpl}.value" for smpl in sample_ids) + if db_type == "Publish": + joins = tuple( + ("LEFT JOIN PublishData AS T{item} " + "ON T{item}.Id = PublishXRef.DataId " + "AND T{item}.StrainId = %(T{item}_sample_id)s") + for item in sample_ids) + return ( + ("SELECT PublishXRef.Id, " + + sample_id_columns + + "FROM (PublishXRef, PublishFreeze) " + + " ".join(joins) + + " WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId " + "AND PublishFreeze.Name = %(db_name)s"), + 1) + if temp_table is not None: + joins = tuple( + (f"LEFT JOIN {db_type}Data AS T{item} " + f"ON T{item}.Id = {db_type}XRef.DataId " + f"AND T{item}.StrainId=%(T{item}_sample_id)s") + for item in sample_ids) + if method.lower() == "sgo literature correlation": + return build_query_sgo_lit_corr( + sample_ids, temp_table, sample_id_columns, joins) + if method.lower() in ( + "tissue correlation, pearson's r", + "tissue correlation, spearman's rho"): + return build_query_tissue_corr( + sample_ids, temp_table, sample_id_columns, joins) + joins = tuple( + (f"LEFT JOIN {db_type}Data AS T{item} " + f"ON T{item}.Id = {db_type}XRef.DataId " + f"AND T{item}.StrainId = %(T{item}_sample_id)s") + for item in sample_ids) + return ( + ( + f"SELECT {db_type}.Name, " + + sample_id_columns + + f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " + + " ".join(joins) + + f" WHERE {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " + + f"AND {db_type}Freeze.Name = %(db_name)s " + + f"AND {db_type}.Id = {db_type}XRef.{db_type}Id " + + f"ORDER BY {db_type}.Id"), + 1) + + def __fetch_data__(sample_ids, temp_table): + query, data_start_pos = __build_query__(sample_ids, temp_table) + with conn.cursor() as cursor: + cursor.execute( + query, + {"db_name": db_name, + **{f"T{item}_sample_id": item for item in sample_ids}}) + return (cursor.fetchall(), data_start_pos) + + sample_ids = tuple( + # look into graduating this to an argument and removing the `samples` + # and `species` argument: function currying and compositions might help + # with this + f"{sample_id}" for sample_id in + fetch_sample_ids(conn, samples, species)) + + temp_table = None + if gene_id and db_type == "probeset": + if method.lower() == "sgo literature correlation": + temp_table = build_temporary_literature_table( + conn, species, gene_id, return_number) + if method.lower() in ( + "tissue correlation, pearson's r", + "tissue correlation, spearman's rho"): + temp_table = build_temporary_tissue_correlations_table( + conn, trait_symbol, probeset_freeze_id, method, return_number) + + trait_database = tuple( + item for sublist in + (__fetch_data__(ssample_ids, temp_table) + for ssample_ids in partition_all(25, sample_ids)) + for item in sublist) + + if temp_table: + with conn.cursor() as cursor: + cursor.execute(f"DROP TEMPORARY TABLE {temp_table}") + + return (trait_database[0], trait_database[1]) |