about summary refs log tree commit diff
path: root/gn3/db/correlations.py
diff options
context:
space:
mode:
Diffstat (limited to 'gn3/db/correlations.py')
-rw-r--r--gn3/db/correlations.py564
1 files changed, 564 insertions, 0 deletions
diff --git a/gn3/db/correlations.py b/gn3/db/correlations.py
new file mode 100644
index 0000000..3d12019
--- /dev/null
+++ b/gn3/db/correlations.py
@@ -0,0 +1,564 @@
+"""
+This module will hold functions that are used in the (partial) correlations
+feature to access the database to retrieve data needed for computations.
+"""
+import os
+from functools import reduce
+from typing import Any, Dict, Tuple, Union
+
+from gn3.random import random_string
+from gn3.data_helpers import partition_all
+from gn3.db.species import translate_to_mouse_gene_id
+
+def get_filename(conn: Any, target_db_name: str, text_files_dir: str) -> Union[
+        str, bool]:
+    """
+    Retrieve the name of the reference database file with which correlations are
+    computed.
+
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.getFileName` function in
+    GeneNetwork1.
+    """
+    with conn.cursor() as cursor:
+        cursor.execute(
+            "SELECT Id, FullName from ProbeSetFreeze WHERE Name=%s",
+            (target_db_name,))
+        result = cursor.fetchone()
+        if result:
+            filename = "ProbeSetFreezeId_{tid}_FullName_{fname}.txt".format(
+                tid=result[0],
+                fname=result[1].replace(' ', '_').replace('/', '_'))
+            return ((filename in os.listdir(text_files_dir))
+                    and f"{text_files_dir}/{filename}")
+
+    return False
+
+def build_temporary_literature_table(
+        conn: Any, species: str, gene_id: int, return_number: int) -> str:
+    """
+    Build and populate a temporary table to hold the literature correlation data
+    to be used in computations.
+
+    "This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.getTempLiteratureTable` function in
+    GeneNetwork1.
+    """
+    def __translated_species_id(row, cursor):
+        if species == "mouse":
+            return row[1]
+        query = {
+            "rat": "SELECT rat FROM GeneIDXRef WHERE mouse=%s",
+            "human": "SELECT human FROM GeneIDXRef WHERE mouse=%d"}
+        if species in query.keys():
+            cursor.execute(query[species], row[1])
+            record = cursor.fetchone()
+            if record:
+                return record[0]
+            return None
+        return None
+
+    temp_table_name = f"TOPLITERATURE{random_string(8)}"
+    with conn.cursor as cursor:
+        mouse_geneid = translate_to_mouse_gene_id(species, gene_id, conn)
+        data_query = (
+            "SELECT GeneId1, GeneId2, value FROM LCorrRamin3 "
+            "WHERE GeneId1 = %(mouse_gene_id)s "
+            "UNION ALL "
+            "SELECT GeneId2, GeneId1, value FROM LCorrRamin3 "
+            "WHERE GeneId2 = %(mouse_gene_id)s "
+            "AND GeneId1 != %(mouse_gene_id)s")
+        cursor.execute(
+            (f"CREATE TEMPORARY TABLE {temp_table_name} ("
+             "GeneId1 int(12) unsigned, "
+             "GeneId2 int(12) unsigned PRIMARY KEY, "
+             "value double)"))
+        cursor.execute(data_query, mouse_gene_id=mouse_geneid)
+        literature_data = [
+            {"GeneId1": row[0], "GeneId2": row[1], "value": row[2]}
+            for row in cursor.fetchall()
+            if __translated_species_id(row, cursor)]
+
+        cursor.execute(
+            (f"INSERT INTO {temp_table_name} "
+             "VALUES (%(GeneId1)s, %(GeneId2)s, %(value)s)"),
+            literature_data[0:(2 * return_number)])
+
+    return temp_table_name
+
+def fetch_geno_literature_correlations(temp_table: str) -> str:
+    """
+    Helper function for `fetch_literature_correlations` below, to build query
+    for `Geno*` tables.
+    """
+    return (
+        f"SELECT Geno.Name, {temp_table}.value "
+        "FROM Geno, GenoXRef, GenoFreeze "
+        f"LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId "
+        "WHERE ProbeSet.GeneId IS NOT NULL "
+        f"AND {temp_table}.value IS NOT NULL "
+        "AND GenoXRef.GenoFreezeId = GenoFreeze.Id "
+        "AND GenoFreeze.Name = %(db_name)s "
+        "AND Geno.Id=GenoXRef.GenoId "
+        "ORDER BY Geno.Id")
+
+def fetch_probeset_literature_correlations(temp_table: str) -> str:
+    """
+    Helper function for `fetch_literature_correlations` below, to build query
+    for `ProbeSet*` tables.
+    """
+    return (
+        f"SELECT ProbeSet.Name, {temp_table}.value "
+        "FROM ProbeSet, ProbeSetXRef, ProbeSetFreeze "
+        "LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId "
+        "WHERE ProbeSet.GeneId IS NOT NULL "
+        "AND {temp_table}.value IS NOT NULL "
+        "AND ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id "
+        "AND ProbeSetFreeze.Name = %(db_name)s "
+        "AND ProbeSet.Id=ProbeSetXRef.ProbeSetId "
+        "ORDER BY ProbeSet.Id")
+
+def fetch_literature_correlations(
+        species: str, gene_id: int, dataset: dict, return_number: int,
+        conn: Any) -> dict:
+    """
+    Gather the literature correlation data and pair it with trait id string(s).
+
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.fetchLitCorrelations` function in
+    GeneNetwork1.
+    """
+    temp_table = build_temporary_literature_table(
+        conn, species, gene_id, return_number)
+    query_fns = {
+        "Geno": fetch_geno_literature_correlations,
+        # "Temp": fetch_temp_literature_correlations,
+        # "Publish": fetch_publish_literature_correlations,
+        "ProbeSet": fetch_probeset_literature_correlations}
+    with conn.cursor as cursor:
+        cursor.execute(
+            query_fns[dataset["dataset_type"]](temp_table),
+            db_name=dataset["dataset_name"])
+        results = cursor.fetchall()
+        cursor.execute("DROP TEMPORARY TABLE %s", temp_table)
+        return dict(results)
+
+def fetch_symbol_value_pair_dict(
+        symbol_list: Tuple[str, ...], data_id_dict: dict,
+        conn: Any) -> Dict[str, Tuple[float, ...]]:
+    """
+    Map each gene symbols to the corresponding tissue expression data.
+
+    This is a migration of the
+    `web.webqtl.correlation.correlationFunction.getSymbolValuePairDict` function
+    in GeneNetwork1.
+    """
+    data_ids = {
+        symbol: data_id_dict.get(symbol) for symbol in symbol_list
+        if data_id_dict.get(symbol) is not None
+    }
+    query = "SELECT Id, value FROM TissueProbeSetData WHERE Id IN %(data_ids)s"
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            data_ids=tuple(data_ids.values()))
+        value_results = cursor.fetchall()
+        return {
+            key: tuple(row[1] for row in value_results if row[0] == key)
+            for key in data_ids.keys()
+        }
+
+    return {}
+
+def fetch_gene_symbol_tissue_value_dict(
+        symbol_list: Tuple[str, ...], data_id_dict: dict, conn: Any,
+        limit_num: int = 1000) -> dict:#getGeneSymbolTissueValueDict
+    """
+    Wrapper function for `gn3.db.correlations.fetch_symbol_value_pair_dict`.
+
+    This is a migrations of the
+    `web.webqtl.correlation.correlationFunction.getGeneSymbolTissueValueDict` in
+    GeneNetwork1.
+    """
+    count = len(symbol_list)
+    if count != 0 and count <= limit_num:
+        return fetch_symbol_value_pair_dict(symbol_list, data_id_dict, conn)
+
+    if count > limit_num:
+        return {
+            key: value for dct in [
+                fetch_symbol_value_pair_dict(sl, data_id_dict, conn)
+                for sl in partition_all(limit_num, symbol_list)]
+            for key, value in dct.items()
+        }
+
+    return {}
+
+def fetch_tissue_probeset_xref_info(
+        gene_name_list: Tuple[str, ...], probeset_freeze_id: int,
+        conn: Any) -> Tuple[tuple, dict, dict, dict, dict, dict, dict]:
+    """
+    Retrieve the ProbeSet XRef information for tissues.
+
+    This is a migration of the
+    `web.webqtl.correlation.correlationFunction.getTissueProbeSetXRefInfo`
+    function in GeneNetwork1."""
+    with conn.cursor() as cursor:
+        if len(gene_name_list) == 0:
+            query = (
+                "SELECT t.Symbol, t.GeneId, t.DataId, t.Chr, t.Mb, "
+                "t.description, t.Probe_Target_Description "
+                "FROM "
+                "("
+                "  SELECT Symbol, max(Mean) AS maxmean "
+                "  FROM TissueProbeSetXRef "
+                "  WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+                "  AND Symbol != '' "
+                "  AND Symbol IS NOT NULL "
+                "  GROUP BY Symbol"
+                ") AS x "
+                "INNER JOIN TissueProbeSetXRef AS t ON t.Symbol = x.Symbol "
+                "AND t.Mean = x.maxmean")
+            cursor.execute(query, probeset_freeze_id=probeset_freeze_id)
+        else:
+            query = (
+                "SELECT t.Symbol, t.GeneId, t.DataId, t.Chr, t.Mb, "
+                "t.description, t.Probe_Target_Description "
+                "FROM "
+                "("
+                "  SELECT Symbol, max(Mean) AS maxmean "
+                "  FROM TissueProbeSetXRef "
+                "  WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+                "  AND Symbol in %(symbols)s "
+                "  GROUP BY Symbol"
+                ") AS x "
+                "INNER JOIN TissueProbeSetXRef AS t ON t.Symbol = x.Symbol "
+                "AND t.Mean = x.maxmean")
+            cursor.execute(
+                query, probeset_freeze_id=probeset_freeze_id,
+                symbols=tuple(gene_name_list))
+
+        results = cursor.fetchall()
+
+    return reduce(
+        lambda acc, item: (
+            acc[0] + (item[0],),
+            {**acc[1], item[0].lower(): item[1]},
+            {**acc[1], item[0].lower(): item[2]},
+            {**acc[1], item[0].lower(): item[3]},
+            {**acc[1], item[0].lower(): item[4]},
+            {**acc[1], item[0].lower(): item[5]},
+            {**acc[1], item[0].lower(): item[6]}),
+        results or tuple(),
+        (tuple(), {}, {}, {}, {}, {}, {}))
+
+def fetch_gene_symbol_tissue_value_dict_for_trait(
+        gene_name_list: Tuple[str, ...], probeset_freeze_id: int,
+        conn: Any) -> dict:
+    """
+    Fetches a map of the gene symbols to the tissue values.
+
+    This is a migration of the
+    `web.webqtl.correlation.correlationFunction.getGeneSymbolTissueValueDictForTrait`
+    function in GeneNetwork1.
+    """
+    xref_info = fetch_tissue_probeset_xref_info(
+        gene_name_list, probeset_freeze_id, conn)
+    if xref_info[0]:
+        return fetch_gene_symbol_tissue_value_dict(xref_info[0], xref_info[2], conn)
+    return {}
+
+def build_temporary_tissue_correlations_table(
+        conn: Any, trait_symbol: str, probeset_freeze_id: int, method: str,
+        return_number: int) -> str:
+    """
+    Build a temporary table to hold the tissue correlations data.
+
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.getTempTissueCorrTable` function in
+    GeneNetwork1."""
+    # We should probably pass the `correlations_of_all_tissue_traits` function
+    # as an argument to this function and get rid of the one call immediately
+    # following this comment.
+    from gn3.computations.partial_correlations import (#pylint: disable=[C0415, R0401]
+        correlations_of_all_tissue_traits)
+    # This import above is necessary within the function to avoid
+    # circular-imports.
+    #
+    #
+    # This import above is indicative of convoluted code, with the computation
+    # being interwoven with the data retrieval. This needs to be changed, such
+    # that the function being imported here is no longer necessary, or have the
+    # imported function passed to this function as an argument.
+    symbol_corr_dict, symbol_p_value_dict = correlations_of_all_tissue_traits(
+        fetch_gene_symbol_tissue_value_dict_for_trait(
+            (trait_symbol,), probeset_freeze_id, conn),
+        fetch_gene_symbol_tissue_value_dict_for_trait(
+            tuple(), probeset_freeze_id, conn),
+        method)
+
+    symbol_corr_list = sorted(
+        symbol_corr_dict.items(), key=lambda key_val: key_val[1])
+
+    temp_table_name = f"TOPTISSUE{random_string(8)}"
+    create_query = (
+        "CREATE TEMPORARY TABLE {temp_table_name}"
+        "(Symbol varchar(100) PRIMARY KEY, Correlation float, PValue float)")
+    insert_query = (
+        f"INSERT INTO {temp_table_name}(Symbol, Correlation, PValue) "
+        " VALUES (%(symbol)s, %(correlation)s, %(pvalue)s)")
+
+    with conn.cursor() as cursor:
+        cursor.execute(create_query)
+        cursor.execute(
+            insert_query,
+            tuple({
+                "symbol": symbol,
+                "correlation": corr,
+                "pvalue": symbol_p_value_dict[symbol]
+            } for symbol, corr in symbol_corr_list[0: 2 * return_number]))
+
+    return temp_table_name
+
+def fetch_tissue_correlations(# pylint: disable=R0913
+        dataset: dict, trait_symbol: str, probeset_freeze_id: int, method: str,
+        return_number: int, conn: Any) -> dict:
+    """
+    Pair tissue correlations data with a trait id string.
+
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.fetchTissueCorrelations` function in
+    GeneNetwork1.
+    """
+    temp_table = build_temporary_tissue_correlations_table(
+        conn, trait_symbol, probeset_freeze_id, method, return_number)
+    with conn.cursor() as cursor:
+        cursor.execute(
+            (
+                f"SELECT ProbeSet.Name, {temp_table}.Correlation, "
+                f"{temp_table}.PValue "
+                "FROM (ProbeSet, ProbeSetXRef, ProbeSetFreeze) "
+                "LEFT JOIN {temp_table} ON {temp_table}.Symbol=ProbeSet.Symbol "
+                "WHERE ProbeSetFreeze.Name = %(db_name) "
+                "AND ProbeSetFreeze.Id=ProbeSetXRef.ProbeSetFreezeId "
+                "AND ProbeSet.Id = ProbeSetXRef.ProbeSetId "
+                "AND ProbeSet.Symbol IS NOT NULL "
+                "AND %s.Correlation IS NOT NULL"),
+            db_name=dataset["dataset_name"])
+        results = cursor.fetchall()
+        cursor.execute("DROP TEMPORARY TABLE %s", temp_table)
+        return {
+            trait_name: (tiss_corr, tiss_p_val)
+            for trait_name, tiss_corr, tiss_p_val in results}
+
+def check_for_literature_info(conn: Any, geneid: int) -> bool:
+    """
+    Checks the database to find out whether the trait with `geneid` has any
+    associated literature.
+
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.checkForLitInfo` function in
+    GeneNetwork1.
+    """
+    query = "SELECT 1 FROM LCorrRamin3 WHERE GeneId1=%s LIMIT 1"
+    with conn.cursor() as cursor:
+        cursor.execute(query, geneid)
+        result = cursor.fetchone()
+        if result:
+            return True
+
+    return False
+
+def check_symbol_for_tissue_correlation(
+        conn: Any, tissue_probeset_freeze_id: int, symbol: str = "") -> bool:
+    """
+    Checks whether a symbol has any associated tissue correlations.
+
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.checkSymbolForTissueCorr` function
+    in GeneNetwork1.
+    """
+    query = (
+        "SELECT 1 FROM  TissueProbeSetXRef "
+        "WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+        "AND Symbol=%(symbol)s LIMIT 1")
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query, probeset_freeze_id=tissue_probeset_freeze_id, symbol=symbol)
+        result = cursor.fetchone()
+        if result:
+            return True
+
+    return False
+
+def fetch_sample_ids(
+        conn: Any, sample_names: Tuple[str, ...], species_name: str) -> Tuple[
+            int, ...]:
+    """
+    Given a sequence of sample names, and a species name, return the sample ids
+    that correspond to both.
+
+    This is a partial migration of the
+    `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+    GeneNetwork1.
+    """
+    query = (
+        "SELECT Strain.Id FROM Strain, Species "
+        "WHERE Strain.Name IN %(samples_names)s "
+        "AND Strain.SpeciesId=Species.Id "
+        "AND Species.name=%(species_name)s")
+    with conn.cursor() as cursor:
+        cursor.execute(
+            query,
+            {
+                "samples_names": tuple(sample_names),
+                "species_name": species_name
+            })
+        return tuple(row[0] for row in cursor.fetchall())
+
+def build_query_sgo_lit_corr(
+        db_type: str, temp_table: str, sample_id_columns: str,
+        joins: Tuple[str, ...]) -> str:
+    """
+    Build query for `SGO Literature Correlation` data, when querying the given
+    `temp_table` temporary table.
+
+    This is a partial migration of the
+    `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+    GeneNetwork1.
+    """
+    return (
+        (f"SELECT {db_type}.Name, {temp_table}.value, " +
+         sample_id_columns +
+         f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " +
+         f"LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId " +
+         " ".join(joins) +
+         " WHERE ProbeSet.GeneId IS NOT NULL " +
+         f"AND {temp_table}.value IS NOT NULL " +
+         f"AND {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " +
+         f"AND {db_type}Freeze.Name = %(db_name)s " +
+         f"AND {db_type}.Id = {db_type}XRef.{db_type}Id " +
+         f"ORDER BY {db_type}.Id"),
+        2)
+
+def build_query_tissue_corr(db_type, temp_table, sample_id_columns, joins):
+    """
+    Build query for `Tissue Correlation` data, when querying the given
+    `temp_table` temporary table.
+
+    This is a partial migration of the
+    `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+    GeneNetwork1.
+    """
+    return (
+        (f"SELECT {db_type}.Name, {temp_table}.Correlation, " +
+         f"{temp_table}.PValue, " +
+         sample_id_columns +
+         f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " +
+         f"LEFT JOIN {temp_table} ON {temp_table}.Symbol=ProbeSet.Symbol " +
+         " ".join(joins) +
+         " WHERE ProbeSet.Symbol IS NOT NULL " +
+         f"AND {temp_table}.Correlation IS NOT NULL " +
+         f"AND {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " +
+         f"AND {db_type}Freeze.Name = %(db_name)s " +
+         f"AND {db_type}.Id = {db_type}XRef.{db_type}Id "
+         f"ORDER BY {db_type}.Id"),
+        3)
+
+def fetch_all_database_data(# pylint: disable=[R0913, R0914]
+        conn: Any, species: str, gene_id: int, trait_symbol: str,
+        samples: Tuple[str, ...], dataset: dict, method: str,
+        return_number: int, probeset_freeze_id: int) -> Tuple[
+            Tuple[float], int]:
+    """
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+    GeneNetwork1.
+    """
+    db_type = dataset["dataset_type"]
+    db_name = dataset["dataset_name"]
+    def __build_query__(sample_ids, temp_table):
+        sample_id_columns = ", ".join(f"T{smpl}.value" for smpl in sample_ids)
+        if db_type == "Publish":
+            joins = tuple(
+                ("LEFT JOIN PublishData AS T{item} "
+                 "ON T{item}.Id = PublishXRef.DataId "
+                 "AND T{item}.StrainId = %(T{item}_sample_id)s")
+                for item in sample_ids)
+            return (
+                ("SELECT PublishXRef.Id, " +
+                 sample_id_columns +
+                 "FROM (PublishXRef, PublishFreeze) " +
+                 " ".join(joins) +
+                 " WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId "
+                 "AND PublishFreeze.Name = %(db_name)s"),
+                1)
+        if temp_table is not None:
+            joins = tuple(
+                (f"LEFT JOIN {db_type}Data AS T{item} "
+                 f"ON T{item}.Id = {db_type}XRef.DataId "
+                 f"AND T{item}.StrainId=%(T{item}_sample_id)s")
+                for item in sample_ids)
+            if method.lower() == "sgo literature correlation":
+                return build_query_sgo_lit_corr(
+                    sample_ids, temp_table, sample_id_columns, joins)
+            if method.lower() in (
+                    "tissue correlation, pearson's r",
+                    "tissue correlation, spearman's rho"):
+                return build_query_tissue_corr(
+                    sample_ids, temp_table, sample_id_columns, joins)
+        joins = tuple(
+            (f"LEFT JOIN {db_type}Data AS T{item} "
+             f"ON T{item}.Id = {db_type}XRef.DataId "
+             f"AND T{item}.StrainId = %(T{item}_sample_id)s")
+            for item in sample_ids)
+        return (
+            (
+                f"SELECT {db_type}.Name, " +
+                sample_id_columns +
+                f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " +
+                " ".join(joins) +
+                f" WHERE {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " +
+                f"AND {db_type}Freeze.Name = %(db_name)s " +
+                f"AND {db_type}.Id = {db_type}XRef.{db_type}Id " +
+                f"ORDER BY {db_type}.Id"),
+            1)
+
+    def __fetch_data__(sample_ids, temp_table):
+        query, data_start_pos = __build_query__(sample_ids, temp_table)
+        with conn.cursor() as cursor:
+            cursor.execute(
+                query,
+                {"db_name": db_name,
+                 **{f"T{item}_sample_id": item for item in sample_ids}})
+            return (cursor.fetchall(), data_start_pos)
+
+    sample_ids = tuple(
+        # look into graduating this to an argument and removing the `samples`
+        # and `species` argument: function currying and compositions might help
+        # with this
+        f"{sample_id}" for sample_id in
+        fetch_sample_ids(conn, samples, species))
+
+    temp_table = None
+    if gene_id and db_type == "probeset":
+        if method.lower() == "sgo literature correlation":
+            temp_table = build_temporary_literature_table(
+                conn, species, gene_id, return_number)
+        if method.lower() in (
+                "tissue correlation, pearson's r",
+                "tissue correlation, spearman's rho"):
+            temp_table = build_temporary_tissue_correlations_table(
+                conn, trait_symbol, probeset_freeze_id, method, return_number)
+
+    trait_database = tuple(
+        item for sublist in
+        (__fetch_data__(ssample_ids, temp_table)
+         for ssample_ids in partition_all(25, sample_ids))
+        for item in sublist)
+
+    if temp_table:
+        with conn.cursor() as cursor:
+            cursor.execute(f"DROP TEMPORARY TABLE {temp_table}")
+
+    return (trait_database[0], trait_database[1])