about summary refs log tree commit diff
path: root/gn3/correlation
diff options
context:
space:
mode:
Diffstat (limited to 'gn3/correlation')
-rw-r--r--gn3/correlation/__init__.py0
-rw-r--r--gn3/correlation/correlation_computations.py32
-rw-r--r--gn3/correlation/correlation_functions.py96
-rw-r--r--gn3/correlation/correlation_utility.py22
-rw-r--r--gn3/correlation/show_corr_results.py735
5 files changed, 885 insertions, 0 deletions
diff --git a/gn3/correlation/__init__.py b/gn3/correlation/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/gn3/correlation/__init__.py
diff --git a/gn3/correlation/correlation_computations.py b/gn3/correlation/correlation_computations.py
new file mode 100644
index 0000000..6a3f2bb
--- /dev/null
+++ b/gn3/correlation/correlation_computations.py
@@ -0,0 +1,32 @@
+"""module contains code for any computation in correlation"""
+
+import json
+from .show_corr_results import CorrelationResults
+
+def compute_correlation(correlation_input_data,
+                        correlation_results=CorrelationResults):
+    """function that does correlation .creates Correlation results instance
+
+    correlation_input_data structure is a dict with
+
+     {
+     "trait_id":"valid trait id",
+     "dataset":"",
+      "sample_vals":{},
+      "primary_samples":"",
+      "corr_type":"",
+      corr_dataset:"",
+      "corr_return_results":"",
+
+       
+     }
+
+    """
+
+    corr_object = correlation_results(
+        start_vars=correlation_input_data)
+
+    corr_results = corr_object.do_correlation(start_vars=correlation_input_data)
+    # possibility of file being so large cause of the not sure whether to return a file
+
+    return corr_results
diff --git a/gn3/correlation/correlation_functions.py b/gn3/correlation/correlation_functions.py
new file mode 100644
index 0000000..be08c96
--- /dev/null
+++ b/gn3/correlation/correlation_functions.py
@@ -0,0 +1,96 @@
+
+"""
+# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
+#
+# This program is free software: you can redistribute it and/or modify it
+# under the terms of the GNU Affero General Public License
+# as published by the Free Software Foundation, either version 3 of the
+# License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+# See the GNU Affero General Public License for more details.
+#
+# This program is available from Source Forge: at GeneNetwork Project
+# (sourceforge.net/projects/genenetwork/).
+#
+# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
+# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
+#
+#
+#
+# This module is used by GeneNetwork project (www.genenetwork.org)
+#
+# Created by GeneNetwork Core Team 2010/08/10
+#
+# Last updated by NL 2011/03/23
+
+
+"""
+
+import rpy2.robjects
+from gn3.base.mrna_assay_tissue_data import MrnaAssayTissueData
+
+
+#####################################################################################
+# Input: primaryValue(list): one list of expression values of one probeSet,
+#       targetValue(list): one list of expression values of one probeSet,
+#               method(string): indicate correlation method ('pearson' or 'spearman')
+# Output: corr_result(list): first item is Correlation Value, second item is tissue number,
+#                           third item is PValue
+# Function: get correlation value,Tissue quantity ,p value result by using R;
+# Note : This function is special case since both primaryValue and targetValue are from
+# the same dataset. So the length of these two parameters is the same. They are pairs.
+# Also, in the datatable TissueProbeSetData, all Tissue values are loaded based on
+# the same tissue order
+#####################################################################################
+
+def cal_zero_order_corr_for_tiss(primaryValue=[], targetValue=[], method='pearson'):
+    """refer above for info on the function"""
+    # pylint: disable = E, W, R, C
+
+    #nb disabled pylint until tests are written for this function
+
+    R_primary = rpy2.robjects.FloatVector(list(range(len(primaryValue))))
+    N = len(primaryValue)
+    for i in range(len(primaryValue)):
+        R_primary[i] = primaryValue[i]
+
+    R_target = rpy2.robjects.FloatVector(list(range(len(targetValue))))
+    for i in range(len(targetValue)):
+        R_target[i] = targetValue[i]
+
+    R_corr_test = rpy2.robjects.r['cor.test']
+    if method == 'spearman':
+        R_result = R_corr_test(R_primary, R_target, method='spearman')
+    else:
+        R_result = R_corr_test(R_primary, R_target)
+
+    corr_result = []
+    corr_result.append(R_result[3][0])
+    corr_result.append(N)
+    corr_result.append(R_result[2][0])
+
+    return corr_result
+
+
+####################################################
+####################################################
+# input: cursor, symbolList (list), dataIdDict(Dict): key is symbol
+# output: SymbolValuePairDict(dictionary):one dictionary of Symbol and Value Pair.
+#        key is symbol, value is one list of expression values of one probeSet.
+# function: wrapper function for getSymbolValuePairDict function
+#          build gene symbol list if necessary, cut it into small lists if necessary,
+#          then call getSymbolValuePairDict function and merge the results.
+###################################################
+#####################################################
+
+def get_trait_symbol_and_tissue_values(symbol_list=None):
+    """function to get trait symbol and tissues values refer above"""
+    tissue_data = MrnaAssayTissueData(gene_symbols=symbol_list)
+
+    if len(tissue_data.gene_symbols) >= 1:
+        return tissue_data.get_symbol_values_pairs()
+
+    return None
diff --git a/gn3/correlation/correlation_utility.py b/gn3/correlation/correlation_utility.py
new file mode 100644
index 0000000..7583bd7
--- /dev/null
+++ b/gn3/correlation/correlation_utility.py
@@ -0,0 +1,22 @@
+"""module contains utility functions for correlation"""
+
+
+class AttributeSetter:
+    """class for setting Attributes"""
+
+    def __init__(self, trait_obj):
+        for key, value in trait_obj.items():
+            setattr(self, key, value)
+
+    def __str__(self):
+        return self.__class__.__name__
+
+    def get_dict(self):
+        """dummy function  to get dict object"""
+        return self.__dict__
+
+
+def get_genofile_samplelist(dataset):
+    """mock function to get genofile samplelist"""
+
+    return ["C57BL/6J"]
diff --git a/gn3/correlation/show_corr_results.py b/gn3/correlation/show_corr_results.py
new file mode 100644
index 0000000..55d8366
--- /dev/null
+++ b/gn3/correlation/show_corr_results.py
@@ -0,0 +1,735 @@
+"""module contains code for doing correlation"""
+
+import json
+import collections
+import numpy
+import scipy.stats
+import rpy2.robjects as ro
+from flask import g
+from gn3.base.data_set import create_dataset
+from gn3.utility.db_tools import escape
+from gn3.utility.helper_functions import get_species_dataset_trait
+from gn3.utility.corr_result_helpers import normalize_values
+from gn3.base.trait import create_trait
+from gn3.utility import hmac
+from . import correlation_functions
+
+
+class CorrelationResults:
+    """class for computing correlation"""
+    # pylint: disable=too-many-instance-attributes
+    # pylint:disable=attribute-defined-outside-init
+
+    def __init__(self, start_vars):
+        self.assertion_for_start_vars(start_vars)
+
+    @staticmethod
+    def assertion_for_start_vars(start_vars):
+        # pylint: disable = E, W, R, C
+
+        # should better ways to assert the variables
+        # example includes sample
+        assert("corr_type" in start_vars)
+        assert(isinstance(start_vars['corr_type'], str))
+        # example includes pearson
+        assert('corr_sample_method' in start_vars)
+        assert('corr_dataset' in start_vars)
+        # means the  limit
+        assert('corr_return_results' in start_vars)
+
+        if "loc_chr" in start_vars:
+            assert('min_loc_mb' in start_vars)
+            assert('max_loc_mb' in start_vars)
+
+    def get_formatted_corr_type(self):
+        """method to formatt corr_types"""
+        self.formatted_corr_type = ""
+        if self.corr_type == "lit":
+            self.formatted_corr_type += "Literature Correlation "
+        elif self.corr_type == "tissue":
+            self.formatted_corr_type += "Tissue Correlation "
+        elif self.corr_type == "sample":
+            self.formatted_corr_type += "Genetic Correlation "
+
+        if self.corr_method == "pearson":
+            self.formatted_corr_type += "(Pearson's r)"
+        elif self.corr_method == "spearman":
+            self.formatted_corr_type += "(Spearman's rho)"
+        elif self.corr_method == "bicor":
+            self.formatted_corr_type += "(Biweight r)"
+
+    def process_samples(self, start_vars, sample_names, excluded_samples=None):
+        """method to process samples"""
+
+
+        if not excluded_samples:
+            excluded_samples = ()
+
+        sample_val_dict = json.loads(start_vars["sample_vals"])
+        print(sample_val_dict)
+        if sample_names is None:
+            raise  NotImplementedError
+
+        for sample in sample_names:
+            if sample not in excluded_samples:
+                value = sample_val_dict[sample]
+
+                if not value.strip().lower() == "x":
+                    self.sample_data[str(sample)] = float(value)
+
+    def do_tissue_correlation_for_trait_list(self, tissue_dataset_id=1):
+        """Given a list of correlation results (self.correlation_results),\
+        gets the tissue correlation value for each"""
+        # pylint: disable = E, W, R, C
+
+        # Gets tissue expression values for the primary trait
+        primary_trait_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
+            symbol_list=[self.this_trait.symbol])
+
+        if self.this_trait.symbol.lower() in primary_trait_tissue_vals_dict:
+            primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower(
+            )]
+            gene_symbol_list = [
+                trait.symbol for trait in self.correlation_results if trait.symbol]
+
+            corr_result_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
+                symbol_list=gene_symbol_list)
+
+            for trait in self.correlation_results:
+                if trait.symbol and trait.symbol.lower() in corr_result_tissue_vals_dict:
+                    this_trait_tissue_values = corr_result_tissue_vals_dict[trait.symbol.lower(
+                    )]
+
+                    result = correlation_functions.cal_zero_order_corr_for_tiss(primary_trait_tissue_values,
+                                                                                this_trait_tissue_values,
+                                                                                self.corr_method)
+
+                    trait.tissue_corr = result[0]
+                    trait.tissue_pvalue = result[2]
+
+    def do_lit_correlation_for_trait_list(self):
+        # pylint: disable = E, W, R, C
+
+        input_trait_mouse_gene_id = self.convert_to_mouse_gene_id(
+            self.dataset.group.species.lower(), self.this_trait.geneid)
+
+        for trait in self.correlation_results:
+
+            if trait.geneid:
+                trait.mouse_gene_id = self.convert_to_mouse_gene_id(
+                    self.dataset.group.species.lower(), trait.geneid)
+            else:
+                trait.mouse_gene_id = None
+
+            if trait.mouse_gene_id and str(trait.mouse_gene_id).find(";") == -1:
+                result = g.db.execute(
+                    """SELECT value
+                       FROM LCorrRamin3
+                       WHERE GeneId1='%s' and
+                             GeneId2='%s'
+                    """ % (escape(str(trait.mouse_gene_id)), escape(str(input_trait_mouse_gene_id)))
+                ).fetchone()
+                if not result:
+                    result = g.db.execute("""SELECT value
+                       FROM LCorrRamin3
+                       WHERE GeneId2='%s' and
+                             GeneId1='%s'
+                    """ % (escape(str(trait.mouse_gene_id)), escape(str(input_trait_mouse_gene_id)))
+                    ).fetchone()
+
+                if result:
+                    lit_corr = result.value
+                    trait.lit_corr = lit_corr
+                else:
+                    trait.lit_corr = 0
+            else:
+                trait.lit_corr = 0
+
+    def do_lit_correlation_for_all_traits(self):
+        """method for lit_correlation for all traits"""
+        # pylint: disable = E, W, R, C
+        input_trait_mouse_gene_id = self.convert_to_mouse_gene_id(
+            self.dataset.group.species.lower(), self.this_trait.geneid)
+
+        lit_corr_data = {}
+        for trait, gene_id in list(self.trait_geneid_dict.items()):
+            mouse_gene_id = self.convert_to_mouse_gene_id(
+                self.dataset.group.species.lower(), gene_id)
+
+            if mouse_gene_id and str(mouse_gene_id).find(";") == -1:
+                #print("gene_symbols:", input_trait_mouse_gene_id + " / " + mouse_gene_id)
+                result = g.db.execute(
+                    """SELECT value
+                       FROM LCorrRamin3
+                       WHERE GeneId1='%s' and
+                             GeneId2='%s'
+                    """ % (escape(mouse_gene_id), escape(input_trait_mouse_gene_id))
+                ).fetchone()
+                if not result:
+                    result = g.db.execute("""SELECT value
+                       FROM LCorrRamin3
+                       WHERE GeneId2='%s' and
+                             GeneId1='%s'
+                    """ % (escape(mouse_gene_id), escape(input_trait_mouse_gene_id))
+                    ).fetchone()
+                if result:
+                    #print("result:", result)
+                    lit_corr = result.value
+                    lit_corr_data[trait] = [gene_id, lit_corr]
+                else:
+                    lit_corr_data[trait] = [gene_id, 0]
+            else:
+                lit_corr_data[trait] = [gene_id, 0]
+
+        lit_corr_data = collections.OrderedDict(sorted(list(lit_corr_data.items()),
+                                                       key=lambda t: -abs(t[1][1])))
+
+        return lit_corr_data
+
+    def do_tissue_correlation_for_all_traits(self, tissue_dataset_id=1):
+        # Gets tissue expression values for the primary trait
+        # pylint: disable = E, W, R, C
+        primary_trait_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
+            symbol_list=[self.this_trait.symbol])
+
+        if self.this_trait.symbol.lower() in primary_trait_tissue_vals_dict:
+            primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower(
+            )]
+
+            #print("trait_gene_symbols: ", pf(trait_gene_symbols.values()))
+            corr_result_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
+                symbol_list=list(self.trait_symbol_dict.values()))
+
+            #print("corr_result_tissue_vals: ", pf(corr_result_tissue_vals_dict))
+
+            #print("trait_gene_symbols: ", pf(trait_gene_symbols))
+
+            tissue_corr_data = {}
+            for trait, symbol in list(self.trait_symbol_dict.items()):
+                if symbol and symbol.lower() in corr_result_tissue_vals_dict:
+                    this_trait_tissue_values = corr_result_tissue_vals_dict[symbol.lower(
+                    )]
+
+                    result = correlation_functions.cal_zero_order_corr_for_tiss(primary_trait_tissue_values,
+                                                                                this_trait_tissue_values,
+                                                                                self.corr_method)
+
+                    tissue_corr_data[trait] = [symbol, result[0], result[2]]
+
+            tissue_corr_data = collections.OrderedDict(sorted(list(tissue_corr_data.items()),
+                                                              key=lambda t: -abs(t[1][1])))
+
+    def get_sample_r_and_p_values(self, trait, target_samples):
+        """Calculates the sample r (or rho) and p-value
+
+        Given a primary trait and a target trait's sample values,
+        calculates either the pearson r or spearman rho and the p-value
+        using the corresponding scipy functions.
+
+        """
+        # pylint: disable = E, W, R, C
+        self.this_trait_vals = []
+        target_vals = []
+
+        for index, sample in enumerate(self.target_dataset.samplelist):
+            if sample in self.sample_data:
+                sample_value = self.sample_data[sample]
+                target_sample_value = target_samples[index]
+                self.this_trait_vals.append(sample_value)
+                target_vals.append(target_sample_value)
+
+        self.this_trait_vals, target_vals, num_overlap = normalize_values(
+            self.this_trait_vals, target_vals)
+
+        if num_overlap > 5:
+            # ZS: 2015 could add biweight correlation, see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465711/
+            if self.corr_method == 'bicor':
+                sample_r, sample_p = do_bicor(
+                    self.this_trait_vals, target_vals)
+
+            elif self.corr_method == 'pearson':
+                sample_r, sample_p = scipy.stats.pearsonr(
+                    self.this_trait_vals, target_vals)
+
+            else:
+                sample_r, sample_p = scipy.stats.spearmanr(
+                    self.this_trait_vals, target_vals)
+
+            if numpy.isnan(sample_r):
+                pass
+
+            else:
+
+                self.correlation_data[trait] = [
+                    sample_r, sample_p, num_overlap]
+
+    def convert_to_mouse_gene_id(self, species=None, gene_id=None):
+        """If the species is rat or human, translate the gene_id to the mouse geneid
+
+        If there is no input gene_id or there's no corresponding mouse gene_id, return None
+
+        """
+        if not gene_id:
+            return None
+
+        mouse_gene_id = None
+        if "species" == "mouse":
+            mouse_gene_id = gene_id
+
+        elif species == 'rat':
+            query = """SELECT mouse
+                   FROM GeneIDXRef
+                   WHERE rat='%s'""" % escape(gene_id)
+
+            result = g.db.execute(query).fetchone()
+            if result != None:
+                mouse_gene_id = result.mouse
+
+        elif species == "human":
+
+            query = """SELECT mouse
+                   FROM GeneIDXRef
+                   WHERE human='%s'""" % escape(gene_id)
+
+            result = g.db.execute(query).fetchone()
+            if result != None:
+                mouse_gene_id = result.mouse
+
+        return mouse_gene_id
+
+    def do_correlation(self, start_vars, create_dataset=create_dataset,
+                       create_trait=create_trait,
+                       get_species_dataset_trait=get_species_dataset_trait):
+        # pylint: disable = E, W, R, C
+        # probably refactor start_vars being passed twice
+        # this method  aims to replace the do_correlation but also add dependendency injection
+        # to enable testing
+
+        # should maybe refactor below code more or less works the same
+        if start_vars["dataset"] == "Temp":
+            self.dataset = create_dataset(
+                dataset_name="Temp", dataset_type="Temp", group_name=start_vars['group'])
+
+            self.trait_id = start_vars["trait_id"]
+
+            self.this_trait = create_trait(dataset=self.dataset,
+                                           name=self.trait_id,
+                                           cellid=None)
+
+        else:
+
+            get_species_dataset_trait(self, start_vars)
+
+        corr_samples_group = start_vars['corr_samples_group']
+        self.sample_data = {}
+        self.corr_type = start_vars['corr_type']
+        self.corr_method = start_vars['corr_sample_method']
+        self.min_expr = float(
+            start_vars["min_expr"]) if start_vars["min_expr"] != "" else None
+        self.p_range_lower = float(
+            start_vars["p_range_lower"]) if start_vars["p_range_lower"] != "" else -1.0
+        self.p_range_upper = float(
+            start_vars["p_range_upper"]) if start_vars["p_range_upper"] != "" else 1.0
+
+        if ("loc_chr" in start_vars and "min_loc_mb" in start_vars and "max_loc_mb" in start_vars):
+            self.location_type = str(start_vars['location_type'])
+            self.location_chr = str(start_vars['loc_chr'])
+
+            try:
+
+                # the code is below is basically a temporary fix
+                self.min_location_mb = int(start_vars['min_loc_mb'])
+                self.max_location_mb = int(start_vars['max_loc_mb'])
+            except Exception as e:
+                self.min_location_mb = None
+                self.max_location_mb = None
+
+        else:
+            self.location_type = self.location_chr = self.min_location_mb = self.max_location_mb = None
+
+        self.get_formatted_corr_type()
+
+        self.return_number = int(start_vars['corr_return_results'])
+
+        primary_samples = self.dataset.group.samplelist
+
+
+        # The two if statements below append samples to the sample list based upon whether the user
+        # rselected Primary Samples Only, Other Samples Only, or All Samples
+
+        if self.dataset.group.parlist != None:
+            primary_samples += self.dataset.group.parlist
+
+        if self.dataset.group.f1list != None:
+
+            primary_samples += self.dataset.group.f1list
+
+        # If either BXD/whatever Only or All Samples, append all of that group's samplelist
+
+        if corr_samples_group != 'samples_other':
+                
+            # print("primary samples are *****",primary_samples)
+
+            self.process_samples(start_vars, primary_samples)
+
+        if corr_samples_group != 'samples_primary':
+            if corr_samples_group == 'samples_other':
+                primary_samples = [x for x in primary_samples if x not in (
+                    self.dataset.group.parlist + self.dataset.group.f1list)]
+
+            self.process_samples(start_vars, list(self.this_trait.data.keys()), primary_samples)
+
+        self.target_dataset = create_dataset(start_vars['corr_dataset'])
+        # when you add code to retrieve the trait_data for target dataset got gets very slow
+        import time
+
+        init_time = time.time()
+        self.target_dataset.get_trait_data(list(self.sample_data.keys()))
+
+        aft_time = time.time() - init_time
+
+        self.header_fields = get_header_fields(
+            self.target_dataset.type, self.corr_method)
+
+        if self.target_dataset.type == "ProbeSet":
+            self.filter_cols = [7, 6]
+
+        elif self.target_dataset.type == "Publish":
+            self.filter_cols = [6, 0]
+
+        else:
+            self.filter_cols = [4, 0]
+
+        self.correlation_results = []
+
+        self.correlation_data = {}
+
+        if self.corr_type == "tissue":
+            self.trait_symbol_dict = self.dataset.retrieve_genes("Symbol")
+
+            tissue_corr_data = self.do_tissue_correlation_for_all_traits()
+            if tissue_corr_data != None:
+                for trait in list(tissue_corr_data.keys())[:self.return_number]:
+                    self.get_sample_r_and_p_values(
+                        trait, self.target_dataset.trait_data[trait])
+            else:
+                for trait, values in list(self.target_dataset.trait_data.items()):
+                    self.get_sample_r_and_p_values(trait, values)
+
+        elif self.corr_type == "lit":
+            self.trait_geneid_dict = self.dataset.retrieve_genes("GeneId")
+            lit_corr_data = self.do_lit_correlation_for_all_traits()
+
+            for trait in list(lit_corr_data.keys())[:self.return_number]:
+                self.get_sample_r_and_p_values(
+                    trait, self.target_dataset.trait_data[trait])
+
+        elif self.corr_type == "sample":
+            for trait, values in list(self.target_dataset.trait_data.items()):
+                self.get_sample_r_and_p_values(trait, values)
+
+        self.correlation_data = collections.OrderedDict(sorted(list(self.correlation_data.items()),
+                                                               key=lambda t: -abs(t[1][0])))
+
+        # ZS: Convert min/max chromosome to an int for the location range option
+
+        """
+        took 20.79 seconds took compute all the above majority of time taken on retrieving target dataset trait
+        info
+        """
+
+        initial_time_chr = time.time()
+
+        range_chr_as_int = None
+        for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
+            if 'loc_chr' in start_vars:
+                if chr_info.name == self.location_chr:
+                    range_chr_as_int = order_id
+
+        for _trait_counter, trait in enumerate(list(self.correlation_data.keys())[:self.return_number]):
+            trait_object = create_trait(
+                dataset=self.target_dataset, name=trait, get_qtl_info=True, get_sample_info=False)
+            if not trait_object:
+                continue
+
+            chr_as_int = 0
+            for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
+                if self.location_type == "highest_lod":
+                    if chr_info.name == trait_object.locus_chr:
+                        chr_as_int = order_id
+                else:
+                    if chr_info.name == trait_object.chr:
+                        chr_as_int = order_id
+
+            if (float(self.correlation_data[trait][0]) >= self.p_range_lower and
+                    float(self.correlation_data[trait][0]) <= self.p_range_upper):
+
+                if (self.target_dataset.type == "ProbeSet" or self.target_dataset.type == "Publish") and bool(trait_object.mean):
+                    if (self.min_expr != None) and (float(trait_object.mean) < self.min_expr):
+                        continue
+
+                if range_chr_as_int != None and (chr_as_int != range_chr_as_int):
+                    continue
+                if self.location_type == "highest_lod":
+                    if (self.min_location_mb != None) and (float(trait_object.locus_mb) < float(self.min_location_mb)):
+                        continue
+                    if (self.max_location_mb != None) and (float(trait_object.locus_mb) > float(self.max_location_mb)):
+                        continue
+                else:
+                    if (self.min_location_mb != None) and (float(trait_object.mb) < float(self.min_location_mb)):
+                        continue
+                    if (self.max_location_mb != None) and (float(trait_object.mb) > float(self.max_location_mb)):
+                        continue
+
+                (trait_object.sample_r,
+                 trait_object.sample_p,
+                 trait_object.num_overlap) = self.correlation_data[trait]
+
+                # Set some sane defaults
+                trait_object.tissue_corr = 0
+                trait_object.tissue_pvalue = 0
+                trait_object.lit_corr = 0
+                if self.corr_type == "tissue" and tissue_corr_data != None:
+                    trait_object.tissue_corr = tissue_corr_data[trait][1]
+                    trait_object.tissue_pvalue = tissue_corr_data[trait][2]
+                elif self.corr_type == "lit":
+                    trait_object.lit_corr = lit_corr_data[trait][1]
+
+                self.correlation_results.append(trait_object)
+
+        """
+        above takes time with respect to size of traits i.e n=100,500,.....t_size
+        """
+
+        if self.corr_type != "lit" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
+            # self.do_lit_correlation_for_trait_list()
+            self.do_lit_correlation_for_trait_list()
+
+        if self.corr_type != "tissue" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
+            self.do_tissue_correlation_for_trait_list()
+            # self.do_lit_correlation_for_trait_list()
+
+        self.json_results = generate_corr_json(
+            self.correlation_results, self.this_trait, self.dataset, self.target_dataset)
+
+        # org mode by bons
+
+        # DVORAKS
+        # klavaro for touch typing
+        # archwiki for documentation
+        # exwm for window manager ->13
+
+        # will fit perfectly with genenetwork 2 with change of anything if return self
+
+        # alternative for this
+        return self.json_results
+        # return {
+        #     # "Results": "succeess",
+        #     # "return_number": self.return_number,
+        #     # "primary_samples": primary_samples,
+        #     # "time_taken": 12,
+        #     # "correlation_data": self.correlation_data,
+        #     "correlation_json": self.json_results
+        # }
+
+
+def do_bicor(this_trait_vals, target_trait_vals):
+    # pylint: disable = E, W, R, C
+    r_library = ro.r["library"]             # Map the library function
+    r_options = ro.r["options"]             # Map the options function
+
+    r_library("WGCNA")
+    r_bicor = ro.r["bicorAndPvalue"]        # Map the bicorAndPvalue function
+
+    r_options(stringsAsFactors=False)
+
+    this_vals = ro.Vector(this_trait_vals)
+    target_vals = ro.Vector(target_trait_vals)
+
+    the_r, the_p, _fisher_transform, _the_t, _n_obs = [
+        numpy.asarray(x) for x in r_bicor(x=this_vals, y=target_vals)]
+
+    return the_r, the_p
+
+
+def get_header_fields(data_type, corr_method):
+    """function to get header fields when doing correlation"""
+    if data_type == "ProbeSet":
+        if corr_method == "spearman":
+
+            header_fields = ['Index',
+                             'Record',
+                             'Symbol',
+                             'Description',
+                             'Location',
+                             'Mean',
+                             'Sample rho',
+                             'N',
+                             'Sample p(rho)',
+                             'Lit rho',
+                             'Tissue rho',
+                             'Tissue p(rho)',
+                             'Max LRS',
+                             'Max LRS Location',
+                             'Additive Effect']
+
+        else:
+            header_fields = ['Index',
+                             'Record',
+                             'Abbreviation',
+                             'Description',
+                             'Mean',
+                             'Authors',
+                             'Year',
+                             'Sample r',
+                             'N',
+                             'Sample p(r)',
+                             'Max LRS',
+                             'Max LRS Location',
+                             'Additive Effect']
+
+    elif data_type == "Publish":
+        if corr_method == "spearman":
+
+            header_fields = ['Index',
+                             'Record',
+                             'Abbreviation',
+                             'Description',
+                             'Mean',
+                             'Authors',
+                             'Year',
+                             'Sample rho',
+                             'N',
+                             'Sample p(rho)',
+                             'Max LRS',
+                             'Max LRS Location',
+                             'Additive Effect']
+
+        else:
+            header_fields = ['Index',
+                             'Record',
+                             'Abbreviation',
+                             'Description',
+                             'Mean',
+                             'Authors',
+                             'Year',
+                             'Sample r',
+                             'N',
+                             'Sample p(r)',
+                             'Max LRS',
+                             'Max LRS Location',
+                             'Additive Effect']
+
+    else:
+        if corr_method == "spearman":
+            header_fields = ['Index',
+                             'ID',
+                             'Location',
+                             'Sample rho',
+                             'N',
+                             'Sample p(rho)']
+
+        else:
+            header_fields = ['Index',
+                             'ID',
+                             'Location',
+                             'Sample r',
+                             'N',
+                             'Sample p(r)']
+
+    return header_fields
+
+
+def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_api=False):
+    """function to generate corr json data"""
+    #todo refactor this function
+    results_list = []
+    for i, trait in enumerate(corr_results):
+        if trait.view == False:
+            continue
+        results_dict = {}
+        results_dict['index'] = i + 1
+        results_dict['trait_id'] = trait.name
+        results_dict['dataset'] = trait.dataset.name
+        results_dict['hmac'] = hmac.data_hmac(
+            '{}:{}'.format(trait.name, trait.dataset.name))
+        if target_dataset.type == "ProbeSet":
+            results_dict['symbol'] = trait.symbol
+            results_dict['description'] = "N/A"
+            results_dict['location'] = trait.location_repr
+            results_dict['mean'] = "N/A"
+            results_dict['additive'] = "N/A"
+            if bool(trait.description_display):
+                results_dict['description'] = trait.description_display
+            if bool(trait.mean):
+                results_dict['mean'] = f"{float(trait.mean):.3f}"
+            try:
+                results_dict['lod_score'] = f"{float(trait.LRS_score_repr) / 4.61:.1f}"
+            except:
+                results_dict['lod_score'] = "N/A"
+            results_dict['lrs_location'] = trait.LRS_location_repr
+            if bool(trait.additive):
+                results_dict['additive'] = f"{float(trait.additive):.3f}"
+            results_dict['sample_r'] = f"{float(trait.sample_r):.3f}"
+            results_dict['num_overlap'] = trait.num_overlap
+            results_dict['sample_p'] = f"{float(trait.sample_p):.3e}"
+            results_dict['lit_corr'] = "--"
+            results_dict['tissue_corr'] = "--"
+            results_dict['tissue_pvalue'] = "--"
+            if bool(trait.lit_corr):
+                results_dict['lit_corr'] = f"{float(trait.lit_corr):.3f}"
+            if bool(trait.tissue_corr):
+                results_dict['tissue_corr'] = f"{float(trait.tissue_corr):.3f}"
+                results_dict['tissue_pvalue'] = f"{float(trait.tissue_pvalue):.3e}"
+        elif target_dataset.type == "Publish":
+            results_dict['abbreviation_display'] = "N/A"
+            results_dict['description'] = "N/A"
+            results_dict['mean'] = "N/A"
+            results_dict['authors_display'] = "N/A"
+            results_dict['additive'] = "N/A"
+            if for_api:
+                results_dict['pubmed_id'] = "N/A"
+                results_dict['year'] = "N/A"
+            else:
+                results_dict['pubmed_link'] = "N/A"
+                results_dict['pubmed_text'] = "N/A"
+
+            if bool(trait.abbreviation):
+                results_dict['abbreviation_display'] = trait.abbreviation
+            if bool(trait.description_display):
+                results_dict['description'] = trait.description_display
+            if bool(trait.mean):
+                results_dict['mean'] = f"{float(trait.mean):.3f}"
+            if bool(trait.authors):
+                authors_list = trait.authors.split(',')
+                if len(authors_list) > 6:
+                    results_dict['authors_display'] = ", ".join(
+                        authors_list[:6]) + ", et al."
+                else:
+                    results_dict['authors_display'] = trait.authors
+            if bool(trait.pubmed_id):
+                if for_api:
+                    results_dict['pubmed_id'] = trait.pubmed_id
+                    results_dict['year'] = trait.pubmed_text
+                else:
+                    results_dict['pubmed_link'] = trait.pubmed_link
+                    results_dict['pubmed_text'] = trait.pubmed_text
+            try:
+                results_dict['lod_score'] = f"{float(trait.LRS_score_repr) / 4.61:.1f}"
+            except:
+                results_dict['lod_score'] = "N/A"
+            results_dict['lrs_location'] = trait.LRS_location_repr
+            if bool(trait.additive):
+                results_dict['additive'] = f"{float(trait.additive):.3f}"
+            results_dict['sample_r'] = f"{float(trait.sample_r):.3f}"
+            results_dict['num_overlap'] = trait.num_overlap
+            results_dict['sample_p'] = f"{float(trait.sample_p):.3e}"
+        else:
+            results_dict['location'] = trait.location_repr
+            results_dict['sample_r'] = f"{float(trait.sample_r):.3f}"
+            results_dict['num_overlap'] = trait.num_overlap
+            results_dict['sample_p'] = f"{float(trait.sample_p):.3e}"
+
+        results_list.append(results_dict)
+
+    return json.dumps(results_list)