aboutsummaryrefslogtreecommitdiff
path: root/gn3/computations
diff options
context:
space:
mode:
Diffstat (limited to 'gn3/computations')
-rw-r--r--gn3/computations/partial_correlations.py114
1 files changed, 43 insertions, 71 deletions
diff --git a/gn3/computations/partial_correlations.py b/gn3/computations/partial_correlations.py
index 519dce9..4b0cf30 100644
--- a/gn3/computations/partial_correlations.py
+++ b/gn3/computations/partial_correlations.py
@@ -11,6 +11,7 @@ from typing import Any, Tuple, Union, Sequence
from scipy.stats import pearsonr, spearmanr
import pandas
+import pingouin
from gn3.settings import TEXTDIR
from gn3.data_helpers import parse_csv_line
@@ -248,7 +249,7 @@ def compute_partial_correlations_fast(# pylint: disable=[R0913, R0914]
all_target_trait_names: Tuple[str, ...] = processed_trait_names_values[0]
all_target_trait_values: Tuple[float, ...] = processed_trait_names_values[1]
- all_correlations = determine_partials(
+ all_correlations = compute_partial(
primary_vals, control_vals, all_target_trait_names,
all_target_trait_values, method)
## Line 772 to 779 in GN1 are the cause of the weird complexity in the
@@ -278,79 +279,50 @@ def build_data_frame(
return interm_df.rename(columns={"z0": "z"})
return interm_df
-def partial_correlation_matrix(
- xdata: Tuple[float, ...], ydata: Tuple[float, ...],
- zdata: Union[Tuple[float, ...], Tuple[Tuple[float, ...], ...]],
- method: str = "pearson", omit_nones: bool = True) -> float:
+def compute_partial(
+ primary_val, control_vals, target_vals, target_names,
+ method: str) -> Tuple[
+ Union[
+ Tuple[str, int, float, float, float, float], None],
+ ...]:
"""
- Computes the partial correlation coefficient using the
- 'variance-covariance matrix' method
+ Compute the partial correlations.
- This is a partial migration of the
- `web.webqtl.correlation.correlationFunction.determinPartialsByR` function in
- GeneNetwork1, specifically the `pcor.mat` function written in the R
- programming language.
- """
- return 0
+ This is a re-implementation of the
+ `web.webqtl.correlation.correlationFunction.determinePartialsByR` function
+ in GeneNetwork1.
-def partial_correlation_recursive(
- xdata: Tuple[float, ...], ydata: Tuple[float, ...],
- zdata: Union[Tuple[float, ...], Tuple[Tuple[float, ...], ...]],
- method: str = "pearson", omit_nones: bool = True) -> float:
- """
- Computes the partial correlation coefficient using the 'recursive formula'
- method
+ This implementation reworks the child function `compute_partial` which will
+ then be used in the place of `determinPartialsByR`.
- This is a partial migration of the
- `web.webqtl.correlation.correlationFunction.determinPartialsByR` function in
- GeneNetwork1, specifically the `pcor.rec` function written in the R
- programming language.
+ TODO: moving forward, we might need to use the multiprocessing library to
+ speed up the computations, in case they are found to be slow.
"""
- assert method in ("pearson", "spearman", "kendall")
- data = (
- build_data_frame(xdata, ydata, zdata).dropna(axis=0)
- if omit_nones else
- build_data_frame(xdata, ydata, zdata))
-
- if data.shape[1] == 3: # z is a vector, not matrix
- fields = {
- "rxy": ("x", "y"),
- "rxz": ("x", "z"),
- "ryz": ("y", "z")}
- tdata = {
- corr_type: pandas.DataFrame(
- {cols[0]: data[cols[0]],
- cols[1]: data[cols[1]]}).dropna(axis=0)
- for corr_type, cols in fields.items()
- }
- corrs = {
- corr_type: tdata[corr_type][cols[0]].corr(
- tdata[corr_type][cols[1]], method=method)
- for corr_type, cols in fields.items()
- }
+ # replace the R code with `pingouin.partial_corr`
+ def __compute_trait_info__(target):
+ df = build_data_frame(
+ [prim for targ, prim in zip(target, primary_vals)
+ if targ is not None],
+ [targ for targ in target if targ is not None],
+ [cont for i, cont in enumerate(control) if target[i] is not None])
+ covariates = "z" if df.shape[1] == 3 else [
+ col for col in df.columns if col not in ("x", "y")]
+ ppc = pingouin.partial_corr(
+ data=df, x="x", y="y", covar=covariates, method=method)
+ pc_coeff = ppc["r"]
+
+ zero_order_corr = pingouin.corr(df["x"], df["y"], method=method)
+
+ if math.isnan(pc_coeff):
+ return (
+ target[1], len(primary), pc_coeff, 1, zero_order_corr["r"],
+ zero_order_corr["p-val"])
return (
- (corrs["rxy"] - corrs["rxz"] * corrs["ryz"]) /
- (math.sqrt(1 - corrs["rxz"]**2) *
- math.sqrt(1 - corrs["ryz"]**2)))
-
- remaining_cols = [
- colname for colname, series in data.items()
- if colname not in ("x", "y", "z0")
- ]
-
- new_xdata = tuple(data["x"])
- new_ydata = tuple(data["y"])
- zc = tuple(tuple(data[colname]) for colname in data[remaining_cols].columns)
-
- rxy_zc = partial_correlation_recursive(
- new_xdata, new_ydata, zc, method=method,
- omit_nones=omit_nones)
- rxz0_zc = partial_correlation_recursive(
- new_xdata, tuple(data["z0"]), zc, method=method,
- omit_nones=omit_nones)
- ryz0_zc = partial_correlation_recursive(
- new_ydata, tuple(data["z0"]), zc, method=method,
- omit_nones=omit_nones)
-
- return ((rxy_zc - rxz0_zc * ryz0_zc) /(
- math.sqrt(1 - rxz0_zc**2) * math.sqrt(1 - ryz0_zc**2)))
+ target[1], len(primary), pc_coeff,
+ (ppc["p-val"] if not math.isnan(ppc["p-val"]) else (
+ 0 if (abs(pc_coeff - 1) < 0.0000001) else 1)),
+ zero_order_corr["r"], zero_order_corr["p-val"])
+
+ return tuple(
+ __compute_trait_info__(target)
+ for target in zip(target_vals, target_names))