diff options
Diffstat (limited to 'gn3/computations')
-rw-r--r-- | gn3/computations/correlations.py | 13 | ||||
-rw-r--r-- | gn3/computations/datasets.py | 323 | ||||
-rw-r--r-- | gn3/computations/traits.py | 56 |
3 files changed, 385 insertions, 7 deletions
diff --git a/gn3/computations/correlations.py b/gn3/computations/correlations.py index 26b7294..7fb67be 100644 --- a/gn3/computations/correlations.py +++ b/gn3/computations/correlations.py @@ -109,10 +109,9 @@ package :not packaged in guix def filter_shared_sample_keys(this_samplelist, target_samplelist) -> Tuple[List, List]: - """Given primary and target samplelist for two base and target trait select -filter the values using the shared keys - - """ + """Given primary and target samplelist\ + for two base and target trait select\ + filter the values using the shared keys""" this_vals = [] target_vals = [] for key, value in target_samplelist.items(): @@ -125,8 +124,9 @@ filter the values using the shared keys def compute_all_sample_correlation(this_trait, target_dataset, corr_method="pearson") -> List: - """Given a trait data samplelist and target__datasets compute all sample -correlation""" + """Given a trait data samplelist and\ + target__datasets compute all sample correlation + """ this_trait_samples = this_trait["trait_sample_data"] @@ -323,7 +323,6 @@ def compute_all_lit_correlation(conn, trait_lists: List, species: str, gene_id): """Function that acts as an abstraction for lit_correlation_for_trait_list""" - # xtodo to be refactored lit_results = lit_correlation_for_trait_list( conn=conn, diff --git a/gn3/computations/datasets.py b/gn3/computations/datasets.py new file mode 100644 index 0000000..57e1fe1 --- /dev/null +++ b/gn3/computations/datasets.py @@ -0,0 +1,323 @@ +"""module contains the code all related to datasets""" +import json +from math import ceil +from collections import defaultdict + +from typing import Optional +from typing import List + +from dataclasses import dataclass +from MySQLdb import escape_string # type: ignore + +import requests +from gn3.settings import GN2_BASE_URL + + +def retrieve_trait_sample_data(dataset, + trait_name: str, + database, + group_species_id=None) -> List: + """given the dataset id and trait_name fetch the\ + sample_name,value from the dataset""" + + # should pass the db as arg all do a setup + + (dataset_name, dataset_id, dataset_type) = (dataset.get("name"), dataset.get( + "id"), dataset.get("type")) + + dataset_query = get_query_for_dataset_sample(dataset_type) + results = [] + sample_query_values = { + "Publish": (trait_name, dataset_id), + "Geno": (group_species_id, trait_name, dataset_name), + "ProbeSet": (trait_name, dataset_name) + } + + if dataset_query: + formatted_query = dataset_query % sample_query_values[dataset_type] + + results = fetch_from_db_sample_data(formatted_query, database) + + return results + + +def fetch_from_db_sample_data(formatted_query: str, database_instance) -> List: + """this is the function that does the actual fetching of\ + results from the database""" + try: + cursor = database_instance.cursor() + cursor.execute(formatted_query) + results = cursor.fetchall() + + except Exception as error: + raise error + + cursor.close() + + return results + + +def get_query_for_dataset_sample(dataset_type) -> Optional[str]: + """this functions contains querys for\ + getting sample data from the db depending in + dataset""" + dataset_query = {} + + pheno_query = """ + SELECT + Strain.Name, PublishData.value, PublishSE.error,NStrain.count, Strain.Name2 + FROM + (PublishData, Strain, PublishXRef, PublishFreeze) + left join PublishSE on + (PublishSE.DataId = PublishData.Id AND PublishSE.StrainId = PublishData.StrainId) + left join NStrain on + (NStrain.DataId = PublishData.Id AND + NStrain.StrainId = PublishData.StrainId) + WHERE + PublishXRef.InbredSetId = PublishFreeze.InbredSetId AND + PublishData.Id = PublishXRef.DataId AND PublishXRef.Id = %s AND + PublishFreeze.Id = %s AND PublishData.StrainId = Strain.Id + Order BY + Strain.Name + """ + geno_query = """ + SELECT + Strain.Name, GenoData.value, GenoSE.error, "N/A", Strain.Name2 + FROM + (GenoData, GenoFreeze, Strain, Geno, GenoXRef) + left join GenoSE on + (GenoSE.DataId = GenoData.Id AND GenoSE.StrainId = GenoData.StrainId) + WHERE + Geno.SpeciesId = %s AND Geno.Name = %s AND GenoXRef.GenoId = Geno.Id AND + GenoXRef.GenoFreezeId = GenoFreeze.Id AND + GenoFreeze.Name = %s AND + GenoXRef.DataId = GenoData.Id AND + GenoData.StrainId = Strain.Id + Order BY + Strain.Name + """ + + probeset_query = """ + SELECT + Strain.Name, ProbeSetData.value, ProbeSetSE.error, NStrain.count, Strain.Name2 + FROM + (ProbeSetData, ProbeSetFreeze, + Strain, ProbeSet, ProbeSetXRef) + left join ProbeSetSE on + (ProbeSetSE.DataId = ProbeSetData.Id AND ProbeSetSE.StrainId = ProbeSetData.StrainId) + left join NStrain on + (NStrain.DataId = ProbeSetData.Id AND + NStrain.StrainId = ProbeSetData.StrainId) + WHERE + ProbeSet.Name = '%s' AND ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id AND + ProbeSetFreeze.Name = '%s' AND + ProbeSetXRef.DataId = ProbeSetData.Id AND + ProbeSetData.StrainId = Strain.Id + Order BY + Strain.Name + """ + + dataset_query["Publish"] = pheno_query + dataset_query["Geno"] = geno_query + dataset_query["ProbeSet"] = probeset_query + + return dataset_query.get(dataset_type) + + +@dataclass +class Dataset: + """class for creating datasets""" + name: Optional[str] = None + dataset_type: Optional[str] = None + dataset_id: int = -1 + + +def create_mrna_tissue_dataset(dataset_name, dataset_type): + """an mrna assay is a quantitative assessment(assay) associated\ + with an mrna trait.This used to be called probeset,but that term\ + only referes specifically to the afffymetrix platform and is\ + far too speficified""" + + return Dataset(name=dataset_name, dataset_type=dataset_type) + + +def dataset_type_getter(dataset_name, redis_instance=None) -> Optional[str]: + """given the dataset name fetch the type\ + of the dataset this in turn enables fetching\ + the creation of the correct object could utilize\ + redis for the case""" + + results = redis_instance.get(dataset_name, None) + + if results: + return results + + return fetch_dataset_type_from_gn2_api(dataset_name) + + +def fetch_dataset_type_from_gn2_api(dataset_name): + """this function is only called when the\ + the redis is empty and does have the specificied\ + dataset_type""" + # should only run once + + dataset_structure = {} + + map_dataset_to_new_type = { + "Phenotypes": "Publish", + "Genotypes": "Geno", + "MrnaTypes": "ProbeSet" + } + + data = json.loads(requests.get( + GN2_BASE_URL + "/api/v_pre1/gen_dropdown", timeout=5).content) + _name = dataset_name + for species in data['datasets']: + for group in data['datasets'][species]: + for dataset_type in data['datasets'][species][group]: + for dataset in data['datasets'][species][group][dataset_type]: + # assumes the first is dataset_short_name + short_dataset_name = next( + item for item in dataset if item != "None" and item is not None) + + dataset_structure[short_dataset_name] = map_dataset_to_new_type.get( + dataset_type, "MrnaTypes") + return dataset_structure + + +def dataset_creator_store(dataset_type): + """function contains key value pairs for\ + the function need to be called to create\ + each dataset_type""" + + dataset_obj = { + "ProbeSet": create_mrna_tissue_dataset + } + + return dataset_obj[dataset_type] + + +def create_dataset(dataset_type=None, dataset_name: str = None): + """function for creating new dataset temp not implemented""" + if dataset_type is None: + dataset_type = dataset_type_getter(dataset_name) + + dataset_creator = dataset_creator_store(dataset_type) + results = dataset_creator( + dataset_name=dataset_name, dataset_type=dataset_type) + return results + + +def fetch_dataset_sample_id(samplelist: List, database, species: str) -> dict: + """fetch the strain ids from the db only if\ + it is in the samplelist""" + # xtodo create an in clause for samplelist + + strain_query = """ + SELECT Strain.Name, Strain.Id FROM Strain, Species + WHERE Strain.Name IN {} + and Strain.SpeciesId=Species.Id + and Species.name = '{}' + """ + + database_cursor = database.cursor() + database_cursor.execute(strain_query.format(samplelist, species)) + + results = database_cursor.fetchall() + + return dict(results) + + +def divide_into_chunks(the_list, number_chunks): + """Divides a list into approximately number_chunks + >>> divide_into_chunks([1, 2, 7, 3, 22, 8, 5, 22, 333], 3) + [[1, 2, 7], [3, 22, 8], [5, 22, 333]]""" + + length = len(the_list) + if length == 0: + return [[]] + + if length <= number_chunks: + number_chunks = length + chunk_size = int(ceil(length/number_chunks)) + chunks = [] + + for counter in range(0, length, chunk_size): + chunks.append(the_list[counter:counter+chunk_size]) + return chunks + + +def escape(string_): + """function escape sql value""" + return escape_string(string_).decode('utf8') + + +def mescape(*items) -> List: + """multiple escape for query values""" + + return [escape_string(str(item)).decode('utf8') for item in items] + + +def get_traits_data(sample_ids, database_instance, dataset_name, dataset_type): + """function to fetch trait data""" + # MySQL limits the number of tables that can be used in a join to 61, + # so we break the sample ids into smaller chunks + # Postgres doesn't have that limit, so we can get rid of this after we transition + + _trait_data = defaultdict(list) + chunk_size = 61 + number_chunks = int(ceil(len(sample_ids) / chunk_size)) + for sample_ids_step in divide_into_chunks(sample_ids, number_chunks): + if dataset_type == "Publish": + full_dataset_type = "Phenotype" + else: + full_dataset_type = dataset_type + temp = ['T%s.value' % item for item in sample_ids_step] + + if dataset_type == "Publish": + query = "SELECT {}XRef.Id,".format(escape(dataset_type)) + + else: + query = "SELECT {}.Name,".format(escape(full_dataset_type)) + + query += ', '.join(temp) + query += ' FROM ({}, {}XRef, {}Freeze) '.format(*mescape(full_dataset_type, + dataset_type, + dataset_type)) + for item in sample_ids_step: + + query += """ + left join {}Data as T{} on T{}.Id = {}XRef.DataId + and T{}.StrainId={}\n + """.format(*mescape(dataset_type, item, + item, dataset_type, item, item)) + + if dataset_type == "Publish": + query += """ + WHERE {}XRef.{}FreezeId = {}Freeze.Id + and {}Freeze.Name = '{}' + and {}.Id = {}XRef.{}Id + order by {}.Id + """.format(*mescape(dataset_type, dataset_type, + dataset_type, dataset_type, + dataset_name, full_dataset_type, + dataset_type, dataset_type, + full_dataset_type)) + + else: + query += """ + WHERE {}XRef.{}FreezeId = {}Freeze.Id + and {}Freeze.Name = '{}' + and {}.Id = {}XRef.{}Id + order by {}.Id + """.format(*mescape(dataset_type, dataset_type, + dataset_type, dataset_type, + dataset_name, dataset_type, + dataset_type, dataset_type, + full_dataset_type)) + + # print(query) + + _results = fetch_from_db_sample_data(query, database_instance) + return {} diff --git a/gn3/computations/traits.py b/gn3/computations/traits.py new file mode 100644 index 0000000..1aa2970 --- /dev/null +++ b/gn3/computations/traits.py @@ -0,0 +1,56 @@ +"""module contains all operating related to traits""" +from gn3.computations.datasets import retrieve_trait_sample_data + + +def fetch_trait(dataset, trait_name: str, database) -> dict: + """this method creates a trait by\ + fetching required data given the\ + dataset and trait_name""" + + created_trait = { + "dataset": dataset, + "trait_name": trait_name + } + + trait_data = get_trait_sample_data(dataset, trait_name, database) + + created_trait["trait_data"] = trait_data + + return created_trait + + +def get_trait_sample_data(trait_dataset, trait_name, database) -> dict: + """first try to fetch the traits sample data from redis if that\ + try to fetch from the traits dataset redis is only used for\ + temp dataset type which is not used in this case """ + + sample_results = retrieve_trait_sample_data( + trait_dataset, trait_name, database) + + trait_data = {} + + for (name, sample_value, _variance, _numcase, _name2) in sample_results: + + trait_data[name] = sample_value + return trait_data + + +def get_trait_info_data(trait_dataset, + trait_name: str, + database_instance, + get_qtl_info: bool = False) -> dict: + """given a dataset and trait_name return a dict containing all info\ + regarding the get trait""" + + _temp_var_holder = (trait_dataset, trait_name, + database_instance, get_qtl_info) + trait_info_data = { + "description": "", + "chr": "", + "locus": "", + "mb": "", + "abbreviation": "", + "trait_display_name": "" + + } + return trait_info_data |