aboutsummaryrefslogtreecommitdiff
path: root/gn3/computations
diff options
context:
space:
mode:
Diffstat (limited to 'gn3/computations')
-rw-r--r--gn3/computations/biweight.py27
-rw-r--r--gn3/computations/correlations.py41
-rw-r--r--gn3/computations/correlations2.py36
-rw-r--r--gn3/computations/partial_correlations.py696
-rw-r--r--gn3/computations/wgcna.py49
5 files changed, 767 insertions, 82 deletions
diff --git a/gn3/computations/biweight.py b/gn3/computations/biweight.py
deleted file mode 100644
index 7accd0c..0000000
--- a/gn3/computations/biweight.py
+++ /dev/null
@@ -1,27 +0,0 @@
-"""module contains script to call biweight midcorrelation in R"""
-import subprocess
-
-from typing import List
-from typing import Tuple
-
-from gn3.settings import BIWEIGHT_RSCRIPT
-
-
-def calculate_biweight_corr(trait_vals: List,
- target_vals: List,
- path_to_script: str = BIWEIGHT_RSCRIPT,
- command: str = "Rscript"
- ) -> Tuple[float, float]:
- """biweight function"""
-
- args_1 = ' '.join(str(trait_val) for trait_val in trait_vals)
- args_2 = ' '.join(str(target_val) for target_val in target_vals)
- cmd = [command, path_to_script] + [args_1] + [args_2]
-
- results = subprocess.check_output(cmd, universal_newlines=True)
- try:
- (corr_coeff, p_val) = tuple(
- [float(y.strip()) for y in results.split()])
- return (corr_coeff, p_val)
- except Exception as error:
- raise error
diff --git a/gn3/computations/correlations.py b/gn3/computations/correlations.py
index bb13ff1..c5c56db 100644
--- a/gn3/computations/correlations.py
+++ b/gn3/computations/correlations.py
@@ -1,6 +1,7 @@
"""module contains code for correlations"""
import math
import multiprocessing
+from contextlib import closing
from typing import List
from typing import Tuple
@@ -8,7 +9,7 @@ from typing import Optional
from typing import Callable
import scipy.stats
-from gn3.computations.biweight import calculate_biweight_corr
+import pingouin as pg
def map_shared_keys_to_values(target_sample_keys: List,
@@ -49,13 +50,9 @@ def normalize_values(a_values: List,
([2.3, 4.1, 5], [3.4, 6.2, 4.1], 3)
"""
- a_new = []
- b_new = []
for a_val, b_val in zip(a_values, b_values):
if (a_val and b_val is not None):
- a_new.append(a_val)
- b_new.append(b_val)
- return a_new, b_new, len(a_new)
+ yield a_val, b_val
def compute_corr_coeff_p_value(primary_values: List, target_values: List,
@@ -81,8 +78,10 @@ def compute_sample_r_correlation(trait_name, corr_method, trait_vals,
correlation coeff and p value
"""
- (sanitized_traits_vals, sanitized_target_vals,
- num_overlap) = normalize_values(trait_vals, target_samples_vals)
+
+ sanitized_traits_vals, sanitized_target_vals = list(
+ zip(*list(normalize_values(trait_vals, target_samples_vals))))
+ num_overlap = len(sanitized_traits_vals)
if num_overlap > 5:
@@ -102,11 +101,10 @@ package :not packaged in guix
"""
- try:
- results = calculate_biweight_corr(x_val, y_val)
- return results
- except Exception as error:
- raise error
+ results = pg.corr(x_val, y_val, method="bicor")
+ corr_coeff = results["r"].values[0]
+ p_val = results["p-val"].values[0]
+ return (corr_coeff, p_val)
def filter_shared_sample_keys(this_samplelist,
@@ -115,13 +113,9 @@ def filter_shared_sample_keys(this_samplelist,
filter the values using the shared keys
"""
- this_vals = []
- target_vals = []
for key, value in target_samplelist.items():
if key in this_samplelist:
- target_vals.append(value)
- this_vals.append(this_samplelist[key])
- return (this_vals, target_vals)
+ yield this_samplelist[key], value
def fast_compute_all_sample_correlation(this_trait,
@@ -140,9 +134,10 @@ def fast_compute_all_sample_correlation(this_trait,
for target_trait in target_dataset:
trait_name = target_trait.get("trait_id")
target_trait_data = target_trait["trait_sample_data"]
- processed_values.append((trait_name, corr_method, *filter_shared_sample_keys(
- this_trait_samples, target_trait_data)))
- with multiprocessing.Pool(4) as pool:
+ processed_values.append((trait_name, corr_method,
+ list(zip(*list(filter_shared_sample_keys(
+ this_trait_samples, target_trait_data))))))
+ with closing(multiprocessing.Pool()) as pool:
results = pool.starmap(compute_sample_r_correlation, processed_values)
for sample_correlation in results:
@@ -173,8 +168,8 @@ def compute_all_sample_correlation(this_trait,
for target_trait in target_dataset:
trait_name = target_trait.get("trait_id")
target_trait_data = target_trait["trait_sample_data"]
- this_vals, target_vals = filter_shared_sample_keys(
- this_trait_samples, target_trait_data)
+ this_vals, target_vals = list(zip(*list(filter_shared_sample_keys(
+ this_trait_samples, target_trait_data))))
sample_correlation = compute_sample_r_correlation(
trait_name=trait_name,
diff --git a/gn3/computations/correlations2.py b/gn3/computations/correlations2.py
index 93db3fa..d0222ae 100644
--- a/gn3/computations/correlations2.py
+++ b/gn3/computations/correlations2.py
@@ -6,45 +6,21 @@ FUNCTIONS:
compute_correlation:
TODO: Describe what the function does..."""
-from math import sqrt
-from functools import reduce
+from scipy import stats
## From GN1: mostly for clustering and heatmap generation
def __items_with_values(dbdata, userdata):
"""Retains only corresponding items in the data items that are not `None` values.
This should probably be renamed to something sensible"""
- def both_not_none(item1, item2):
- """Check that both items are not the value `None`."""
- if (item1 is not None) and (item2 is not None):
- return (item1, item2)
- return None
- def split_lists(accumulator, item):
- """Separate the 'x' and 'y' items."""
- return [accumulator[0] + [item[0]], accumulator[1] + [item[1]]]
- return reduce(
- split_lists,
- filter(lambda x: x is not None, map(both_not_none, dbdata, userdata)),
- [[], []])
+ filtered = [x for x in zip(dbdata, userdata) if x[0] is not None and x[1] is not None]
+ return tuple(zip(*filtered)) if filtered else ([], [])
def compute_correlation(dbdata, userdata):
- """Compute some form of correlation.
+ """Compute the Pearson correlation coefficient.
This is extracted from
https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/utility/webqtlUtil.py#L622-L647
"""
x_items, y_items = __items_with_values(dbdata, userdata)
- if len(x_items) < 6:
- return (0.0, len(x_items))
- meanx = sum(x_items)/len(x_items)
- meany = sum(y_items)/len(y_items)
- def cal_corr_vals(acc, item):
- xitem, yitem = item
- return [
- acc[0] + ((xitem - meanx) * (yitem - meany)),
- acc[1] + ((xitem - meanx) * (xitem - meanx)),
- acc[2] + ((yitem - meany) * (yitem - meany))]
- xyd, sxd, syd = reduce(cal_corr_vals, zip(x_items, y_items), [0.0, 0.0, 0.0])
- try:
- return ((xyd/(sqrt(sxd)*sqrt(syd))), len(x_items))
- except ZeroDivisionError:
- return(0, len(x_items))
+ correlation = stats.pearsonr(x_items, y_items)[0] if len(x_items) >= 6 else 0
+ return (correlation, len(x_items))
diff --git a/gn3/computations/partial_correlations.py b/gn3/computations/partial_correlations.py
new file mode 100644
index 0000000..231b0a7
--- /dev/null
+++ b/gn3/computations/partial_correlations.py
@@ -0,0 +1,696 @@
+"""
+This module deals with partial correlations.
+
+It is an attempt to migrate over the partial correlations feature from
+GeneNetwork1.
+"""
+
+import math
+from functools import reduce, partial
+from typing import Any, Tuple, Union, Sequence
+
+import pandas
+import pingouin
+from scipy.stats import pearsonr, spearmanr
+
+from gn3.settings import TEXTDIR
+from gn3.random import random_string
+from gn3.function_helpers import compose
+from gn3.data_helpers import parse_csv_line
+from gn3.db.traits import export_informative
+from gn3.db.traits import retrieve_trait_info, retrieve_trait_data
+from gn3.db.species import species_name, translate_to_mouse_gene_id
+from gn3.db.correlations import (
+ get_filename,
+ fetch_all_database_data,
+ check_for_literature_info,
+ fetch_tissue_correlations,
+ fetch_literature_correlations,
+ check_symbol_for_tissue_correlation,
+ fetch_gene_symbol_tissue_value_dict_for_trait)
+
+def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
+ """
+ Fetches data for the control traits.
+
+ This migrates `web/webqtl/correlation/correlationFunction.controlStrain` in
+ GN1, with a few modifications to the arguments passed in.
+
+ PARAMETERS:
+ controls: A map of sample names to trait data. Equivalent to the `cvals`
+ value in the corresponding source function in GN1.
+ sampleslist: A list of samples. Equivalent to `strainlst` in the
+ corresponding source function in GN1
+ """
+ def __process_control__(trait_data):
+ def __process_sample__(acc, sample):
+ if sample in trait_data["data"].keys():
+ sample_item = trait_data["data"][sample]
+ val = sample_item["value"]
+ if val is not None:
+ return (
+ acc[0] + (sample,),
+ acc[1] + (val,),
+ acc[2] + (sample_item["variance"],))
+ return acc
+ return reduce(
+ __process_sample__, sampleslist, (tuple(), tuple(), tuple()))
+
+ return reduce(
+ lambda acc, item: (
+ acc[0] + (item[0],),
+ acc[1] + (item[1],),
+ acc[2] + (item[2],),
+ acc[3] + (len(item[0]),),
+ ),
+ [__process_control__(trait_data) for trait_data in controls],
+ (tuple(), tuple(), tuple(), tuple()))
+
+def dictify_by_samples(samples_vals_vars: Sequence[Sequence]) -> Sequence[dict]:
+ """
+ Build a sequence of dictionaries from a sequence of separate sequences of
+ samples, values and variances.
+
+ This is a partial migration of
+ `web.webqtl.correlation.correlationFunction.fixStrains` function in GN1.
+ This implementation extracts code that will find common use, and that will
+ find use in more than one place.
+ """
+ return tuple(
+ {
+ sample: {"sample_name": sample, "value": val, "variance": var}
+ for sample, val, var in zip(*trait_line)
+ } for trait_line in zip(*(samples_vals_vars[0:3])))
+
+def fix_samples(primary_trait: dict, control_traits: Sequence[dict]) -> Sequence[Sequence[Any]]:
+ """
+ Corrects sample_names, values and variance such that they all contain only
+ those samples that are common to the reference trait and all control traits.
+
+ This is a partial migration of the
+ `web.webqtl.correlation.correlationFunction.fixStrain` function in GN1.
+ """
+ primary_samples = tuple(
+ present[0] for present in
+ ((sample, all(sample in control.keys() for control in control_traits))
+ for sample in primary_trait.keys())
+ if present[1])
+ control_vals_vars: tuple = reduce(
+ lambda acc, x: (acc[0] + (x[0],), acc[1] + (x[1],)),
+ ((item["value"], item["variance"])
+ for sublist in [tuple(control.values()) for control in control_traits]
+ for item in sublist),
+ (tuple(), tuple()))
+ return (
+ primary_samples,
+ tuple(primary_trait[sample]["value"] for sample in primary_samples),
+ control_vals_vars[0],
+ tuple(primary_trait[sample]["variance"] for sample in primary_samples),
+ control_vals_vars[1])
+
+def find_identical_traits(
+ primary_name: str, primary_value: float, control_names: Tuple[str, ...],
+ control_values: Tuple[float, ...]) -> Tuple[str, ...]:
+ """
+ Find traits that have the same value when the values are considered to
+ 3 decimal places.
+
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.findIdenticalTraits` function in
+ GN1.
+ """
+ def __merge_identicals__(
+ acc: Tuple[str, ...],
+ ident: Tuple[str, Tuple[str, ...]]) -> Tuple[str, ...]:
+ return acc + ident[1]
+
+ def __dictify_controls__(acc, control_item):
+ ckey = tuple("{:.3f}".format(item) for item in control_item[0])
+ return {**acc, ckey: acc.get(ckey, tuple()) + (control_item[1],)}
+
+ return (reduce(## for identical control traits
+ __merge_identicals__,
+ (item for item in reduce(# type: ignore[var-annotated]
+ __dictify_controls__, zip(control_values, control_names),
+ {}).items() if len(item[1]) > 1),
+ tuple())
+ or
+ reduce(## If no identical control traits, try primary and controls
+ __merge_identicals__,
+ (item for item in reduce(# type: ignore[var-annotated]
+ __dictify_controls__,
+ zip((primary_value,) + control_values,
+ (primary_name,) + control_names), {}).items()
+ if len(item[1]) > 1),
+ tuple()))
+
+def tissue_correlation(
+ primary_trait_values: Tuple[float, ...],
+ target_trait_values: Tuple[float, ...],
+ method: str) -> Tuple[float, float]:
+ """
+ Compute the correlation between the primary trait values, and the values of
+ a single target value.
+
+ This migrates the `cal_tissue_corr` function embedded in the larger
+ `web.webqtl.correlation.correlationFunction.batchCalTissueCorr` function in
+ GeneNetwork1.
+ """
+ def spearman_corr(*args):
+ result = spearmanr(*args)
+ return (result.correlation, result.pvalue)
+
+ method_fns = {"pearson": pearsonr, "spearman": spearman_corr}
+
+ assert len(primary_trait_values) == len(target_trait_values), (
+ "The lengths of the `primary_trait_values` and `target_trait_values` "
+ "must be equal")
+ assert method in method_fns.keys(), (
+ "Method must be one of: {}".format(",".join(method_fns.keys())))
+
+ corr, pvalue = method_fns[method](primary_trait_values, target_trait_values)
+ return (corr, pvalue)
+
+def batch_computed_tissue_correlation(
+ primary_trait_values: Tuple[float, ...], target_traits_dict: dict,
+ method: str) -> Tuple[dict, dict]:
+ """
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.batchCalTissueCorr` function in
+ GeneNetwork1
+ """
+ def __corr__(acc, target):
+ corr = tissue_correlation(primary_trait_values, target[1], method)
+ return ({**acc[0], target[0]: corr[0]}, {**acc[0], target[1]: corr[1]})
+ return reduce(__corr__, target_traits_dict.items(), ({}, {}))
+
+def correlations_of_all_tissue_traits(
+ primary_trait_symbol_value_dict: dict, symbol_value_dict: dict,
+ method: str) -> Tuple[dict, dict]:
+ """
+ Computes and returns the correlation of all tissue traits.
+
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.calculateCorrOfAllTissueTrait`
+ function in GeneNetwork1.
+ """
+ primary_trait_values = tuple(primary_trait_symbol_value_dict.values())[0]
+ return batch_computed_tissue_correlation(
+ primary_trait_values, symbol_value_dict, method)
+
+def good_dataset_samples_indexes(
+ samples: Tuple[str, ...],
+ samples_from_file: Tuple[str, ...]) -> Tuple[int, ...]:
+ """
+ Return the indexes of the items in `samples_from_files` that are also found
+ in `samples`.
+
+ This is a partial migration of the
+ `web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsFast`
+ function in GeneNetwork1.
+ """
+ return tuple(sorted(
+ samples_from_file.index(good) for good in
+ set(samples).intersection(set(samples_from_file))))
+
+def partial_correlations_fast(# pylint: disable=[R0913, R0914]
+ samples, primary_vals, control_vals, database_filename,
+ fetched_correlations, method: str, correlation_type: str) -> Tuple[
+ float, Tuple[float, ...]]:
+ """
+ Computes partial correlation coefficients using data from a CSV file.
+
+ This is a partial migration of the
+ `web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsFast`
+ function in GeneNetwork1.
+ """
+ assert method in ("spearman", "pearson")
+ with open(database_filename, "r") as dataset_file:
+ dataset = tuple(dataset_file.readlines())
+
+ good_dataset_samples = good_dataset_samples_indexes(
+ samples, parse_csv_line(dataset[0])[1:])
+
+ def __process_trait_names_and_values__(acc, line):
+ trait_line = parse_csv_line(line)
+ trait_name = trait_line[0]
+ trait_data = trait_line[1:]
+ if trait_name in fetched_correlations.keys():
+ return (
+ acc[0] + (trait_name,),
+ acc[1] + tuple(
+ trait_data[i] if i in good_dataset_samples else None
+ for i in range(len(trait_data))))
+ return acc
+
+ processed_trait_names_values: tuple = reduce(
+ __process_trait_names_and_values__, dataset[1:], (tuple(), tuple()))
+ all_target_trait_names: Tuple[str, ...] = processed_trait_names_values[0]
+ all_target_trait_values: Tuple[float, ...] = processed_trait_names_values[1]
+
+ all_correlations = compute_partial(
+ primary_vals, control_vals, all_target_trait_names,
+ all_target_trait_values, method)
+ ## Line 772 to 779 in GN1 are the cause of the weird complexity in the
+ ## return below. Once the surrounding code is successfully migrated and
+ ## reworked, this complexity might go away, by getting rid of the
+ ## `correlation_type` parameter
+ return len(all_correlations), tuple(
+ corr + (
+ (fetched_correlations[corr[0]],) if correlation_type == "literature"
+ else fetched_correlations[corr[0]][0:2])
+ for idx, corr in enumerate(all_correlations))
+
+def build_data_frame(
+ xdata: Tuple[float, ...], ydata: Tuple[float, ...],
+ zdata: Union[
+ Tuple[float, ...],
+ Tuple[Tuple[float, ...], ...]]) -> pandas.DataFrame:
+ """
+ Build a pandas DataFrame object from xdata, ydata and zdata
+ """
+ x_y_df = pandas.DataFrame({"x": xdata, "y": ydata})
+ if isinstance(zdata[0], float):
+ return x_y_df.join(pandas.DataFrame({"z": zdata}))
+ interm_df = x_y_df.join(pandas.DataFrame(
+ {"z{}".format(i): val for i, val in enumerate(zdata)}))
+ if interm_df.shape[1] == 3:
+ return interm_df.rename(columns={"z0": "z"})
+ return interm_df
+
+def compute_partial(
+ primary_vals, control_vals, target_vals, target_names,
+ method: str) -> Tuple[
+ Union[
+ Tuple[str, int, float, float, float, float], None],
+ ...]:
+ """
+ Compute the partial correlations.
+
+ This is a re-implementation of the
+ `web.webqtl.correlation.correlationFunction.determinePartialsByR` function
+ in GeneNetwork1.
+
+ This implementation reworks the child function `compute_partial` which will
+ then be used in the place of `determinPartialsByR`.
+
+ TODO: moving forward, we might need to use the multiprocessing library to
+ speed up the computations, in case they are found to be slow.
+ """
+ # replace the R code with `pingouin.partial_corr`
+ def __compute_trait_info__(target):
+ targ_vals = target[0]
+ targ_name = target[1]
+ primary = [
+ prim for targ, prim in zip(targ_vals, primary_vals)
+ if targ is not None]
+
+ datafrm = build_data_frame(
+ primary,
+ tuple(targ for targ in targ_vals if targ is not None),
+ tuple(cont for i, cont in enumerate(control_vals)
+ if target[i] is not None))
+ covariates = "z" if datafrm.shape[1] == 3 else [
+ col for col in datafrm.columns if col not in ("x", "y")]
+ ppc = pingouin.partial_corr(
+ data=datafrm, x="x", y="y", covar=covariates, method=(
+ "pearson" if "pearson" in method.lower() else "spearman"))
+ pc_coeff = ppc["r"][0]
+
+ zero_order_corr = pingouin.corr(
+ datafrm["x"], datafrm["y"], method=(
+ "pearson" if "pearson" in method.lower() else "spearman"))
+
+ if math.isnan(pc_coeff):
+ return (
+ targ_name, len(primary), pc_coeff, 1, zero_order_corr["r"][0],
+ zero_order_corr["p-val"][0])
+ return (
+ targ_name, len(primary), pc_coeff,
+ (ppc["p-val"][0] if not math.isnan(ppc["p-val"][0]) else (
+ 0 if (abs(pc_coeff - 1) < 0.0000001) else 1)),
+ zero_order_corr["r"][0], zero_order_corr["p-val"][0])
+
+ return tuple(
+ __compute_trait_info__(target)
+ for target in zip(target_vals, target_names))
+
+def partial_correlations_normal(# pylint: disable=R0913
+ primary_vals, control_vals, input_trait_gene_id, trait_database,
+ data_start_pos: int, db_type: str, method: str) -> Tuple[
+ float, Tuple[float, ...]]:
+ """
+ Computes the correlation coefficients.
+
+ This is a migration of the
+ `web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsNormal`
+ function in GeneNetwork1.
+ """
+ def __add_lit_and_tiss_corr__(item):
+ if method.lower() == "sgo literature correlation":
+ # if method is 'SGO Literature Correlation', `compute_partial`
+ # would give us LitCorr in the [1] position
+ return tuple(item) + trait_database[1]
+ if method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho"):
+ # if method is 'Tissue Correlation, *', `compute_partial` would give
+ # us Tissue Corr in the [1] position and Tissue Corr P Value in the
+ # [2] position
+ return tuple(item) + (trait_database[1], trait_database[2])
+ return item
+
+ target_trait_names, target_trait_vals = reduce(
+ lambda acc, item: (acc[0]+(item[0],), acc[1]+(item[data_start_pos:],)),
+ trait_database, (tuple(), tuple()))
+
+ all_correlations = compute_partial(
+ primary_vals, control_vals, target_trait_vals, target_trait_names,
+ method)
+
+ if (input_trait_gene_id and db_type == "ProbeSet" and method.lower() in (
+ "sgo literature correlation", "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")):
+ return (
+ len(trait_database),
+ tuple(
+ __add_lit_and_tiss_corr__(item)
+ for idx, item in enumerate(all_correlations)))
+
+ return len(trait_database), all_correlations
+
+def partial_corrs(# pylint: disable=[R0913]
+ conn, samples, primary_vals, control_vals, return_number, species,
+ input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
+ method, dataset, database_filename):
+ """
+ Compute the partial correlations, selecting the fast or normal method
+ depending on the existence of the database text file.
+
+ This is a partial migration of the
+ `web.webqtl.correlation.PartialCorrDBPage.__init__` function in
+ GeneNetwork1.
+ """
+ if database_filename:
+ return partial_correlations_fast(
+ samples, primary_vals, control_vals, database_filename,
+ (
+ fetch_literature_correlations(
+ species, input_trait_geneid, dataset, return_number, conn)
+ if "literature" in method.lower() else
+ fetch_tissue_correlations(
+ dataset, input_trait_symbol, tissue_probeset_freeze_id,
+ method, return_number, conn)),
+ method,
+ ("literature" if method.lower() == "sgo literature correlation"
+ else ("tissue" if "tissue" in method.lower() else "genetic")))
+
+ trait_database, data_start_pos = fetch_all_database_data(
+ conn, species, input_trait_geneid, input_trait_symbol, samples, dataset,
+ method, return_number, tissue_probeset_freeze_id)
+ return partial_correlations_normal(
+ primary_vals, control_vals, input_trait_geneid, trait_database,
+ data_start_pos, dataset, method)
+
+def literature_correlation_by_list(
+ conn: Any, species: str, trait_list: Tuple[dict]) -> Tuple[dict]:
+ """
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getLiteratureCorrelationByList`
+ function in GeneNetwork1.
+ """
+ if any((lambda t: (
+ bool(t.get("tissue_corr")) and
+ bool(t.get("tissue_p_value"))))(trait)
+ for trait in trait_list):
+ temporary_table_name = f"LITERATURE{random_string(8)}"
+ query1 = (
+ f"CREATE TEMPORARY TABLE {temporary_table_name} "
+ "(GeneId1 INT(12) UNSIGNED, GeneId2 INT(12) UNSIGNED PRIMARY KEY, "
+ "value DOUBLE)")
+ query2 = (
+ f"INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) "
+ "SELECT GeneId1, GeneId2, value FROM LCorrRamin3 "
+ "WHERE GeneId1=%(geneid)s")
+ query3 = (
+ "INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) "
+ "SELECT GeneId2, GeneId1, value FROM LCorrRamin3 "
+ "WHERE GeneId2=%s AND GeneId1 != %(geneid)s")
+
+ def __set_mouse_geneid__(trait):
+ if trait.get("geneid"):
+ return {
+ **trait,
+ "mouse_geneid": translate_to_mouse_gene_id(
+ species, trait.get("geneid"), conn)
+ }
+ return {**trait, "mouse_geneid": 0}
+
+ def __retrieve_lcorr__(cursor, geneids):
+ cursor.execute(
+ f"SELECT GeneId2, value FROM {temporary_table_name} "
+ "WHERE GeneId2 IN %(geneids)s",
+ geneids=geneids)
+ return dict(cursor.fetchall())
+
+ with conn.cursor() as cursor:
+ cursor.execute(query1)
+ cursor.execute(query2)
+ cursor.execute(query3)
+
+ traits = tuple(__set_mouse_geneid__(trait) for trait in trait_list)
+ lcorrs = __retrieve_lcorr__(
+ cursor, (
+ trait["mouse_geneid"] for trait in traits
+ if (trait["mouse_geneid"] != 0 and
+ trait["mouse_geneid"].find(";") < 0)))
+ return tuple(
+ {**trait, "l_corr": lcorrs.get(trait["mouse_geneid"], None)}
+ for trait in traits)
+
+ return trait_list
+ return trait_list
+
+def tissue_correlation_by_list(
+ conn: Any, primary_trait_symbol: str, tissue_probeset_freeze_id: int,
+ method: str, trait_list: Tuple[dict]) -> Tuple[dict]:
+ """
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getTissueCorrelationByList`
+ function in GeneNetwork1.
+ """
+ def __add_tissue_corr__(trait, primary_trait_values, trait_values):
+ result = pingouin.corr(
+ primary_trait_values, trait_values,
+ method=("spearman" if "spearman" in method.lower() else "pearson"))
+ return {
+ **trait,
+ "tissue_corr": result["r"],
+ "tissue_p_value": result["p-val"]
+ }
+
+ if any((lambda t: bool(t.get("l_corr")))(trait) for trait in trait_list):
+ prim_trait_symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
+ (primary_trait_symbol,), tissue_probeset_freeze_id, conn)
+ if primary_trait_symbol.lower() in prim_trait_symbol_value_dict:
+ primary_trait_value = prim_trait_symbol_value_dict[
+ primary_trait_symbol.lower()]
+ gene_symbol_list = tuple(
+ trait for trait in trait_list if "symbol" in trait.keys())
+ symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
+ gene_symbol_list, tissue_probeset_freeze_id, conn)
+ return tuple(
+ __add_tissue_corr__(
+ trait, primary_trait_value,
+ symbol_value_dict[trait["symbol"].lower()])
+ for trait in trait_list
+ if ("symbol" in trait and
+ bool(trait["symbol"]) and
+ trait["symbol"].lower() in symbol_value_dict))
+ return tuple({
+ **trait,
+ "tissue_corr": None,
+ "tissue_p_value": None
+ } for trait in trait_list)
+ return trait_list
+
+def partial_correlations_entry(# pylint: disable=[R0913, R0914, R0911]
+ conn: Any, primary_trait_name: str,
+ control_trait_names: Tuple[str, ...], method: str,
+ criteria: int, group: str, target_db_name: str) -> dict:
+ """
+ This is the 'ochestration' function for the partial-correlation feature.
+
+ This function will dispatch the functions doing data fetches from the
+ database (and various other places) and feed that data to the functions
+ doing the conversions and computations. It will then return the results of
+ all of that work.
+
+ This function is doing way too much. Look into splitting out the
+ functionality into smaller functions that do fewer things.
+ """
+ threshold = 0
+ corr_min_informative = 4
+
+ primary_trait = retrieve_trait_info(threshold, primary_trait_name, conn)
+ primary_trait_data = retrieve_trait_data(primary_trait, conn)
+ primary_samples, primary_values, _primary_variances = export_informative(
+ primary_trait_data)
+
+ cntrl_traits = tuple(
+ retrieve_trait_info(threshold, trait_full_name, conn)
+ for trait_full_name in control_trait_names)
+ cntrl_traits_data = tuple(
+ retrieve_trait_data(cntrl_trait, conn)
+ for cntrl_trait in cntrl_traits)
+ species = species_name(conn, group)
+
+ (cntrl_samples,
+ cntrl_values,
+ _cntrl_variances,
+ _cntrl_ns) = control_samples(cntrl_traits_data, primary_samples)
+
+ common_primary_control_samples = primary_samples
+ fixed_primary_vals = primary_values
+ fixed_control_vals = cntrl_values
+ if not all(cnt_smp == primary_samples for cnt_smp in cntrl_samples):
+ (common_primary_control_samples,
+ fixed_primary_vals,
+ fixed_control_vals,
+ _primary_variances,
+ _cntrl_variances) = fix_samples(primary_trait, cntrl_traits)
+
+ if len(common_primary_control_samples) < corr_min_informative:
+ return {
+ "status": "error",
+ "message": (
+ f"Fewer than {corr_min_informative} samples data entered for "
+ f"{group} dataset. No calculation of correlation has been "
+ "attempted."),
+ "error_type": "Inadequate Samples"}
+
+ identical_traits_names = find_identical_traits(
+ primary_trait_name, primary_values, control_trait_names, cntrl_values)
+ if len(identical_traits_names) > 0:
+ return {
+ "status": "error",
+ "message": (
+ f"{identical_traits_names[0]} and {identical_traits_names[1]} "
+ "have the same values for the {len(fixed_primary_vals)} "
+ "samples that will be used to compute the partial correlation "
+ "(common for all primary and control traits). In such cases, "
+ "partial correlation cannot be computed. Please re-select your "
+ "traits."),
+ "error_type": "Identical Traits"}
+
+ input_trait_geneid = primary_trait.get("geneid")
+ input_trait_symbol = primary_trait.get("symbol")
+ input_trait_mouse_geneid = translate_to_mouse_gene_id(
+ species, input_trait_geneid, conn)
+
+ tissue_probeset_freeze_id = 1
+ db_type = primary_trait["db"]["dataset_type"]
+
+ if db_type == "ProbeSet" and method.lower() in (
+ "sgo literature correlation",
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho"):
+ return {
+ "status": "error",
+ "message": (
+ "Wrong correlation type: It is not possible to compute the "
+ f"{method} between your trait and data in the {target_db_name} "
+ "database. Please try again after selecting another type of "
+ "correlation."),
+ "error_type": "Correlation Type"}
+
+ if (method.lower() == "sgo literature correlation" and (
+ input_trait_geneid is None or
+ check_for_literature_info(conn, input_trait_mouse_geneid))):
+ return {
+ "status": "error",
+ "message": (
+ "No Literature Information: This gene does not have any "
+ "associated Literature Information."),
+ "error_type": "Literature Correlation"}
+
+ if (
+ method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")
+ and input_trait_symbol is None):
+ return {
+ "status": "error",
+ "message": (
+ "No Tissue Correlation Information: This gene does not have "
+ "any associated Tissue Correlation Information."),
+ "error_type": "Tissue Correlation"}
+
+ if (
+ method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")
+ and check_symbol_for_tissue_correlation(
+ conn, tissue_probeset_freeze_id, input_trait_symbol)):
+ return {
+ "status": "error",
+ "message": (
+ "No Tissue Correlation Information: This gene does not have "
+ "any associated Tissue Correlation Information."),
+ "error_type": "Tissue Correlation"}
+
+ database_filename = get_filename(conn, target_db_name, TEXTDIR)
+ _total_traits, all_correlations = partial_corrs(
+ conn, common_primary_control_samples, fixed_primary_vals,
+ fixed_control_vals, len(fixed_primary_vals), species,
+ input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
+ method, primary_trait["db"], database_filename)
+
+
+ def __make_sorter__(method):
+ def __sort_6__(row):
+ return row[6]
+
+ def __sort_3__(row):
+ return row[3]
+
+ if "literature" in method.lower():
+ return __sort_6__
+
+ if "tissue" in method.lower():
+ return __sort_6__
+
+ return __sort_3__
+
+ sorted_correlations = sorted(
+ all_correlations, key=__make_sorter__(method))
+
+ add_lit_corr_and_tiss_corr = compose(
+ partial(literature_correlation_by_list, conn, species),
+ partial(
+ tissue_correlation_by_list, conn, input_trait_symbol,
+ tissue_probeset_freeze_id, method))
+
+ trait_list = add_lit_corr_and_tiss_corr(tuple(
+ {
+ **retrieve_trait_info(
+ threshold,
+ f"{primary_trait['db']['dataset_name']}::{item[0]}",
+ conn),
+ "noverlap": item[1],
+ "partial_corr": item[2],
+ "partial_corr_p_value": item[3],
+ "corr": item[4],
+ "corr_p_value": item[5],
+ "rank_order": (1 if "spearman" in method.lower() else 0),
+ **({
+ "tissue_corr": item[6],
+ "tissue_p_value": item[7]}
+ if len(item) == 8 else {}),
+ **({"l_corr": item[6]}
+ if len(item) == 7 else {})
+ }
+ for item in
+ sorted_correlations[:min(criteria, len(all_correlations))]))
+
+ return trait_list
diff --git a/gn3/computations/wgcna.py b/gn3/computations/wgcna.py
index fd508fa..ab12fe7 100644
--- a/gn3/computations/wgcna.py
+++ b/gn3/computations/wgcna.py
@@ -3,8 +3,11 @@
import os
import json
import uuid
-from gn3.settings import TMPDIR
+import subprocess
+import base64
+
+from gn3.settings import TMPDIR
from gn3.commands import run_cmd
@@ -14,12 +17,46 @@ def dump_wgcna_data(request_data: dict):
temp_file_path = os.path.join(TMPDIR, filename)
+ request_data["TMPDIR"] = TMPDIR
+
with open(temp_file_path, "w") as output_file:
json.dump(request_data, output_file)
return temp_file_path
+def stream_cmd_output(socketio, request_data, cmd: str):
+ """function to stream in realtime"""
+ # xtodo syncing and closing /edge cases
+
+ socketio.emit("output", {"data": f"calling you script {cmd}"},
+ namespace="/", room=request_data["socket_id"])
+ results = subprocess.Popen(
+ cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True)
+
+ if results.stdout is not None:
+
+ for line in iter(results.stdout.readline, b""):
+ socketio.emit("output",
+ {"data": line.decode("utf-8").rstrip()},
+ namespace="/", room=request_data["socket_id"])
+
+ socketio.emit(
+ "output", {"data":
+ "parsing the output results"}, namespace="/",
+ room=request_data["socket_id"])
+
+
+def process_image(image_loc: str) -> bytes:
+ """encode the image"""
+
+ try:
+ with open(image_loc, "rb") as image_file:
+ return base64.b64encode(image_file.read())
+ except FileNotFoundError:
+ return b""
+
+
def compose_wgcna_cmd(rscript_path: str, temp_file_path: str):
"""function to componse wgcna cmd"""
# (todo):issue relative paths to abs paths
@@ -32,6 +69,8 @@ def call_wgcna_script(rscript_path: str, request_data: dict):
generated_file = dump_wgcna_data(request_data)
cmd = compose_wgcna_cmd(rscript_path, generated_file)
+ # stream_cmd_output(request_data, cmd) disable streaming of data
+
try:
run_cmd_results = run_cmd(cmd)
@@ -40,8 +79,14 @@ def call_wgcna_script(rscript_path: str, request_data: dict):
if run_cmd_results["code"] != 0:
return run_cmd_results
+
+ output_file_data = json.load(outputfile)
+ output_file_data["output"]["image_data"] = process_image(
+ output_file_data["output"]["imageLoc"]).decode("ascii")
+ # json format only supports unicode string// to get image data reconvert
+
return {
- "data": json.load(outputfile),
+ "data": output_file_data,
**run_cmd_results
}
except FileNotFoundError: