aboutsummaryrefslogtreecommitdiff
path: root/gn3/computations
diff options
context:
space:
mode:
Diffstat (limited to 'gn3/computations')
-rw-r--r--gn3/computations/correlations.py58
-rw-r--r--gn3/computations/correlations2.py36
-rw-r--r--gn3/computations/ctl.py30
-rw-r--r--gn3/computations/diff.py2
-rw-r--r--gn3/computations/gemma.py2
-rw-r--r--gn3/computations/parsers.py2
-rw-r--r--gn3/computations/partial_correlations.py628
-rw-r--r--gn3/computations/partial_correlations_optimised.py244
-rw-r--r--gn3/computations/pca.py189
-rw-r--r--gn3/computations/qtlreaper.py16
-rw-r--r--gn3/computations/rqtl.py5
-rw-r--r--gn3/computations/wgcna.py28
12 files changed, 1093 insertions, 147 deletions
diff --git a/gn3/computations/correlations.py b/gn3/computations/correlations.py
index c5c56db..a0da2c4 100644
--- a/gn3/computations/correlations.py
+++ b/gn3/computations/correlations.py
@@ -7,6 +7,7 @@ from typing import List
from typing import Tuple
from typing import Optional
from typing import Callable
+from typing import Generator
import scipy.stats
import pingouin as pg
@@ -38,20 +39,15 @@ def map_shared_keys_to_values(target_sample_keys: List,
return target_dataset_data
-def normalize_values(a_values: List,
- b_values: List) -> Tuple[List[float], List[float], int]:
- """Trim two lists of values to contain only the values they both share Given
- two lists of sample values, trim each list so that it contains only the
- samples that contain a value in both lists. Also returns the number of
- such samples.
-
- >>> normalize_values([2.3, None, None, 3.2, 4.1, 5],
- [3.4, 7.2, 1.3, None, 6.2, 4.1])
- ([2.3, 4.1, 5], [3.4, 6.2, 4.1], 3)
-
+def normalize_values(a_values: List, b_values: List) -> Generator:
+ """
+ :param a_values: list of primary strain values
+ :param b_values: a list of target strain values
+ :return: yield 2 values if none of them is none
"""
+
for a_val, b_val in zip(a_values, b_values):
- if (a_val and b_val is not None):
+ if (a_val is not None) and (b_val is not None):
yield a_val, b_val
@@ -79,15 +75,18 @@ def compute_sample_r_correlation(trait_name, corr_method, trait_vals,
"""
- sanitized_traits_vals, sanitized_target_vals = list(
- zip(*list(normalize_values(trait_vals, target_samples_vals))))
- num_overlap = len(sanitized_traits_vals)
+ try:
+ normalized_traits_vals, normalized_target_vals = list(
+ zip(*list(normalize_values(trait_vals, target_samples_vals))))
+ num_overlap = len(normalized_traits_vals)
+ except ValueError:
+ return None
if num_overlap > 5:
(corr_coefficient, p_value) =\
- compute_corr_coeff_p_value(primary_values=sanitized_traits_vals,
- target_values=sanitized_target_vals,
+ compute_corr_coeff_p_value(primary_values=normalized_traits_vals,
+ target_values=normalized_target_vals,
corr_method=corr_method)
if corr_coefficient is not None and not math.isnan(corr_coefficient):
@@ -108,7 +107,7 @@ package :not packaged in guix
def filter_shared_sample_keys(this_samplelist,
- target_samplelist) -> Tuple[List, List]:
+ target_samplelist) -> Generator:
"""Given primary and target sample-list for two base and target trait select
filter the values using the shared keys
@@ -134,9 +133,16 @@ def fast_compute_all_sample_correlation(this_trait,
for target_trait in target_dataset:
trait_name = target_trait.get("trait_id")
target_trait_data = target_trait["trait_sample_data"]
- processed_values.append((trait_name, corr_method,
- list(zip(*list(filter_shared_sample_keys(
- this_trait_samples, target_trait_data))))))
+
+ try:
+ this_vals, target_vals = list(zip(*list(filter_shared_sample_keys(
+ this_trait_samples, target_trait_data))))
+
+ processed_values.append(
+ (trait_name, corr_method, this_vals, target_vals))
+ except ValueError:
+ continue
+
with closing(multiprocessing.Pool()) as pool:
results = pool.starmap(compute_sample_r_correlation, processed_values)
@@ -168,8 +174,14 @@ def compute_all_sample_correlation(this_trait,
for target_trait in target_dataset:
trait_name = target_trait.get("trait_id")
target_trait_data = target_trait["trait_sample_data"]
- this_vals, target_vals = list(zip(*list(filter_shared_sample_keys(
- this_trait_samples, target_trait_data))))
+
+ try:
+ this_vals, target_vals = list(zip(*list(filter_shared_sample_keys(
+ this_trait_samples, target_trait_data))))
+
+ except ValueError:
+ # case where no matching strain names
+ continue
sample_correlation = compute_sample_r_correlation(
trait_name=trait_name,
diff --git a/gn3/computations/correlations2.py b/gn3/computations/correlations2.py
index 93db3fa..d0222ae 100644
--- a/gn3/computations/correlations2.py
+++ b/gn3/computations/correlations2.py
@@ -6,45 +6,21 @@ FUNCTIONS:
compute_correlation:
TODO: Describe what the function does..."""
-from math import sqrt
-from functools import reduce
+from scipy import stats
## From GN1: mostly for clustering and heatmap generation
def __items_with_values(dbdata, userdata):
"""Retains only corresponding items in the data items that are not `None` values.
This should probably be renamed to something sensible"""
- def both_not_none(item1, item2):
- """Check that both items are not the value `None`."""
- if (item1 is not None) and (item2 is not None):
- return (item1, item2)
- return None
- def split_lists(accumulator, item):
- """Separate the 'x' and 'y' items."""
- return [accumulator[0] + [item[0]], accumulator[1] + [item[1]]]
- return reduce(
- split_lists,
- filter(lambda x: x is not None, map(both_not_none, dbdata, userdata)),
- [[], []])
+ filtered = [x for x in zip(dbdata, userdata) if x[0] is not None and x[1] is not None]
+ return tuple(zip(*filtered)) if filtered else ([], [])
def compute_correlation(dbdata, userdata):
- """Compute some form of correlation.
+ """Compute the Pearson correlation coefficient.
This is extracted from
https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/utility/webqtlUtil.py#L622-L647
"""
x_items, y_items = __items_with_values(dbdata, userdata)
- if len(x_items) < 6:
- return (0.0, len(x_items))
- meanx = sum(x_items)/len(x_items)
- meany = sum(y_items)/len(y_items)
- def cal_corr_vals(acc, item):
- xitem, yitem = item
- return [
- acc[0] + ((xitem - meanx) * (yitem - meany)),
- acc[1] + ((xitem - meanx) * (xitem - meanx)),
- acc[2] + ((yitem - meany) * (yitem - meany))]
- xyd, sxd, syd = reduce(cal_corr_vals, zip(x_items, y_items), [0.0, 0.0, 0.0])
- try:
- return ((xyd/(sqrt(sxd)*sqrt(syd))), len(x_items))
- except ZeroDivisionError:
- return(0, len(x_items))
+ correlation = stats.pearsonr(x_items, y_items)[0] if len(x_items) >= 6 else 0
+ return (correlation, len(x_items))
diff --git a/gn3/computations/ctl.py b/gn3/computations/ctl.py
new file mode 100644
index 0000000..f881410
--- /dev/null
+++ b/gn3/computations/ctl.py
@@ -0,0 +1,30 @@
+"""module contains code to process ctl analysis data"""
+import json
+from gn3.commands import run_cmd
+
+from gn3.computations.wgcna import dump_wgcna_data
+from gn3.computations.wgcna import compose_wgcna_cmd
+from gn3.computations.wgcna import process_image
+
+from gn3.settings import TMPDIR
+
+
+def call_ctl_script(data):
+ """function to call ctl script"""
+ data["imgDir"] = TMPDIR
+ temp_file_name = dump_wgcna_data(data)
+ cmd = compose_wgcna_cmd("ctl_analysis.R", temp_file_name)
+
+ cmd_results = run_cmd(cmd)
+ with open(temp_file_name, "r", encoding="utf-8") as outputfile:
+ if cmd_results["code"] != 0:
+ return (cmd_results, None)
+ output_file_data = json.load(outputfile)
+
+ output_file_data["image_data"] = process_image(
+ output_file_data["image_loc"]).decode("ascii")
+
+ output_file_data["ctl_plots"] = [process_image(ctl_plot).decode("ascii") for
+ ctl_plot in output_file_data["ctl_plots"]]
+
+ return (cmd_results, output_file_data)
diff --git a/gn3/computations/diff.py b/gn3/computations/diff.py
index af02f7f..0b6edd6 100644
--- a/gn3/computations/diff.py
+++ b/gn3/computations/diff.py
@@ -6,7 +6,7 @@ from gn3.commands import run_cmd
def generate_diff(data: str, edited_data: str) -> Optional[str]:
"""Generate the diff between 2 files"""
- results = run_cmd(f"diff {data} {edited_data}", success_codes=(1, 2))
+ results = run_cmd(f'"diff {data} {edited_data}"', success_codes=(1, 2))
if results.get("code", -1) > 0:
return results.get("output")
return None
diff --git a/gn3/computations/gemma.py b/gn3/computations/gemma.py
index 0b22d3c..8036a7b 100644
--- a/gn3/computations/gemma.py
+++ b/gn3/computations/gemma.py
@@ -31,7 +31,7 @@ def generate_pheno_txt_file(trait_filename: str,
# Early return if this already exists!
if os.path.isfile(f"{tmpdir}/gn2/{trait_filename}"):
return f"{tmpdir}/gn2/{trait_filename}"
- with open(f"{tmpdir}/gn2/{trait_filename}", "w") as _file:
+ with open(f"{tmpdir}/gn2/{trait_filename}", "w", encoding="utf-8") as _file:
for value in values:
if value == "x":
_file.write("NA\n")
diff --git a/gn3/computations/parsers.py b/gn3/computations/parsers.py
index 1af35d6..79e3955 100644
--- a/gn3/computations/parsers.py
+++ b/gn3/computations/parsers.py
@@ -15,7 +15,7 @@ def parse_genofile(file_path: str) -> Tuple[List[str],
'u': None,
}
genotypes, samples = [], []
- with open(file_path, "r") as _genofile:
+ with open(file_path, "r", encoding="utf-8") as _genofile:
for line in _genofile:
line = line.strip()
if line.startswith(("#", "@")):
diff --git a/gn3/computations/partial_correlations.py b/gn3/computations/partial_correlations.py
index 07dc16d..5017796 100644
--- a/gn3/computations/partial_correlations.py
+++ b/gn3/computations/partial_correlations.py
@@ -5,12 +5,32 @@ It is an attempt to migrate over the partial correlations feature from
GeneNetwork1.
"""
-from functools import reduce
-from typing import Any, Tuple, Sequence
+import math
+import warnings
+from functools import reduce, partial
+from typing import Any, Tuple, Union, Sequence
+
+import numpy
+import pandas
+import pingouin
from scipy.stats import pearsonr, spearmanr
from gn3.settings import TEXTDIR
+from gn3.random import random_string
+from gn3.function_helpers import compose
from gn3.data_helpers import parse_csv_line
+from gn3.db.traits import export_informative
+from gn3.db.datasets import retrieve_trait_dataset
+from gn3.db.partial_correlations import traits_info, traits_data
+from gn3.db.species import species_name, translate_to_mouse_gene_id
+from gn3.db.correlations import (
+ get_filename,
+ fetch_all_database_data,
+ check_for_literature_info,
+ fetch_tissue_correlations,
+ fetch_literature_correlations,
+ check_symbol_for_tissue_correlation,
+ fetch_gene_symbol_tissue_value_dict_for_trait)
def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
"""
@@ -40,7 +60,7 @@ def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
__process_sample__, sampleslist, (tuple(), tuple(), tuple()))
return reduce(
- lambda acc, item: (
+ lambda acc, item: (# type: ignore[arg-type, return-value]
acc[0] + (item[0],),
acc[1] + (item[1],),
acc[2] + (item[2],),
@@ -49,22 +69,6 @@ def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
[__process_control__(trait_data) for trait_data in controls],
(tuple(), tuple(), tuple(), tuple()))
-def dictify_by_samples(samples_vals_vars: Sequence[Sequence]) -> Sequence[dict]:
- """
- Build a sequence of dictionaries from a sequence of separate sequences of
- samples, values and variances.
-
- This is a partial migration of
- `web.webqtl.correlation.correlationFunction.fixStrains` function in GN1.
- This implementation extracts code that will find common use, and that will
- find use in more than one place.
- """
- return tuple(
- {
- sample: {"sample_name": sample, "value": val, "variance": var}
- for sample, val, var in zip(*trait_line)
- } for trait_line in zip(*(samples_vals_vars[0:3])))
-
def fix_samples(primary_trait: dict, control_traits: Sequence[dict]) -> Sequence[Sequence[Any]]:
"""
Corrects sample_names, values and variance such that they all contain only
@@ -108,7 +112,7 @@ def find_identical_traits(
return acc + ident[1]
def __dictify_controls__(acc, control_item):
- ckey = "{:.3f}".format(control_item[0])
+ ckey = tuple(f"{item:.3f}" for item in control_item[0])
return {**acc, ckey: acc.get(ckey, tuple()) + (control_item[1],)}
return (reduce(## for identical control traits
@@ -148,11 +152,11 @@ def tissue_correlation(
assert len(primary_trait_values) == len(target_trait_values), (
"The lengths of the `primary_trait_values` and `target_trait_values` "
"must be equal")
- assert method in method_fns.keys(), (
- "Method must be one of: {}".format(",".join(method_fns.keys())))
+ assert method in method_fns, (
+ "Method must be one of: {','.join(method_fns.keys())}")
corr, pvalue = method_fns[method](primary_trait_values, target_trait_values)
- return (round(corr, 10), round(pvalue, 10))
+ return (corr, pvalue)
def batch_computed_tissue_correlation(
primary_trait_values: Tuple[float, ...], target_traits_dict: dict,
@@ -196,33 +200,19 @@ def good_dataset_samples_indexes(
samples_from_file.index(good) for good in
set(samples).intersection(set(samples_from_file))))
-def determine_partials(
- primary_vals, control_vals, all_target_trait_names,
- all_target_trait_values, method):
- """
- This **WILL** be a migration of
- `web.webqtl.correlation.correlationFunction.determinePartialsByR` function
- in GeneNetwork1.
-
- The function in GeneNetwork1 contains code written in R that is then used to
- compute the partial correlations.
- """
- ## This function is not implemented at this stage
- return tuple(
- primary_vals, control_vals, all_target_trait_names,
- all_target_trait_values, method)
-
-def compute_partial_correlations_fast(# pylint: disable=[R0913, R0914]
+def partial_correlations_fast(# pylint: disable=[R0913, R0914]
samples, primary_vals, control_vals, database_filename,
fetched_correlations, method: str, correlation_type: str) -> Tuple[
- float, Tuple[float, ...]]:
+ int, Tuple[float, ...]]:
"""
+ Computes partial correlation coefficients using data from a CSV file.
+
This is a partial migration of the
`web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsFast`
function in GeneNetwork1.
"""
assert method in ("spearman", "pearson")
- with open(f"{TEXTDIR}/{database_filename}", "r") as dataset_file:
+ with open(database_filename, "r", encoding="utf-8") as dataset_file: # pytest: disable=[W1514]
dataset = tuple(dataset_file.readlines())
good_dataset_samples = good_dataset_samples_indexes(
@@ -245,7 +235,7 @@ def compute_partial_correlations_fast(# pylint: disable=[R0913, R0914]
all_target_trait_names: Tuple[str, ...] = processed_trait_names_values[0]
all_target_trait_values: Tuple[float, ...] = processed_trait_names_values[1]
- all_correlations = determine_partials(
+ all_correlations = compute_partial(
primary_vals, control_vals, all_target_trait_names,
all_target_trait_values, method)
## Line 772 to 779 in GN1 are the cause of the weird complexity in the
@@ -254,36 +244,544 @@ def compute_partial_correlations_fast(# pylint: disable=[R0913, R0914]
## `correlation_type` parameter
return len(all_correlations), tuple(
corr + (
- (fetched_correlations[corr[0]],) if correlation_type == "literature"
- else fetched_correlations[corr[0]][0:2])
+ (fetched_correlations[corr[0]],) # type: ignore[index]
+ if correlation_type == "literature"
+ else fetched_correlations[corr[0]][0:2]) # type: ignore[index]
for idx, corr in enumerate(all_correlations))
-def partial_correlation_matrix(
+def build_data_frame(
xdata: Tuple[float, ...], ydata: Tuple[float, ...],
- zdata: Tuple[float, ...], method: str = "pearsons",
- omit_nones: bool = True) -> float:
+ zdata: Union[
+ Tuple[float, ...],
+ Tuple[Tuple[float, ...], ...]]) -> pandas.DataFrame:
+ """
+ Build a pandas DataFrame object from xdata, ydata and zdata
+ """
+ x_y_df = pandas.DataFrame({"x": xdata, "y": ydata})
+ if isinstance(zdata[0], float):
+ return x_y_df.join(pandas.DataFrame({"z": zdata}))
+ interm_df = x_y_df.join(pandas.DataFrame(
+ {f"z{i}": val for i, val in enumerate(zdata)}))
+ if interm_df.shape[1] == 3:
+ return interm_df.rename(columns={"z0": "z"})
+ return interm_df
+
+def compute_trait_info(primary_vals, control_vals, target, method):
"""
- Computes the partial correlation coefficient using the
- 'variance-covariance matrix' method
+ Compute the correlation values for the given arguments.
+ """
+ targ_vals = target[0]
+ targ_name = target[1]
+ primary = [
+ prim for targ, prim in zip(targ_vals, primary_vals)
+ if targ is not None]
+
+ if len(primary) < 3:
+ return None
+
+ def __remove_controls_for_target_nones(cont_targ):
+ return tuple(cont for cont, targ in cont_targ if targ is not None)
+
+ datafrm = build_data_frame(
+ primary,
+ [targ for targ in targ_vals if targ is not None],
+ [__remove_controls_for_target_nones(tuple(zip(control, targ_vals)))
+ for control in control_vals])
+ covariates = "z" if datafrm.shape[1] == 3 else [
+ col for col in datafrm.columns if col not in ("x", "y")]
+ ppc = pingouin.partial_corr(
+ data=datafrm, x="x", y="y", covar=covariates, method=(
+ "pearson" if "pearson" in method.lower() else "spearman"))
+ pc_coeff = ppc["r"][0]
+
+ zero_order_corr = pingouin.corr(
+ datafrm["x"], datafrm["y"], method=(
+ "pearson" if "pearson" in method.lower() else "spearman"))
+
+ if math.isnan(pc_coeff):
+ return (
+ targ_name, len(primary), pc_coeff, 1, zero_order_corr["r"][0],
+ zero_order_corr["p-val"][0])
+ return (
+ targ_name, len(primary), pc_coeff,
+ (ppc["p-val"][0] if not math.isnan(ppc["p-val"][0]) else (
+ 0 if (abs(pc_coeff - 1) < 0.0000001) else 1)),
+ zero_order_corr["r"][0], zero_order_corr["p-val"][0])
+
+def compute_partial(
+ primary_vals, control_vals, target_vals, target_names,
+ method: str) -> Tuple[
+ Union[
+ Tuple[str, int, float, float, float, float], None],
+ ...]:
+ """
+ Compute the partial correlations.
- This is a partial migration of the
- `web.webqtl.correlation.correlationFunction.determinPartialsByR` function in
- GeneNetwork1, specifically the `pcor.mat` function written in the R
- programming language.
+ This is a re-implementation of the
+ `web.webqtl.correlation.correlationFunction.determinePartialsByR` function
+ in GeneNetwork1.
+
+ This implementation reworks the child function `compute_partial` which will
+ then be used in the place of `determinPartialsByR`.
+ """
+ return tuple(
+ result for result in (
+ compute_trait_info(
+ primary_vals, control_vals, (tvals, tname), method)
+ for tvals, tname in zip(target_vals, target_names))
+ if result is not None)
+
+def partial_correlations_normal(# pylint: disable=R0913
+ primary_vals, control_vals, input_trait_gene_id, trait_database,
+ data_start_pos: int, db_type: str, method: str) -> Tuple[
+ int, Tuple[Union[
+ Tuple[str, int, float, float, float, float], None],
+ ...]]:#Tuple[float, ...]
"""
- return 0
+ Computes the correlation coefficients.
-def partial_correlation_recursive(
- xdata: Tuple[float, ...], ydata: Tuple[float, ...],
- zdata: Tuple[float, ...], method: str = "pearsons",
- omit_nones: bool = True) -> float:
+ This is a migration of the
+ `web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsNormal`
+ function in GeneNetwork1.
"""
- Computes the partial correlation coefficient using the 'recursive formula'
- method
+ def __add_lit_and_tiss_corr__(item):
+ if method.lower() == "sgo literature correlation":
+ # if method is 'SGO Literature Correlation', `compute_partial`
+ # would give us LitCorr in the [1] position
+ return tuple(item) + trait_database[1]
+ if method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho"):
+ # if method is 'Tissue Correlation, *', `compute_partial` would give
+ # us Tissue Corr in the [1] position and Tissue Corr P Value in the
+ # [2] position
+ return tuple(item) + (trait_database[1], trait_database[2])
+ return item
+
+ target_trait_names, target_trait_vals = reduce(# type: ignore[var-annotated]
+ lambda acc, item: (acc[0]+(item[0],), acc[1]+(item[data_start_pos:],)),
+ trait_database, (tuple(), tuple()))
+
+ all_correlations = compute_partial(
+ primary_vals, control_vals, target_trait_vals, target_trait_names,
+ method)
+
+ if (input_trait_gene_id and db_type == "ProbeSet" and method.lower() in (
+ "sgo literature correlation", "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")):
+ return (
+ len(trait_database),
+ tuple(
+ __add_lit_and_tiss_corr__(item)
+ for idx, item in enumerate(all_correlations)))
+
+ return len(trait_database), all_correlations
+
+def partial_corrs(# pylint: disable=[R0913]
+ conn, samples, primary_vals, control_vals, return_number, species,
+ input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
+ method, dataset, database_filename):
+ """
+ Compute the partial correlations, selecting the fast or normal method
+ depending on the existence of the database text file.
This is a partial migration of the
- `web.webqtl.correlation.correlationFunction.determinPartialsByR` function in
- GeneNetwork1, specifically the `pcor.rec` function written in the R
- programming language.
+ `web.webqtl.correlation.PartialCorrDBPage.__init__` function in
+ GeneNetwork1.
+ """
+ if database_filename:
+ return partial_correlations_fast(
+ samples, primary_vals, control_vals, database_filename,
+ (
+ fetch_literature_correlations(
+ species, input_trait_geneid, dataset, return_number, conn)
+ if "literature" in method.lower() else
+ fetch_tissue_correlations(
+ dataset, input_trait_symbol, tissue_probeset_freeze_id,
+ method, return_number, conn)),
+ method,
+ ("literature" if method.lower() == "sgo literature correlation"
+ else ("tissue" if "tissue" in method.lower() else "genetic")))
+
+ trait_database, data_start_pos = fetch_all_database_data(
+ conn, species, input_trait_geneid, input_trait_symbol, samples, dataset,
+ method, return_number, tissue_probeset_freeze_id)
+ return partial_correlations_normal(
+ primary_vals, control_vals, input_trait_geneid, trait_database,
+ data_start_pos, dataset, method)
+
+def literature_correlation_by_list(
+ conn: Any, species: str, trait_list: Tuple[dict]) -> Tuple[dict, ...]:
+ """
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getLiteratureCorrelationByList`
+ function in GeneNetwork1.
+ """
+ if any((lambda t: (
+ bool(t.get("tissue_corr")) and
+ bool(t.get("tissue_p_value"))))(trait)
+ for trait in trait_list):
+ temporary_table_name = f"LITERATURE{random_string(8)}"
+ query1 = (
+ f"CREATE TEMPORARY TABLE {temporary_table_name} "
+ "(GeneId1 INT(12) UNSIGNED, GeneId2 INT(12) UNSIGNED PRIMARY KEY, "
+ "value DOUBLE)")
+ query2 = (
+ f"INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) "
+ "SELECT GeneId1, GeneId2, value FROM LCorrRamin3 "
+ "WHERE GeneId1=%(geneid)s")
+ query3 = (
+ "INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) "
+ "SELECT GeneId2, GeneId1, value FROM LCorrRamin3 "
+ "WHERE GeneId2=%s AND GeneId1 != %(geneid)s")
+
+ def __set_mouse_geneid__(trait):
+ if trait.get("geneid"):
+ return {
+ **trait,
+ "mouse_geneid": translate_to_mouse_gene_id(
+ species, trait.get("geneid"), conn)
+ }
+ return {**trait, "mouse_geneid": 0}
+
+ def __retrieve_lcorr__(cursor, geneids):
+ cursor.execute(
+ f"SELECT GeneId2, value FROM {temporary_table_name} "
+ "WHERE GeneId2 IN %(geneids)s",
+ geneids=geneids)
+ return dict(cursor.fetchall())
+
+ with conn.cursor() as cursor:
+ cursor.execute(query1)
+ cursor.execute(query2)
+ cursor.execute(query3)
+
+ traits = tuple(__set_mouse_geneid__(trait) for trait in trait_list)
+ lcorrs = __retrieve_lcorr__(
+ cursor, (
+ trait["mouse_geneid"] for trait in traits
+ if (trait["mouse_geneid"] != 0 and
+ trait["mouse_geneid"].find(";") < 0)))
+ return tuple(
+ {**trait, "l_corr": lcorrs.get(trait["mouse_geneid"], None)}
+ for trait in traits)
+
+ return trait_list
+ return trait_list
+
+def tissue_correlation_by_list(
+ conn: Any, primary_trait_symbol: str, tissue_probeset_freeze_id: int,
+ method: str, trait_list: Tuple[dict]) -> Tuple[dict, ...]:
+ """
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getTissueCorrelationByList`
+ function in GeneNetwork1.
+ """
+ def __add_tissue_corr__(trait, primary_trait_values, trait_values):
+ result = pingouin.corr(
+ primary_trait_values, trait_values,
+ method=("spearman" if "spearman" in method.lower() else "pearson"))
+ return {
+ **trait,
+ "tissue_corr": result["r"],
+ "tissue_p_value": result["p-val"]
+ }
+
+ if any((lambda t: bool(t.get("l_corr")))(trait) for trait in trait_list):
+ prim_trait_symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
+ (primary_trait_symbol,), tissue_probeset_freeze_id, conn)
+ if primary_trait_symbol.lower() in prim_trait_symbol_value_dict:
+ primary_trait_value = prim_trait_symbol_value_dict[
+ primary_trait_symbol.lower()]
+ gene_symbol_list = tuple(
+ trait["symbol"] for trait in trait_list if "symbol" in trait.keys())
+ symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
+ gene_symbol_list, tissue_probeset_freeze_id, conn)
+ return tuple(
+ __add_tissue_corr__(
+ trait, primary_trait_value,
+ symbol_value_dict[trait["symbol"].lower()])
+ for trait in trait_list
+ if ("symbol" in trait and
+ bool(trait["symbol"]) and
+ trait["symbol"].lower() in symbol_value_dict))
+ return tuple({
+ **trait,
+ "tissue_corr": None,
+ "tissue_p_value": None
+ } for trait in trait_list)
+ return trait_list
+
+def trait_for_output(trait):
+ """
+ Process a trait for output.
+
+ Removes a lot of extraneous data from the trait, that is not needed for
+ the display of partial correlation results.
+ This function also removes all key-value pairs, for which the value is
+ `None`, because it is a waste of network resources to transmit the key-value
+ pair just to indicate it does not exist.
+ """
+ def __nan_to_none__(val):
+ if val is None:
+ return None
+ if math.isnan(val) or numpy.isnan(val):
+ return None
+ return val
+
+ trait = {
+ "trait_type": trait["db"]["dataset_type"],
+ "dataset_name": trait["db"]["dataset_name"],
+ "dataset_type": trait["db"]["dataset_type"],
+ "group": trait["db"]["group"],
+ "trait_fullname": trait["trait_fullname"],
+ "trait_name": trait["trait_name"],
+ "symbol": trait.get("symbol"),
+ "description": trait.get("description"),
+ "pre_publication_description": trait.get("Pre_publication_description"),
+ "post_publication_description": trait.get(
+ "Post_publication_description"),
+ "original_description": trait.get("Original_description"),
+ "authors": trait.get("Authors"),
+ "year": trait.get("Year"),
+ "probe_target_description": trait.get("Probe_target_description"),
+ "chr": trait.get("chr"),
+ "mb": trait.get("mb"),
+ "geneid": trait.get("geneid"),
+ "homologeneid": trait.get("homologeneid"),
+ "noverlap": trait.get("noverlap"),
+ "partial_corr": __nan_to_none__(trait.get("partial_corr")),
+ "partial_corr_p_value": __nan_to_none__(
+ trait.get("partial_corr_p_value")),
+ "corr": __nan_to_none__(trait.get("corr")),
+ "corr_p_value": __nan_to_none__(trait.get("corr_p_value")),
+ "rank_order": __nan_to_none__(trait.get("rank_order")),
+ "delta": (
+ None if trait.get("partial_corr") is None
+ else (trait.get("partial_corr") - trait.get("corr"))),
+ "l_corr": __nan_to_none__(trait.get("l_corr")),
+ "tissue_corr": __nan_to_none__(trait.get("tissue_corr")),
+ "tissue_p_value": __nan_to_none__(trait.get("tissue_p_value"))
+ }
+ return {key: val for key, val in trait.items() if val is not None}
+
+def partial_correlations_entry(# pylint: disable=[R0913, R0914, R0911]
+ conn: Any, primary_trait_name: str,
+ control_trait_names: Tuple[str, ...], method: str,
+ criteria: int, target_db_name: str) -> dict:
+ """
+ This is the 'ochestration' function for the partial-correlation feature.
+
+ This function will dispatch the functions doing data fetches from the
+ database (and various other places) and feed that data to the functions
+ doing the conversions and computations. It will then return the results of
+ all of that work.
+
+ This function is doing way too much. Look into splitting out the
+ functionality into smaller functions that do fewer things.
"""
- return 0
+ threshold = 0
+ corr_min_informative = 4
+
+ all_traits = traits_info(
+ conn, threshold, (primary_trait_name,) + control_trait_names)
+ all_traits_data = traits_data(conn, all_traits)
+
+ primary_trait = tuple(
+ trait for trait in all_traits
+ if trait["trait_fullname"] == primary_trait_name)[0]
+ if not primary_trait["haveinfo"]:
+ return {
+ "status": "not-found",
+ "message": f"Could not find primary trait {primary_trait['trait_fullname']}"
+ }
+ cntrl_traits = tuple(
+ trait for trait in all_traits
+ if trait["trait_fullname"] != primary_trait_name)
+ if not any(trait["haveinfo"] for trait in cntrl_traits):
+ return {
+ "status": "not-found",
+ "message": "None of the requested control traits were found."}
+ for trait in cntrl_traits:
+ if trait["haveinfo"] is False:
+ warnings.warn(
+ (f"Control traits {trait['trait_fullname']} was not found "
+ "- continuing without it."),
+ category=UserWarning)
+
+ group = primary_trait["db"]["group"]
+ primary_trait_data = all_traits_data[primary_trait["trait_name"]]
+ primary_samples, primary_values, _primary_variances = export_informative(
+ primary_trait_data)
+
+ cntrl_traits_data = tuple(
+ data for trait_name, data in all_traits_data.items()
+ if trait_name != primary_trait["trait_name"])
+ species = species_name(conn, group)
+
+ (cntrl_samples,
+ cntrl_values,
+ _cntrl_variances,
+ _cntrl_ns) = control_samples(cntrl_traits_data, primary_samples)
+
+ common_primary_control_samples = primary_samples
+ fixed_primary_vals = primary_values
+ fixed_control_vals = cntrl_values
+ if not all(cnt_smp == primary_samples for cnt_smp in cntrl_samples):
+ (common_primary_control_samples,
+ fixed_primary_vals,
+ fixed_control_vals,
+ _primary_variances,
+ _cntrl_variances) = fix_samples(primary_trait, cntrl_traits)
+
+ if len(common_primary_control_samples) < corr_min_informative:
+ return {
+ "status": "error",
+ "message": (
+ f"Fewer than {corr_min_informative} samples data entered for "
+ f"{group} dataset. No calculation of correlation has been "
+ "attempted."),
+ "error_type": "Inadequate Samples"}
+
+ identical_traits_names = find_identical_traits(
+ primary_trait_name, primary_values, control_trait_names, cntrl_values)
+ if len(identical_traits_names) > 0:
+ return {
+ "status": "error",
+ "message": (
+ f"{identical_traits_names[0]} and {identical_traits_names[1]} "
+ "have the same values for the {len(fixed_primary_vals)} "
+ "samples that will be used to compute the partial correlation "
+ "(common for all primary and control traits). In such cases, "
+ "partial correlation cannot be computed. Please re-select your "
+ "traits."),
+ "error_type": "Identical Traits"}
+
+ input_trait_geneid = primary_trait.get("geneid", 0)
+ input_trait_symbol = primary_trait.get("symbol", "")
+ input_trait_mouse_geneid = translate_to_mouse_gene_id(
+ species, input_trait_geneid, conn)
+
+ tissue_probeset_freeze_id = 1
+ db_type = primary_trait["db"]["dataset_type"]
+
+ if db_type == "ProbeSet" and method.lower() in (
+ "sgo literature correlation",
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho"):
+ return {
+ "status": "error",
+ "message": (
+ "Wrong correlation type: It is not possible to compute the "
+ f"{method} between your trait and data in the {target_db_name} "
+ "database. Please try again after selecting another type of "
+ "correlation."),
+ "error_type": "Correlation Type"}
+
+ if (method.lower() == "sgo literature correlation" and (
+ bool(input_trait_geneid) is False or
+ check_for_literature_info(conn, input_trait_mouse_geneid))):
+ return {
+ "status": "error",
+ "message": (
+ "No Literature Information: This gene does not have any "
+ "associated Literature Information."),
+ "error_type": "Literature Correlation"}
+
+ if (
+ method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")
+ and bool(input_trait_symbol) is False):
+ return {
+ "status": "error",
+ "message": (
+ "No Tissue Correlation Information: This gene does not have "
+ "any associated Tissue Correlation Information."),
+ "error_type": "Tissue Correlation"}
+
+ if (
+ method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")
+ and check_symbol_for_tissue_correlation(
+ conn, tissue_probeset_freeze_id, input_trait_symbol)):
+ return {
+ "status": "error",
+ "message": (
+ "No Tissue Correlation Information: This gene does not have "
+ "any associated Tissue Correlation Information."),
+ "error_type": "Tissue Correlation"}
+
+ target_dataset = retrieve_trait_dataset(
+ ("Temp" if "Temp" in target_db_name else
+ ("Publish" if "Publish" in target_db_name else
+ "Geno" if "Geno" in target_db_name else "ProbeSet")),
+ {"db": {"dataset_name": target_db_name}, "trait_name": "_"},
+ threshold,
+ conn)
+
+ database_filename = get_filename(conn, target_db_name, TEXTDIR)
+ _total_traits, all_correlations = partial_corrs(
+ conn, common_primary_control_samples, fixed_primary_vals,
+ fixed_control_vals, len(fixed_primary_vals), species,
+ input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
+ method, {**target_dataset, "dataset_type": target_dataset["type"]}, database_filename)
+
+
+ def __make_sorter__(method):
+ def __by_lit_or_tiss_corr_then_p_val__(row):
+ return (row[6], row[3])
+
+ def __by_partial_corr_p_value__(row):
+ return row[3]
+
+ if (("literature" in method.lower()) or ("tissue" in method.lower())):
+ return __by_lit_or_tiss_corr_then_p_val__
+
+ return __by_partial_corr_p_value__
+
+ add_lit_corr_and_tiss_corr = compose(
+ partial(literature_correlation_by_list, conn, species),
+ partial(
+ tissue_correlation_by_list, conn, input_trait_symbol,
+ tissue_probeset_freeze_id, method))
+
+ selected_results = sorted(
+ all_correlations,
+ key=__make_sorter__(method))[:criteria]
+ traits_list_corr_info = {
+ f"{target_dataset['dataset_name']}::{item[0]}": {
+ "noverlap": item[1],
+ "partial_corr": item[2],
+ "partial_corr_p_value": item[3],
+ "corr": item[4],
+ "corr_p_value": item[5],
+ "rank_order": (1 if "spearman" in method.lower() else 0),
+ **({
+ "tissue_corr": item[6],
+ "tissue_p_value": item[7]}
+ if len(item) == 8 else {}),
+ **({"l_corr": item[6]}
+ if len(item) == 7 else {})
+ } for item in selected_results}
+
+ trait_list = add_lit_corr_and_tiss_corr(tuple(
+ {**trait, **traits_list_corr_info.get(trait["trait_fullname"], {})}
+ for trait in traits_info(
+ conn, threshold,
+ tuple(
+ f"{target_dataset['dataset_name']}::{item[0]}"
+ for item in selected_results))))
+
+ return {
+ "status": "success",
+ "results": {
+ "primary_trait": trait_for_output(primary_trait),
+ "control_traits": tuple(
+ trait_for_output(trait) for trait in cntrl_traits),
+ "correlations": tuple(
+ trait_for_output(trait) for trait in trait_list),
+ "dataset_type": target_dataset["type"],
+ "method": "spearman" if "spearman" in method.lower() else "pearson"
+ }}
diff --git a/gn3/computations/partial_correlations_optimised.py b/gn3/computations/partial_correlations_optimised.py
new file mode 100644
index 0000000..601289c
--- /dev/null
+++ b/gn3/computations/partial_correlations_optimised.py
@@ -0,0 +1,244 @@
+"""
+This contains an optimised version of the
+ `gn3.computations.partial_correlations.partial_correlations_entry`
+function.
+"""
+from functools import partial
+from typing import Any, Tuple
+
+from gn3.settings import TEXTDIR
+from gn3.function_helpers import compose
+from gn3.db.partial_correlations import traits_info, traits_data
+from gn3.db.species import species_name, translate_to_mouse_gene_id
+from gn3.db.traits import export_informative, retrieve_trait_dataset
+from gn3.db.correlations import (
+ get_filename,
+ check_for_literature_info,
+ check_symbol_for_tissue_correlation)
+from gn3.computations.partial_correlations import (
+ fix_samples,
+ partial_corrs,
+ control_samples,
+ trait_for_output,
+ find_identical_traits,
+ tissue_correlation_by_list,
+ literature_correlation_by_list)
+
+def partial_correlations_entry(# pylint: disable=[R0913, R0914, R0911]
+ conn: Any, primary_trait_name: str,
+ control_trait_names: Tuple[str, ...], method: str,
+ criteria: int, target_db_name: str) -> dict:
+ """
+ This is the 'ochestration' function for the partial-correlation feature.
+
+ This function will dispatch the functions doing data fetches from the
+ database (and various other places) and feed that data to the functions
+ doing the conversions and computations. It will then return the results of
+ all of that work.
+
+ This function is doing way too much. Look into splitting out the
+ functionality into smaller functions that do fewer things.
+ """
+ threshold = 0
+ corr_min_informative = 4
+
+ all_traits = traits_info(
+ conn, threshold, (primary_trait_name,) + control_trait_names)
+ all_traits_data = traits_data(conn, all_traits)
+
+ # primary_trait = retrieve_trait_info(threshold, primary_trait_name, conn)
+ primary_trait = tuple(
+ trait for trait in all_traits
+ if trait["trait_fullname"] == primary_trait_name)[0]
+ group = primary_trait["db"]["group"]
+ # primary_trait_data = retrieve_trait_data(primary_trait, conn)
+ primary_trait_data = all_traits_data[primary_trait["trait_name"]]
+ primary_samples, primary_values, _primary_variances = export_informative(
+ primary_trait_data)
+
+ # cntrl_traits = tuple(
+ # retrieve_trait_info(threshold, trait_full_name, conn)
+ # for trait_full_name in control_trait_names)
+ # cntrl_traits_data = tuple(
+ # retrieve_trait_data(cntrl_trait, conn)
+ # for cntrl_trait in cntrl_traits)
+ cntrl_traits = tuple(
+ trait for trait in all_traits
+ if trait["trait_fullname"] != primary_trait_name)
+ cntrl_traits_data = tuple(
+ data for trait_name, data in all_traits_data.items()
+ if trait_name != primary_trait["trait_name"])
+ species = species_name(conn, group)
+
+ (cntrl_samples,
+ cntrl_values,
+ _cntrl_variances,
+ _cntrl_ns) = control_samples(cntrl_traits_data, primary_samples)
+
+ common_primary_control_samples = primary_samples
+ fixed_primary_vals = primary_values
+ fixed_control_vals = cntrl_values
+ if not all(cnt_smp == primary_samples for cnt_smp in cntrl_samples):
+ (common_primary_control_samples,
+ fixed_primary_vals,
+ fixed_control_vals,
+ _primary_variances,
+ _cntrl_variances) = fix_samples(primary_trait, cntrl_traits)
+
+ if len(common_primary_control_samples) < corr_min_informative:
+ return {
+ "status": "error",
+ "message": (
+ f"Fewer than {corr_min_informative} samples data entered for "
+ f"{group} dataset. No calculation of correlation has been "
+ "attempted."),
+ "error_type": "Inadequate Samples"}
+
+ identical_traits_names = find_identical_traits(
+ primary_trait_name, primary_values, control_trait_names, cntrl_values)
+ if len(identical_traits_names) > 0:
+ return {
+ "status": "error",
+ "message": (
+ f"{identical_traits_names[0]} and {identical_traits_names[1]} "
+ "have the same values for the {len(fixed_primary_vals)} "
+ "samples that will be used to compute the partial correlation "
+ "(common for all primary and control traits). In such cases, "
+ "partial correlation cannot be computed. Please re-select your "
+ "traits."),
+ "error_type": "Identical Traits"}
+
+ input_trait_geneid = primary_trait.get("geneid", 0)
+ input_trait_symbol = primary_trait.get("symbol", "")
+ input_trait_mouse_geneid = translate_to_mouse_gene_id(
+ species, input_trait_geneid, conn)
+
+ tissue_probeset_freeze_id = 1
+ db_type = primary_trait["db"]["dataset_type"]
+
+ if db_type == "ProbeSet" and method.lower() in (
+ "sgo literature correlation",
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho"):
+ return {
+ "status": "error",
+ "message": (
+ "Wrong correlation type: It is not possible to compute the "
+ f"{method} between your trait and data in the {target_db_name} "
+ "database. Please try again after selecting another type of "
+ "correlation."),
+ "error_type": "Correlation Type"}
+
+ if (method.lower() == "sgo literature correlation" and (
+ bool(input_trait_geneid) is False or
+ check_for_literature_info(conn, input_trait_mouse_geneid))):
+ return {
+ "status": "error",
+ "message": (
+ "No Literature Information: This gene does not have any "
+ "associated Literature Information."),
+ "error_type": "Literature Correlation"}
+
+ if (
+ method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")
+ and bool(input_trait_symbol) is False):
+ return {
+ "status": "error",
+ "message": (
+ "No Tissue Correlation Information: This gene does not have "
+ "any associated Tissue Correlation Information."),
+ "error_type": "Tissue Correlation"}
+
+ if (
+ method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")
+ and check_symbol_for_tissue_correlation(
+ conn, tissue_probeset_freeze_id, input_trait_symbol)):
+ return {
+ "status": "error",
+ "message": (
+ "No Tissue Correlation Information: This gene does not have "
+ "any associated Tissue Correlation Information."),
+ "error_type": "Tissue Correlation"}
+
+ target_dataset = retrieve_trait_dataset(
+ ("Temp" if "Temp" in target_db_name else
+ ("Publish" if "Publish" in target_db_name else
+ "Geno" if "Geno" in target_db_name else "ProbeSet")),
+ {"db": {"dataset_name": target_db_name}, "trait_name": "_"},
+ threshold,
+ conn)
+
+ database_filename = get_filename(conn, target_db_name, TEXTDIR)
+ _total_traits, all_correlations = partial_corrs(
+ conn, common_primary_control_samples, fixed_primary_vals,
+ fixed_control_vals, len(fixed_primary_vals), species,
+ input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
+ method, {**target_dataset, "dataset_type": target_dataset["type"]}, database_filename)
+
+
+ def __make_sorter__(method):
+ def __sort_6__(row):
+ return row[6]
+
+ def __sort_3__(row):
+ return row[3]
+
+ if "literature" in method.lower():
+ return __sort_6__
+
+ if "tissue" in method.lower():
+ return __sort_6__
+
+ return __sort_3__
+
+ # sorted_correlations = sorted(
+ # all_correlations, key=__make_sorter__(method))
+
+ add_lit_corr_and_tiss_corr = compose(
+ partial(literature_correlation_by_list, conn, species),
+ partial(
+ tissue_correlation_by_list, conn, input_trait_symbol,
+ tissue_probeset_freeze_id, method))
+
+ selected_results = sorted(
+ all_correlations,
+ key=__make_sorter__(method))[:min(criteria, len(all_correlations))]
+ traits_list_corr_info = {
+ "{target_dataset['dataset_name']}::{item[0]}": {
+ "noverlap": item[1],
+ "partial_corr": item[2],
+ "partial_corr_p_value": item[3],
+ "corr": item[4],
+ "corr_p_value": item[5],
+ "rank_order": (1 if "spearman" in method.lower() else 0),
+ **({
+ "tissue_corr": item[6],
+ "tissue_p_value": item[7]}
+ if len(item) == 8 else {}),
+ **({"l_corr": item[6]}
+ if len(item) == 7 else {})
+ } for item in selected_results}
+
+ trait_list = add_lit_corr_and_tiss_corr(tuple(
+ {**trait, **traits_list_corr_info.get(trait["trait_fullname"], {})}
+ for trait in traits_info(
+ conn, threshold,
+ tuple(
+ f"{target_dataset['dataset_name']}::{item[0]}"
+ for item in selected_results))))
+
+ return {
+ "status": "success",
+ "results": {
+ "primary_trait": trait_for_output(primary_trait),
+ "control_traits": tuple(
+ trait_for_output(trait) for trait in cntrl_traits),
+ "correlations": tuple(
+ trait_for_output(trait) for trait in trait_list),
+ "dataset_type": target_dataset["type"],
+ "method": "spearman" if "spearman" in method.lower() else "pearson"
+ }}
diff --git a/gn3/computations/pca.py b/gn3/computations/pca.py
new file mode 100644
index 0000000..35c9f03
--- /dev/null
+++ b/gn3/computations/pca.py
@@ -0,0 +1,189 @@
+"""module contains pca implementation using python"""
+
+
+from typing import Any
+from scipy import stats
+
+from sklearn.decomposition import PCA
+from sklearn import preprocessing
+
+import numpy as np
+import redis
+
+
+from typing_extensions import TypeAlias
+
+fArray: TypeAlias = list[float]
+
+
+def compute_pca(array: list[fArray]) -> dict[str, Any]:
+ """
+ computes the principal component analysis
+
+ Parameters:
+
+ array(list[list]):a list of lists contains data to perform pca
+
+
+ Returns:
+ pca_dict(dict):dict contains the pca_object,pca components,pca scores
+
+
+ """
+
+ corr_matrix = np.array(array)
+
+ pca_obj = PCA()
+ scaled_data = preprocessing.scale(corr_matrix)
+
+ pca_obj.fit(scaled_data)
+
+ return {
+ "pca": pca_obj,
+ "components": pca_obj.components_,
+ "scores": pca_obj.transform(scaled_data)
+ }
+
+
+def generate_scree_plot_data(variance_ratio: fArray) -> tuple[list, fArray]:
+ """
+ generates the scree data for plotting
+
+ Parameters:
+
+ variance_ratio(list[floats]):ratios for contribution of each pca
+
+ Returns:
+
+ coordinates(list[(x_coor,y_coord)])
+
+
+ """
+
+ perc_var = [round(ratio*100, 1) for ratio in variance_ratio]
+
+ x_coordinates = [f"PC{val}" for val in range(1, len(perc_var)+1)]
+
+ return (x_coordinates, perc_var)
+
+
+def generate_pca_traits_vals(trait_data_array: list[fArray],
+ corr_array: list[fArray]) -> list[list[Any]]:
+ """
+ generates datasets from zscores of the traits and eigen_vectors\
+ of correlation matrix
+
+ Parameters:
+
+ trait_data_array(list[floats]):an list of the traits
+ corr_array(list[list]): list of arrays for computing eigen_vectors
+
+ Returns:
+
+ pca_vals[list[list]]:
+
+
+ """
+
+ trait_zscores = stats.zscore(trait_data_array)
+
+ if len(trait_data_array[0]) < 10:
+ trait_zscores = trait_data_array
+
+ (eigen_values, corr_eigen_vectors) = np.linalg.eig(np.array(corr_array))
+ idx = eigen_values.argsort()[::-1]
+
+ return np.dot(corr_eigen_vectors[:, idx], trait_zscores)
+
+
+def process_factor_loadings_tdata(factor_loadings, traits_num: int):
+ """
+
+ transform loadings for tables visualization
+
+ Parameters:
+ factor_loading(numpy.ndarray)
+ traits_num(int):number of traits
+
+ Returns:
+ tabular_loadings(list[list[float]])
+ """
+
+ target_columns = 3 if traits_num > 2 else 2
+
+ trait_loadings = list(factor_loadings.T)
+
+ return [list(trait_loading[:target_columns])
+ for trait_loading in trait_loadings]
+
+
+def generate_pca_temp_traits(
+ species: str,
+ group: str,
+ traits_data: list[fArray],
+ corr_array: list[fArray],
+ dataset_samples: list[str],
+ shared_samples: list[str],
+ create_time: str
+) -> dict[str, list[Any]]:
+ """
+
+
+ generate pca temp datasets
+
+ """
+
+ # pylint: disable=too-many-arguments
+
+ pca_trait_dict = {}
+
+ pca_vals = generate_pca_traits_vals(traits_data, corr_array)
+
+ for (idx, pca_trait) in enumerate(list(pca_vals)):
+
+ trait_id = f"PCA{str(idx+1)}_{species}_{group}_{create_time}"
+ sample_vals = []
+
+ pointer = 0
+
+ for sample in dataset_samples:
+ if sample in shared_samples:
+
+ sample_vals.append(str(pca_trait[pointer]))
+ pointer += 1
+
+ else:
+ sample_vals.append("x")
+
+ pca_trait_dict[trait_id] = sample_vals
+
+ return pca_trait_dict
+
+
+def cache_pca_dataset(redis_conn: Any, exp_days: int,
+ pca_trait_dict: dict[str, list[Any]]):
+ """
+
+ caches pca dataset to redis
+
+ Parameters:
+
+ redis_conn(object)
+ exp_days(int): fo redis cache
+ pca_trait_dict(Dict): contains traits and traits vals to cache
+
+ Returns:
+
+ boolean(True if correct conn object False incase of exception)
+
+
+ """
+
+ try:
+ for trait_id, sample_data in pca_trait_dict.items():
+ samples_str = " ".join([str(x) for x in sample_data])
+ redis_conn.set(trait_id, samples_str, ex=exp_days)
+ return True
+
+ except (redis.ConnectionError, AttributeError):
+ return False
diff --git a/gn3/computations/qtlreaper.py b/gn3/computations/qtlreaper.py
index d1ff4ac..b61bdae 100644
--- a/gn3/computations/qtlreaper.py
+++ b/gn3/computations/qtlreaper.py
@@ -27,7 +27,7 @@ def generate_traits_file(samples, trait_values, traits_filename):
["{}\t{}".format(
len(trait_values), "\t".join([str(i) for i in t]))
for t in trait_values[-1:]])
- with open(traits_filename, "w") as outfile:
+ with open(traits_filename, "w", encoding="utf8") as outfile:
outfile.writelines(data)
def create_output_directory(path: str):
@@ -68,13 +68,13 @@ def run_reaper(
The function will raise a `subprocess.CalledProcessError` exception in case
of any errors running the `qtlreaper` command.
"""
- create_output_directory("{}/qtlreaper".format(output_dir))
- output_filename = "{}/qtlreaper/main_output_{}.txt".format(
- output_dir, random_string(10))
+ create_output_directory(f"{output_dir}/qtlreaper")
+ output_filename = (
+ f"{output_dir}/qtlreaper/main_output_{random_string(10)}.txt")
output_list = ["--main_output", output_filename]
if separate_nperm_output:
- permu_output_filename: Union[None, str] = "{}/qtlreaper/permu_output_{}.txt".format(
- output_dir, random_string(10))
+ permu_output_filename: Union[None, str] = (
+ f"{output_dir}/qtlreaper/permu_output_{random_string(10)}.txt")
output_list = output_list + [
"--permu_output", permu_output_filename] # type: ignore[list-item]
else:
@@ -135,7 +135,7 @@ def parse_reaper_main_results(results_file):
"""
Parse the results file of running QTLReaper into a list of dicts.
"""
- with open(results_file, "r") as infile:
+ with open(results_file, "r", encoding="utf8") as infile:
lines = infile.readlines()
def __parse_column_float_value(value):
@@ -164,7 +164,7 @@ def parse_reaper_permutation_results(results_file):
"""
Parse the results QTLReaper permutations into a list of values.
"""
- with open(results_file, "r") as infile:
+ with open(results_file, "r", encoding="utf8") as infile:
lines = infile.readlines()
return [float(line.strip()) for line in lines]
diff --git a/gn3/computations/rqtl.py b/gn3/computations/rqtl.py
index e81aba3..65ee6de 100644
--- a/gn3/computations/rqtl.py
+++ b/gn3/computations/rqtl.py
@@ -53,7 +53,7 @@ def process_rqtl_mapping(file_name: str) -> List:
# Later I should probably redo this using csv.read to avoid the
# awkwardness with removing quotes with [1:-1]
with open(os.path.join(current_app.config.get("TMPDIR", "/tmp"),
- "output", file_name), "r") as the_file:
+ "output", file_name), "r", encoding="utf-8") as the_file:
for line in the_file:
line_items = line.split(",")
if line_items[1][1:-1] == "chr" or not line_items:
@@ -118,7 +118,6 @@ def pairscan_for_figure(file_name: str) -> Dict:
return figure_data
-
def get_marker_list(map_file: str) -> List:
"""
Open the map file with the list of markers/pseudomarkers and create list of marker obs
@@ -255,7 +254,7 @@ def process_perm_output(file_name: str) -> Tuple[List, float, float]:
perm_results = []
with open(os.path.join(current_app.config.get("TMPDIR", "/tmp"),
- "output", "PERM_" + file_name), "r") as the_file:
+ "output", "PERM_" + file_name), "r", encoding="utf-8") as the_file:
for i, line in enumerate(the_file):
if i == 0:
# Skip header line
diff --git a/gn3/computations/wgcna.py b/gn3/computations/wgcna.py
index ab12fe7..c985491 100644
--- a/gn3/computations/wgcna.py
+++ b/gn3/computations/wgcna.py
@@ -19,7 +19,7 @@ def dump_wgcna_data(request_data: dict):
request_data["TMPDIR"] = TMPDIR
- with open(temp_file_path, "w") as output_file:
+ with open(temp_file_path, "w", encoding="utf-8") as output_file:
json.dump(request_data, output_file)
return temp_file_path
@@ -31,20 +31,18 @@ def stream_cmd_output(socketio, request_data, cmd: str):
socketio.emit("output", {"data": f"calling you script {cmd}"},
namespace="/", room=request_data["socket_id"])
- results = subprocess.Popen(
- cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True)
+ with subprocess.Popen(
+ cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True) as results:
+ if results.stdout is not None:
+ for line in iter(results.stdout.readline, b""):
+ socketio.emit("output",
+ {"data": line.decode("utf-8").rstrip()},
+ namespace="/", room=request_data["socket_id"])
- if results.stdout is not None:
-
- for line in iter(results.stdout.readline, b""):
- socketio.emit("output",
- {"data": line.decode("utf-8").rstrip()},
- namespace="/", room=request_data["socket_id"])
-
- socketio.emit(
- "output", {"data":
- "parsing the output results"}, namespace="/",
- room=request_data["socket_id"])
+ socketio.emit(
+ "output", {"data":
+ "parsing the output results"}, namespace="/",
+ room=request_data["socket_id"])
def process_image(image_loc: str) -> bytes:
@@ -75,7 +73,7 @@ def call_wgcna_script(rscript_path: str, request_data: dict):
run_cmd_results = run_cmd(cmd)
- with open(generated_file, "r") as outputfile:
+ with open(generated_file, "r", encoding="utf-8") as outputfile:
if run_cmd_results["code"] != 0:
return run_cmd_results