aboutsummaryrefslogtreecommitdiff
path: root/gn3/computations
diff options
context:
space:
mode:
Diffstat (limited to 'gn3/computations')
-rw-r--r--gn3/computations/partial_correlations.py430
1 files changed, 397 insertions, 33 deletions
diff --git a/gn3/computations/partial_correlations.py b/gn3/computations/partial_correlations.py
index 4f45159..231b0a7 100644
--- a/gn3/computations/partial_correlations.py
+++ b/gn3/computations/partial_correlations.py
@@ -6,15 +6,28 @@ GeneNetwork1.
"""
import math
-from functools import reduce
+from functools import reduce, partial
from typing import Any, Tuple, Union, Sequence
-from scipy.stats import pearsonr, spearmanr
import pandas
import pingouin
+from scipy.stats import pearsonr, spearmanr
from gn3.settings import TEXTDIR
+from gn3.random import random_string
+from gn3.function_helpers import compose
from gn3.data_helpers import parse_csv_line
+from gn3.db.traits import export_informative
+from gn3.db.traits import retrieve_trait_info, retrieve_trait_data
+from gn3.db.species import species_name, translate_to_mouse_gene_id
+from gn3.db.correlations import (
+ get_filename,
+ fetch_all_database_data,
+ check_for_literature_info,
+ fetch_tissue_correlations,
+ fetch_literature_correlations,
+ check_symbol_for_tissue_correlation,
+ fetch_gene_symbol_tissue_value_dict_for_trait)
def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
"""
@@ -112,7 +125,7 @@ def find_identical_traits(
return acc + ident[1]
def __dictify_controls__(acc, control_item):
- ckey = "{:.3f}".format(control_item[0])
+ ckey = tuple("{:.3f}".format(item) for item in control_item[0])
return {**acc, ckey: acc.get(ckey, tuple()) + (control_item[1],)}
return (reduce(## for identical control traits
@@ -200,33 +213,19 @@ def good_dataset_samples_indexes(
samples_from_file.index(good) for good in
set(samples).intersection(set(samples_from_file))))
-def determine_partials(
- primary_vals, control_vals, all_target_trait_names,
- all_target_trait_values, method):
- """
- This **WILL** be a migration of
- `web.webqtl.correlation.correlationFunction.determinePartialsByR` function
- in GeneNetwork1.
-
- The function in GeneNetwork1 contains code written in R that is then used to
- compute the partial correlations.
- """
- ## This function is not implemented at this stage
- return tuple(
- primary_vals, control_vals, all_target_trait_names,
- all_target_trait_values, method)
-
-def compute_partial_correlations_fast(# pylint: disable=[R0913, R0914]
+def partial_correlations_fast(# pylint: disable=[R0913, R0914]
samples, primary_vals, control_vals, database_filename,
fetched_correlations, method: str, correlation_type: str) -> Tuple[
float, Tuple[float, ...]]:
"""
+ Computes partial correlation coefficients using data from a CSV file.
+
This is a partial migration of the
`web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsFast`
function in GeneNetwork1.
"""
assert method in ("spearman", "pearson")
- with open(f"{TEXTDIR}/{database_filename}", "r") as dataset_file:
+ with open(database_filename, "r") as dataset_file:
dataset = tuple(dataset_file.readlines())
good_dataset_samples = good_dataset_samples_indexes(
@@ -300,33 +299,398 @@ def compute_partial(
"""
# replace the R code with `pingouin.partial_corr`
def __compute_trait_info__(target):
+ targ_vals = target[0]
+ targ_name = target[1]
primary = [
- prim for targ, prim in zip(target, primary_vals)
+ prim for targ, prim in zip(targ_vals, primary_vals)
if targ is not None]
+
datafrm = build_data_frame(
primary,
- [targ for targ in target if targ is not None],
- [cont for i, cont in enumerate(control_vals)
- if target[i] is not None])
+ tuple(targ for targ in targ_vals if targ is not None),
+ tuple(cont for i, cont in enumerate(control_vals)
+ if target[i] is not None))
covariates = "z" if datafrm.shape[1] == 3 else [
col for col in datafrm.columns if col not in ("x", "y")]
ppc = pingouin.partial_corr(
- data=datafrm, x="x", y="y", covar=covariates, method=method)
- pc_coeff = ppc["r"]
+ data=datafrm, x="x", y="y", covar=covariates, method=(
+ "pearson" if "pearson" in method.lower() else "spearman"))
+ pc_coeff = ppc["r"][0]
zero_order_corr = pingouin.corr(
- datafrm["x"], datafrm["y"], method=method)
+ datafrm["x"], datafrm["y"], method=(
+ "pearson" if "pearson" in method.lower() else "spearman"))
if math.isnan(pc_coeff):
return (
- target[1], len(primary), pc_coeff, 1, zero_order_corr["r"],
- zero_order_corr["p-val"])
+ targ_name, len(primary), pc_coeff, 1, zero_order_corr["r"][0],
+ zero_order_corr["p-val"][0])
return (
- target[1], len(primary), pc_coeff,
- (ppc["p-val"] if not math.isnan(ppc["p-val"]) else (
+ targ_name, len(primary), pc_coeff,
+ (ppc["p-val"][0] if not math.isnan(ppc["p-val"][0]) else (
0 if (abs(pc_coeff - 1) < 0.0000001) else 1)),
- zero_order_corr["r"], zero_order_corr["p-val"])
+ zero_order_corr["r"][0], zero_order_corr["p-val"][0])
return tuple(
__compute_trait_info__(target)
for target in zip(target_vals, target_names))
+
+def partial_correlations_normal(# pylint: disable=R0913
+ primary_vals, control_vals, input_trait_gene_id, trait_database,
+ data_start_pos: int, db_type: str, method: str) -> Tuple[
+ float, Tuple[float, ...]]:
+ """
+ Computes the correlation coefficients.
+
+ This is a migration of the
+ `web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsNormal`
+ function in GeneNetwork1.
+ """
+ def __add_lit_and_tiss_corr__(item):
+ if method.lower() == "sgo literature correlation":
+ # if method is 'SGO Literature Correlation', `compute_partial`
+ # would give us LitCorr in the [1] position
+ return tuple(item) + trait_database[1]
+ if method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho"):
+ # if method is 'Tissue Correlation, *', `compute_partial` would give
+ # us Tissue Corr in the [1] position and Tissue Corr P Value in the
+ # [2] position
+ return tuple(item) + (trait_database[1], trait_database[2])
+ return item
+
+ target_trait_names, target_trait_vals = reduce(
+ lambda acc, item: (acc[0]+(item[0],), acc[1]+(item[data_start_pos:],)),
+ trait_database, (tuple(), tuple()))
+
+ all_correlations = compute_partial(
+ primary_vals, control_vals, target_trait_vals, target_trait_names,
+ method)
+
+ if (input_trait_gene_id and db_type == "ProbeSet" and method.lower() in (
+ "sgo literature correlation", "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")):
+ return (
+ len(trait_database),
+ tuple(
+ __add_lit_and_tiss_corr__(item)
+ for idx, item in enumerate(all_correlations)))
+
+ return len(trait_database), all_correlations
+
+def partial_corrs(# pylint: disable=[R0913]
+ conn, samples, primary_vals, control_vals, return_number, species,
+ input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
+ method, dataset, database_filename):
+ """
+ Compute the partial correlations, selecting the fast or normal method
+ depending on the existence of the database text file.
+
+ This is a partial migration of the
+ `web.webqtl.correlation.PartialCorrDBPage.__init__` function in
+ GeneNetwork1.
+ """
+ if database_filename:
+ return partial_correlations_fast(
+ samples, primary_vals, control_vals, database_filename,
+ (
+ fetch_literature_correlations(
+ species, input_trait_geneid, dataset, return_number, conn)
+ if "literature" in method.lower() else
+ fetch_tissue_correlations(
+ dataset, input_trait_symbol, tissue_probeset_freeze_id,
+ method, return_number, conn)),
+ method,
+ ("literature" if method.lower() == "sgo literature correlation"
+ else ("tissue" if "tissue" in method.lower() else "genetic")))
+
+ trait_database, data_start_pos = fetch_all_database_data(
+ conn, species, input_trait_geneid, input_trait_symbol, samples, dataset,
+ method, return_number, tissue_probeset_freeze_id)
+ return partial_correlations_normal(
+ primary_vals, control_vals, input_trait_geneid, trait_database,
+ data_start_pos, dataset, method)
+
+def literature_correlation_by_list(
+ conn: Any, species: str, trait_list: Tuple[dict]) -> Tuple[dict]:
+ """
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getLiteratureCorrelationByList`
+ function in GeneNetwork1.
+ """
+ if any((lambda t: (
+ bool(t.get("tissue_corr")) and
+ bool(t.get("tissue_p_value"))))(trait)
+ for trait in trait_list):
+ temporary_table_name = f"LITERATURE{random_string(8)}"
+ query1 = (
+ f"CREATE TEMPORARY TABLE {temporary_table_name} "
+ "(GeneId1 INT(12) UNSIGNED, GeneId2 INT(12) UNSIGNED PRIMARY KEY, "
+ "value DOUBLE)")
+ query2 = (
+ f"INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) "
+ "SELECT GeneId1, GeneId2, value FROM LCorrRamin3 "
+ "WHERE GeneId1=%(geneid)s")
+ query3 = (
+ "INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) "
+ "SELECT GeneId2, GeneId1, value FROM LCorrRamin3 "
+ "WHERE GeneId2=%s AND GeneId1 != %(geneid)s")
+
+ def __set_mouse_geneid__(trait):
+ if trait.get("geneid"):
+ return {
+ **trait,
+ "mouse_geneid": translate_to_mouse_gene_id(
+ species, trait.get("geneid"), conn)
+ }
+ return {**trait, "mouse_geneid": 0}
+
+ def __retrieve_lcorr__(cursor, geneids):
+ cursor.execute(
+ f"SELECT GeneId2, value FROM {temporary_table_name} "
+ "WHERE GeneId2 IN %(geneids)s",
+ geneids=geneids)
+ return dict(cursor.fetchall())
+
+ with conn.cursor() as cursor:
+ cursor.execute(query1)
+ cursor.execute(query2)
+ cursor.execute(query3)
+
+ traits = tuple(__set_mouse_geneid__(trait) for trait in trait_list)
+ lcorrs = __retrieve_lcorr__(
+ cursor, (
+ trait["mouse_geneid"] for trait in traits
+ if (trait["mouse_geneid"] != 0 and
+ trait["mouse_geneid"].find(";") < 0)))
+ return tuple(
+ {**trait, "l_corr": lcorrs.get(trait["mouse_geneid"], None)}
+ for trait in traits)
+
+ return trait_list
+ return trait_list
+
+def tissue_correlation_by_list(
+ conn: Any, primary_trait_symbol: str, tissue_probeset_freeze_id: int,
+ method: str, trait_list: Tuple[dict]) -> Tuple[dict]:
+ """
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getTissueCorrelationByList`
+ function in GeneNetwork1.
+ """
+ def __add_tissue_corr__(trait, primary_trait_values, trait_values):
+ result = pingouin.corr(
+ primary_trait_values, trait_values,
+ method=("spearman" if "spearman" in method.lower() else "pearson"))
+ return {
+ **trait,
+ "tissue_corr": result["r"],
+ "tissue_p_value": result["p-val"]
+ }
+
+ if any((lambda t: bool(t.get("l_corr")))(trait) for trait in trait_list):
+ prim_trait_symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
+ (primary_trait_symbol,), tissue_probeset_freeze_id, conn)
+ if primary_trait_symbol.lower() in prim_trait_symbol_value_dict:
+ primary_trait_value = prim_trait_symbol_value_dict[
+ primary_trait_symbol.lower()]
+ gene_symbol_list = tuple(
+ trait for trait in trait_list if "symbol" in trait.keys())
+ symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
+ gene_symbol_list, tissue_probeset_freeze_id, conn)
+ return tuple(
+ __add_tissue_corr__(
+ trait, primary_trait_value,
+ symbol_value_dict[trait["symbol"].lower()])
+ for trait in trait_list
+ if ("symbol" in trait and
+ bool(trait["symbol"]) and
+ trait["symbol"].lower() in symbol_value_dict))
+ return tuple({
+ **trait,
+ "tissue_corr": None,
+ "tissue_p_value": None
+ } for trait in trait_list)
+ return trait_list
+
+def partial_correlations_entry(# pylint: disable=[R0913, R0914, R0911]
+ conn: Any, primary_trait_name: str,
+ control_trait_names: Tuple[str, ...], method: str,
+ criteria: int, group: str, target_db_name: str) -> dict:
+ """
+ This is the 'ochestration' function for the partial-correlation feature.
+
+ This function will dispatch the functions doing data fetches from the
+ database (and various other places) and feed that data to the functions
+ doing the conversions and computations. It will then return the results of
+ all of that work.
+
+ This function is doing way too much. Look into splitting out the
+ functionality into smaller functions that do fewer things.
+ """
+ threshold = 0
+ corr_min_informative = 4
+
+ primary_trait = retrieve_trait_info(threshold, primary_trait_name, conn)
+ primary_trait_data = retrieve_trait_data(primary_trait, conn)
+ primary_samples, primary_values, _primary_variances = export_informative(
+ primary_trait_data)
+
+ cntrl_traits = tuple(
+ retrieve_trait_info(threshold, trait_full_name, conn)
+ for trait_full_name in control_trait_names)
+ cntrl_traits_data = tuple(
+ retrieve_trait_data(cntrl_trait, conn)
+ for cntrl_trait in cntrl_traits)
+ species = species_name(conn, group)
+
+ (cntrl_samples,
+ cntrl_values,
+ _cntrl_variances,
+ _cntrl_ns) = control_samples(cntrl_traits_data, primary_samples)
+
+ common_primary_control_samples = primary_samples
+ fixed_primary_vals = primary_values
+ fixed_control_vals = cntrl_values
+ if not all(cnt_smp == primary_samples for cnt_smp in cntrl_samples):
+ (common_primary_control_samples,
+ fixed_primary_vals,
+ fixed_control_vals,
+ _primary_variances,
+ _cntrl_variances) = fix_samples(primary_trait, cntrl_traits)
+
+ if len(common_primary_control_samples) < corr_min_informative:
+ return {
+ "status": "error",
+ "message": (
+ f"Fewer than {corr_min_informative} samples data entered for "
+ f"{group} dataset. No calculation of correlation has been "
+ "attempted."),
+ "error_type": "Inadequate Samples"}
+
+ identical_traits_names = find_identical_traits(
+ primary_trait_name, primary_values, control_trait_names, cntrl_values)
+ if len(identical_traits_names) > 0:
+ return {
+ "status": "error",
+ "message": (
+ f"{identical_traits_names[0]} and {identical_traits_names[1]} "
+ "have the same values for the {len(fixed_primary_vals)} "
+ "samples that will be used to compute the partial correlation "
+ "(common for all primary and control traits). In such cases, "
+ "partial correlation cannot be computed. Please re-select your "
+ "traits."),
+ "error_type": "Identical Traits"}
+
+ input_trait_geneid = primary_trait.get("geneid")
+ input_trait_symbol = primary_trait.get("symbol")
+ input_trait_mouse_geneid = translate_to_mouse_gene_id(
+ species, input_trait_geneid, conn)
+
+ tissue_probeset_freeze_id = 1
+ db_type = primary_trait["db"]["dataset_type"]
+
+ if db_type == "ProbeSet" and method.lower() in (
+ "sgo literature correlation",
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho"):
+ return {
+ "status": "error",
+ "message": (
+ "Wrong correlation type: It is not possible to compute the "
+ f"{method} between your trait and data in the {target_db_name} "
+ "database. Please try again after selecting another type of "
+ "correlation."),
+ "error_type": "Correlation Type"}
+
+ if (method.lower() == "sgo literature correlation" and (
+ input_trait_geneid is None or
+ check_for_literature_info(conn, input_trait_mouse_geneid))):
+ return {
+ "status": "error",
+ "message": (
+ "No Literature Information: This gene does not have any "
+ "associated Literature Information."),
+ "error_type": "Literature Correlation"}
+
+ if (
+ method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")
+ and input_trait_symbol is None):
+ return {
+ "status": "error",
+ "message": (
+ "No Tissue Correlation Information: This gene does not have "
+ "any associated Tissue Correlation Information."),
+ "error_type": "Tissue Correlation"}
+
+ if (
+ method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")
+ and check_symbol_for_tissue_correlation(
+ conn, tissue_probeset_freeze_id, input_trait_symbol)):
+ return {
+ "status": "error",
+ "message": (
+ "No Tissue Correlation Information: This gene does not have "
+ "any associated Tissue Correlation Information."),
+ "error_type": "Tissue Correlation"}
+
+ database_filename = get_filename(conn, target_db_name, TEXTDIR)
+ _total_traits, all_correlations = partial_corrs(
+ conn, common_primary_control_samples, fixed_primary_vals,
+ fixed_control_vals, len(fixed_primary_vals), species,
+ input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
+ method, primary_trait["db"], database_filename)
+
+
+ def __make_sorter__(method):
+ def __sort_6__(row):
+ return row[6]
+
+ def __sort_3__(row):
+ return row[3]
+
+ if "literature" in method.lower():
+ return __sort_6__
+
+ if "tissue" in method.lower():
+ return __sort_6__
+
+ return __sort_3__
+
+ sorted_correlations = sorted(
+ all_correlations, key=__make_sorter__(method))
+
+ add_lit_corr_and_tiss_corr = compose(
+ partial(literature_correlation_by_list, conn, species),
+ partial(
+ tissue_correlation_by_list, conn, input_trait_symbol,
+ tissue_probeset_freeze_id, method))
+
+ trait_list = add_lit_corr_and_tiss_corr(tuple(
+ {
+ **retrieve_trait_info(
+ threshold,
+ f"{primary_trait['db']['dataset_name']}::{item[0]}",
+ conn),
+ "noverlap": item[1],
+ "partial_corr": item[2],
+ "partial_corr_p_value": item[3],
+ "corr": item[4],
+ "corr_p_value": item[5],
+ "rank_order": (1 if "spearman" in method.lower() else 0),
+ **({
+ "tissue_corr": item[6],
+ "tissue_p_value": item[7]}
+ if len(item) == 8 else {}),
+ **({"l_corr": item[6]}
+ if len(item) == 7 else {})
+ }
+ for item in
+ sorted_correlations[:min(criteria, len(all_correlations))]))
+
+ return trait_list