aboutsummaryrefslogtreecommitdiff
path: root/gn3/computations
diff options
context:
space:
mode:
Diffstat (limited to 'gn3/computations')
-rw-r--r--gn3/computations/correlations.py142
1 files changed, 112 insertions, 30 deletions
diff --git a/gn3/computations/correlations.py b/gn3/computations/correlations.py
index 26b7294..0d15d9b 100644
--- a/gn3/computations/correlations.py
+++ b/gn3/computations/correlations.py
@@ -1,4 +1,6 @@
"""module contains code for correlations"""
+import multiprocessing
+
from typing import List
from typing import Tuple
from typing import Optional
@@ -7,11 +9,6 @@ from typing import Callable
import scipy.stats
-def compute_sum(rhs: int, lhs: int) -> int:
- """Initial tests to compute sum of two numbers"""
- return rhs + lhs
-
-
def map_shared_keys_to_values(target_sample_keys: List, target_sample_vals: dict)-> List:
"""Function to construct target dataset data items given commoned shared\
keys and trait samplelist values for example given keys >>>>>>>>>>\
@@ -73,14 +70,12 @@ pearson,spearman and biweight mid correlation return value is rho and p_value
return (corr_coeffient, p_val)
-def compute_sample_r_correlation(
- corr_method: str, trait_vals,
- target_samples_vals) -> Optional[Tuple[float, float, int]]:
+def compute_sample_r_correlation(trait_name, corr_method, trait_vals,
+ target_samples_vals) -> Optional[Tuple[str, float, float, int]]:
"""Given a primary trait values and target trait values calculate the
correlation coeff and p value
"""
-
(sanitized_traits_vals, sanitized_target_vals,
num_overlap) = normalize_values(trait_vals, target_samples_vals)
@@ -94,7 +89,7 @@ def compute_sample_r_correlation(
# xtodo check if corr_coefficient is None
# should use numpy.isNan scipy.isNan is deprecated
if corr_coeffient is not None:
- return (corr_coeffient, p_value, num_overlap)
+ return (trait_name, corr_coeffient, p_value, num_overlap)
return None
@@ -104,15 +99,15 @@ def do_bicor(x_val, y_val) -> Tuple[float, float]:
package :not packaged in guix
"""
- return (x_val, y_val)
+ _corr_input = (x_val, y_val)
+ return (0.0, 0.0)
def filter_shared_sample_keys(this_samplelist,
target_samplelist) -> Tuple[List, List]:
- """Given primary and target samplelist for two base and target trait select
-filter the values using the shared keys
-
- """
+ """Given primary and target samplelist\
+ for two base and target trait select\
+ filter the values using the shared keys"""
this_vals = []
target_vals = []
for key, value in target_samplelist.items():
@@ -125,26 +120,70 @@ filter the values using the shared keys
def compute_all_sample_correlation(this_trait,
target_dataset,
corr_method="pearson") -> List:
- """Given a trait data samplelist and target__datasets compute all sample
-correlation"""
+ """Given a trait data samplelist and\
+ target__datasets compute all sample correlation
+ """
+ # xtodo fix trait_name currently returning single one
+ # pylint: disable-msg=too-many-locals
+
+ this_trait_samples = this_trait["trait_sample_data"]
+ corr_results = []
+ processed_values = []
+ for target_trait in target_dataset:
+ trait_name = target_trait.get("trait_id")
+ target_trait_data = target_trait["trait_sample_data"]
+ # this_vals, target_vals = filter_shared_sample_keys(
+ # this_trait_samples, target_trait_data)
+
+ processed_values.append((trait_name, corr_method, *filter_shared_sample_keys(
+ this_trait_samples, target_trait_data)))
+ with multiprocessing.Pool(4) as pool:
+ results = pool.starmap(compute_sample_r_correlation, processed_values)
+
+ for sample_correlation in results:
+ if sample_correlation is not None:
+ (trait_name, corr_coeffient, p_value,
+ num_overlap) = sample_correlation
+
+ corr_result = {
+ "corr_coeffient": corr_coeffient,
+ "p_value": p_value,
+ "num_overlap": num_overlap
+ }
+
+ corr_results.append({trait_name: corr_result})
+
+ return sorted(
+ corr_results,
+ key=lambda trait_name: -abs(list(trait_name.values())[0]["corr_coeffient"]))
+
+
+def benchmark_compute_all_sample(this_trait,
+ target_dataset,
+ corr_method="pearson") ->List:
+ """Temp function to benchmark with compute_all_sample_r\
+ alternative to compute_all_sample_r where we use \
+ multiprocessing
+ """
this_trait_samples = this_trait["trait_sample_data"]
corr_results = []
for target_trait in target_dataset:
- trait_id = target_trait.get("trait_id")
+ trait_name = target_trait.get("trait_id")
target_trait_data = target_trait["trait_sample_data"]
this_vals, target_vals = filter_shared_sample_keys(
this_trait_samples, target_trait_data)
sample_correlation = compute_sample_r_correlation(
+ trait_name=trait_name,
corr_method=corr_method,
trait_vals=this_vals,
target_samples_vals=target_vals)
if sample_correlation is not None:
- (corr_coeffient, p_value, num_overlap) = sample_correlation
+ (trait_name, corr_coeffient, p_value, num_overlap) = sample_correlation
else:
continue
@@ -155,7 +194,7 @@ correlation"""
"num_overlap": num_overlap
}
- corr_results.append({trait_id: corr_result})
+ corr_results.append({trait_name: corr_result})
return corr_results
@@ -187,6 +226,7 @@ def tissue_correlation_for_trait_list(
primary_tissue_vals: List,
target_tissues_values: List,
corr_method: str,
+ trait_id: str,
compute_corr_p_value: Callable = compute_corr_coeff_p_value) -> dict:
"""Given a primary tissue values for a trait and the target tissues values
compute the correlation_cooeff and p value the input required are arrays
@@ -202,13 +242,12 @@ def tissue_correlation_for_trait_list(
target_values=target_tissues_values,
corr_method=corr_method)
- lit_corr_result = {
+ tiss_corr_result = {trait_id: {
"tissue_corr": tissue_corr_coeffient,
- "p_value": p_value,
- "tissue_number": len(primary_tissue_vals)
- }
+ "tissue_number": len(primary_tissue_vals),
+ "p_value": p_value}}
- return lit_corr_result
+ return tiss_corr_result
def fetch_lit_correlation_data(
@@ -323,15 +362,17 @@ def compute_all_lit_correlation(conn, trait_lists: List,
species: str, gene_id):
"""Function that acts as an abstraction for
lit_correlation_for_trait_list"""
- # xtodo to be refactored
lit_results = lit_correlation_for_trait_list(
conn=conn,
target_trait_lists=trait_lists,
species=species,
trait_gene_id=gene_id)
+ sorted_lit_results = sorted(
+ lit_results,
+ key=lambda trait_name: -abs(list(trait_name.values())[0]["lit_corr"]))
- return {"lit_results": lit_results}
+ return sorted_lit_results
def compute_all_tissue_correlation(primary_tissue_dict: dict,
@@ -343,7 +384,7 @@ def compute_all_tissue_correlation(primary_tissue_dict: dict,
"""
- tissues_results = {}
+ tissues_results = []
primary_tissue_vals = primary_tissue_dict["tissue_values"]
traits_symbol_dict = target_tissues_data["trait_symbol_dict"]
@@ -360,11 +401,17 @@ def compute_all_tissue_correlation(primary_tissue_dict: dict,
tissue_result = tissue_correlation_for_trait_list(
primary_tissue_vals=primary_tissue_vals,
target_tissues_values=target_tissue_vals,
+ trait_id=trait_id,
corr_method=corr_method)
- tissues_results[trait_id] = tissue_result
+ tissue_result_dict = {trait_id: tissue_result}
+ tissues_results.append(tissue_result_dict)
- return tissues_results
+ sorted_tissues_results = sorted(
+ tissues_results,
+ key=lambda trait_name: -abs(list(trait_name.values())[0]["tissue_corr"]))
+
+ return sorted_tissues_results
def process_trait_symbol_dict(trait_symbol_dict, symbol_tissue_vals_dict) -> List:
@@ -384,3 +431,38 @@ def process_trait_symbol_dict(trait_symbol_dict, symbol_tissue_vals_dict) -> Lis
traits_tissue_vals.append(target_tissue_dict)
return traits_tissue_vals
+
+
+def compute_tissue_correlation(primary_tissue_dict: dict,
+ target_tissues_data: dict,
+ corr_method: str):
+ """Experimental function that uses multiprocessing\
+ for computing tissue correlation
+ """
+
+ tissues_results = []
+
+ primary_tissue_vals = primary_tissue_dict["tissue_values"]
+ traits_symbol_dict = target_tissues_data["trait_symbol_dict"]
+ symbol_tissue_vals_dict = target_tissues_data["symbol_tissue_vals_dict"]
+
+ target_tissues_list = process_trait_symbol_dict(
+ traits_symbol_dict, symbol_tissue_vals_dict)
+ processed_values = []
+
+ for target_tissue_obj in target_tissues_list:
+ trait_id = target_tissue_obj.get("trait_id")
+
+ target_tissue_vals = target_tissue_obj.get("tissue_values")
+ processed_values.append(
+ (primary_tissue_vals, target_tissue_vals, corr_method, trait_id))
+
+ with multiprocessing.Pool(4) as pool:
+ results = pool.starmap(
+ tissue_correlation_for_trait_list, processed_values)
+ for result in results:
+ tissues_results.append(result)
+
+ return sorted(
+ tissues_results,
+ key=lambda trait_name: -abs(list(trait_name.values())[0]["tissue_corr"]))