diff options
Diffstat (limited to 'gn3/computations')
-rw-r--r-- | gn3/computations/correlations.py | 142 |
1 files changed, 112 insertions, 30 deletions
diff --git a/gn3/computations/correlations.py b/gn3/computations/correlations.py index 26b7294..0d15d9b 100644 --- a/gn3/computations/correlations.py +++ b/gn3/computations/correlations.py @@ -1,4 +1,6 @@ """module contains code for correlations""" +import multiprocessing + from typing import List from typing import Tuple from typing import Optional @@ -7,11 +9,6 @@ from typing import Callable import scipy.stats -def compute_sum(rhs: int, lhs: int) -> int: - """Initial tests to compute sum of two numbers""" - return rhs + lhs - - def map_shared_keys_to_values(target_sample_keys: List, target_sample_vals: dict)-> List: """Function to construct target dataset data items given commoned shared\ keys and trait samplelist values for example given keys >>>>>>>>>>\ @@ -73,14 +70,12 @@ pearson,spearman and biweight mid correlation return value is rho and p_value return (corr_coeffient, p_val) -def compute_sample_r_correlation( - corr_method: str, trait_vals, - target_samples_vals) -> Optional[Tuple[float, float, int]]: +def compute_sample_r_correlation(trait_name, corr_method, trait_vals, + target_samples_vals) -> Optional[Tuple[str, float, float, int]]: """Given a primary trait values and target trait values calculate the correlation coeff and p value """ - (sanitized_traits_vals, sanitized_target_vals, num_overlap) = normalize_values(trait_vals, target_samples_vals) @@ -94,7 +89,7 @@ def compute_sample_r_correlation( # xtodo check if corr_coefficient is None # should use numpy.isNan scipy.isNan is deprecated if corr_coeffient is not None: - return (corr_coeffient, p_value, num_overlap) + return (trait_name, corr_coeffient, p_value, num_overlap) return None @@ -104,15 +99,15 @@ def do_bicor(x_val, y_val) -> Tuple[float, float]: package :not packaged in guix """ - return (x_val, y_val) + _corr_input = (x_val, y_val) + return (0.0, 0.0) def filter_shared_sample_keys(this_samplelist, target_samplelist) -> Tuple[List, List]: - """Given primary and target samplelist for two base and target trait select -filter the values using the shared keys - - """ + """Given primary and target samplelist\ + for two base and target trait select\ + filter the values using the shared keys""" this_vals = [] target_vals = [] for key, value in target_samplelist.items(): @@ -125,26 +120,70 @@ filter the values using the shared keys def compute_all_sample_correlation(this_trait, target_dataset, corr_method="pearson") -> List: - """Given a trait data samplelist and target__datasets compute all sample -correlation""" + """Given a trait data samplelist and\ + target__datasets compute all sample correlation + """ + # xtodo fix trait_name currently returning single one + # pylint: disable-msg=too-many-locals + + this_trait_samples = this_trait["trait_sample_data"] + corr_results = [] + processed_values = [] + for target_trait in target_dataset: + trait_name = target_trait.get("trait_id") + target_trait_data = target_trait["trait_sample_data"] + # this_vals, target_vals = filter_shared_sample_keys( + # this_trait_samples, target_trait_data) + + processed_values.append((trait_name, corr_method, *filter_shared_sample_keys( + this_trait_samples, target_trait_data))) + with multiprocessing.Pool(4) as pool: + results = pool.starmap(compute_sample_r_correlation, processed_values) + + for sample_correlation in results: + if sample_correlation is not None: + (trait_name, corr_coeffient, p_value, + num_overlap) = sample_correlation + + corr_result = { + "corr_coeffient": corr_coeffient, + "p_value": p_value, + "num_overlap": num_overlap + } + + corr_results.append({trait_name: corr_result}) + + return sorted( + corr_results, + key=lambda trait_name: -abs(list(trait_name.values())[0]["corr_coeffient"])) + + +def benchmark_compute_all_sample(this_trait, + target_dataset, + corr_method="pearson") ->List: + """Temp function to benchmark with compute_all_sample_r\ + alternative to compute_all_sample_r where we use \ + multiprocessing + """ this_trait_samples = this_trait["trait_sample_data"] corr_results = [] for target_trait in target_dataset: - trait_id = target_trait.get("trait_id") + trait_name = target_trait.get("trait_id") target_trait_data = target_trait["trait_sample_data"] this_vals, target_vals = filter_shared_sample_keys( this_trait_samples, target_trait_data) sample_correlation = compute_sample_r_correlation( + trait_name=trait_name, corr_method=corr_method, trait_vals=this_vals, target_samples_vals=target_vals) if sample_correlation is not None: - (corr_coeffient, p_value, num_overlap) = sample_correlation + (trait_name, corr_coeffient, p_value, num_overlap) = sample_correlation else: continue @@ -155,7 +194,7 @@ correlation""" "num_overlap": num_overlap } - corr_results.append({trait_id: corr_result}) + corr_results.append({trait_name: corr_result}) return corr_results @@ -187,6 +226,7 @@ def tissue_correlation_for_trait_list( primary_tissue_vals: List, target_tissues_values: List, corr_method: str, + trait_id: str, compute_corr_p_value: Callable = compute_corr_coeff_p_value) -> dict: """Given a primary tissue values for a trait and the target tissues values compute the correlation_cooeff and p value the input required are arrays @@ -202,13 +242,12 @@ def tissue_correlation_for_trait_list( target_values=target_tissues_values, corr_method=corr_method) - lit_corr_result = { + tiss_corr_result = {trait_id: { "tissue_corr": tissue_corr_coeffient, - "p_value": p_value, - "tissue_number": len(primary_tissue_vals) - } + "tissue_number": len(primary_tissue_vals), + "p_value": p_value}} - return lit_corr_result + return tiss_corr_result def fetch_lit_correlation_data( @@ -323,15 +362,17 @@ def compute_all_lit_correlation(conn, trait_lists: List, species: str, gene_id): """Function that acts as an abstraction for lit_correlation_for_trait_list""" - # xtodo to be refactored lit_results = lit_correlation_for_trait_list( conn=conn, target_trait_lists=trait_lists, species=species, trait_gene_id=gene_id) + sorted_lit_results = sorted( + lit_results, + key=lambda trait_name: -abs(list(trait_name.values())[0]["lit_corr"])) - return {"lit_results": lit_results} + return sorted_lit_results def compute_all_tissue_correlation(primary_tissue_dict: dict, @@ -343,7 +384,7 @@ def compute_all_tissue_correlation(primary_tissue_dict: dict, """ - tissues_results = {} + tissues_results = [] primary_tissue_vals = primary_tissue_dict["tissue_values"] traits_symbol_dict = target_tissues_data["trait_symbol_dict"] @@ -360,11 +401,17 @@ def compute_all_tissue_correlation(primary_tissue_dict: dict, tissue_result = tissue_correlation_for_trait_list( primary_tissue_vals=primary_tissue_vals, target_tissues_values=target_tissue_vals, + trait_id=trait_id, corr_method=corr_method) - tissues_results[trait_id] = tissue_result + tissue_result_dict = {trait_id: tissue_result} + tissues_results.append(tissue_result_dict) - return tissues_results + sorted_tissues_results = sorted( + tissues_results, + key=lambda trait_name: -abs(list(trait_name.values())[0]["tissue_corr"])) + + return sorted_tissues_results def process_trait_symbol_dict(trait_symbol_dict, symbol_tissue_vals_dict) -> List: @@ -384,3 +431,38 @@ def process_trait_symbol_dict(trait_symbol_dict, symbol_tissue_vals_dict) -> Lis traits_tissue_vals.append(target_tissue_dict) return traits_tissue_vals + + +def compute_tissue_correlation(primary_tissue_dict: dict, + target_tissues_data: dict, + corr_method: str): + """Experimental function that uses multiprocessing\ + for computing tissue correlation + """ + + tissues_results = [] + + primary_tissue_vals = primary_tissue_dict["tissue_values"] + traits_symbol_dict = target_tissues_data["trait_symbol_dict"] + symbol_tissue_vals_dict = target_tissues_data["symbol_tissue_vals_dict"] + + target_tissues_list = process_trait_symbol_dict( + traits_symbol_dict, symbol_tissue_vals_dict) + processed_values = [] + + for target_tissue_obj in target_tissues_list: + trait_id = target_tissue_obj.get("trait_id") + + target_tissue_vals = target_tissue_obj.get("tissue_values") + processed_values.append( + (primary_tissue_vals, target_tissue_vals, corr_method, trait_id)) + + with multiprocessing.Pool(4) as pool: + results = pool.starmap( + tissue_correlation_for_trait_list, processed_values) + for result in results: + tissues_results.append(result) + + return sorted( + tissues_results, + key=lambda trait_name: -abs(list(trait_name.values())[0]["tissue_corr"])) |