aboutsummaryrefslogtreecommitdiff
path: root/gn3/computations/datasets.py
diff options
context:
space:
mode:
Diffstat (limited to 'gn3/computations/datasets.py')
-rw-r--r--gn3/computations/datasets.py323
1 files changed, 323 insertions, 0 deletions
diff --git a/gn3/computations/datasets.py b/gn3/computations/datasets.py
new file mode 100644
index 0000000..57e1fe1
--- /dev/null
+++ b/gn3/computations/datasets.py
@@ -0,0 +1,323 @@
+"""module contains the code all related to datasets"""
+import json
+from math import ceil
+from collections import defaultdict
+
+from typing import Optional
+from typing import List
+
+from dataclasses import dataclass
+from MySQLdb import escape_string # type: ignore
+
+import requests
+from gn3.settings import GN2_BASE_URL
+
+
+def retrieve_trait_sample_data(dataset,
+ trait_name: str,
+ database,
+ group_species_id=None) -> List:
+ """given the dataset id and trait_name fetch the\
+ sample_name,value from the dataset"""
+
+ # should pass the db as arg all do a setup
+
+ (dataset_name, dataset_id, dataset_type) = (dataset.get("name"), dataset.get(
+ "id"), dataset.get("type"))
+
+ dataset_query = get_query_for_dataset_sample(dataset_type)
+ results = []
+ sample_query_values = {
+ "Publish": (trait_name, dataset_id),
+ "Geno": (group_species_id, trait_name, dataset_name),
+ "ProbeSet": (trait_name, dataset_name)
+ }
+
+ if dataset_query:
+ formatted_query = dataset_query % sample_query_values[dataset_type]
+
+ results = fetch_from_db_sample_data(formatted_query, database)
+
+ return results
+
+
+def fetch_from_db_sample_data(formatted_query: str, database_instance) -> List:
+ """this is the function that does the actual fetching of\
+ results from the database"""
+ try:
+ cursor = database_instance.cursor()
+ cursor.execute(formatted_query)
+ results = cursor.fetchall()
+
+ except Exception as error:
+ raise error
+
+ cursor.close()
+
+ return results
+
+
+def get_query_for_dataset_sample(dataset_type) -> Optional[str]:
+ """this functions contains querys for\
+ getting sample data from the db depending in
+ dataset"""
+ dataset_query = {}
+
+ pheno_query = """
+ SELECT
+ Strain.Name, PublishData.value, PublishSE.error,NStrain.count, Strain.Name2
+ FROM
+ (PublishData, Strain, PublishXRef, PublishFreeze)
+ left join PublishSE on
+ (PublishSE.DataId = PublishData.Id AND PublishSE.StrainId = PublishData.StrainId)
+ left join NStrain on
+ (NStrain.DataId = PublishData.Id AND
+ NStrain.StrainId = PublishData.StrainId)
+ WHERE
+ PublishXRef.InbredSetId = PublishFreeze.InbredSetId AND
+ PublishData.Id = PublishXRef.DataId AND PublishXRef.Id = %s AND
+ PublishFreeze.Id = %s AND PublishData.StrainId = Strain.Id
+ Order BY
+ Strain.Name
+ """
+ geno_query = """
+ SELECT
+ Strain.Name, GenoData.value, GenoSE.error, "N/A", Strain.Name2
+ FROM
+ (GenoData, GenoFreeze, Strain, Geno, GenoXRef)
+ left join GenoSE on
+ (GenoSE.DataId = GenoData.Id AND GenoSE.StrainId = GenoData.StrainId)
+ WHERE
+ Geno.SpeciesId = %s AND Geno.Name = %s AND GenoXRef.GenoId = Geno.Id AND
+ GenoXRef.GenoFreezeId = GenoFreeze.Id AND
+ GenoFreeze.Name = %s AND
+ GenoXRef.DataId = GenoData.Id AND
+ GenoData.StrainId = Strain.Id
+ Order BY
+ Strain.Name
+ """
+
+ probeset_query = """
+ SELECT
+ Strain.Name, ProbeSetData.value, ProbeSetSE.error, NStrain.count, Strain.Name2
+ FROM
+ (ProbeSetData, ProbeSetFreeze,
+ Strain, ProbeSet, ProbeSetXRef)
+ left join ProbeSetSE on
+ (ProbeSetSE.DataId = ProbeSetData.Id AND ProbeSetSE.StrainId = ProbeSetData.StrainId)
+ left join NStrain on
+ (NStrain.DataId = ProbeSetData.Id AND
+ NStrain.StrainId = ProbeSetData.StrainId)
+ WHERE
+ ProbeSet.Name = '%s' AND ProbeSetXRef.ProbeSetId = ProbeSet.Id AND
+ ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id AND
+ ProbeSetFreeze.Name = '%s' AND
+ ProbeSetXRef.DataId = ProbeSetData.Id AND
+ ProbeSetData.StrainId = Strain.Id
+ Order BY
+ Strain.Name
+ """
+
+ dataset_query["Publish"] = pheno_query
+ dataset_query["Geno"] = geno_query
+ dataset_query["ProbeSet"] = probeset_query
+
+ return dataset_query.get(dataset_type)
+
+
+@dataclass
+class Dataset:
+ """class for creating datasets"""
+ name: Optional[str] = None
+ dataset_type: Optional[str] = None
+ dataset_id: int = -1
+
+
+def create_mrna_tissue_dataset(dataset_name, dataset_type):
+ """an mrna assay is a quantitative assessment(assay) associated\
+ with an mrna trait.This used to be called probeset,but that term\
+ only referes specifically to the afffymetrix platform and is\
+ far too speficified"""
+
+ return Dataset(name=dataset_name, dataset_type=dataset_type)
+
+
+def dataset_type_getter(dataset_name, redis_instance=None) -> Optional[str]:
+ """given the dataset name fetch the type\
+ of the dataset this in turn enables fetching\
+ the creation of the correct object could utilize\
+ redis for the case"""
+
+ results = redis_instance.get(dataset_name, None)
+
+ if results:
+ return results
+
+ return fetch_dataset_type_from_gn2_api(dataset_name)
+
+
+def fetch_dataset_type_from_gn2_api(dataset_name):
+ """this function is only called when the\
+ the redis is empty and does have the specificied\
+ dataset_type"""
+ # should only run once
+
+ dataset_structure = {}
+
+ map_dataset_to_new_type = {
+ "Phenotypes": "Publish",
+ "Genotypes": "Geno",
+ "MrnaTypes": "ProbeSet"
+ }
+
+ data = json.loads(requests.get(
+ GN2_BASE_URL + "/api/v_pre1/gen_dropdown", timeout=5).content)
+ _name = dataset_name
+ for species in data['datasets']:
+ for group in data['datasets'][species]:
+ for dataset_type in data['datasets'][species][group]:
+ for dataset in data['datasets'][species][group][dataset_type]:
+ # assumes the first is dataset_short_name
+ short_dataset_name = next(
+ item for item in dataset if item != "None" and item is not None)
+
+ dataset_structure[short_dataset_name] = map_dataset_to_new_type.get(
+ dataset_type, "MrnaTypes")
+ return dataset_structure
+
+
+def dataset_creator_store(dataset_type):
+ """function contains key value pairs for\
+ the function need to be called to create\
+ each dataset_type"""
+
+ dataset_obj = {
+ "ProbeSet": create_mrna_tissue_dataset
+ }
+
+ return dataset_obj[dataset_type]
+
+
+def create_dataset(dataset_type=None, dataset_name: str = None):
+ """function for creating new dataset temp not implemented"""
+ if dataset_type is None:
+ dataset_type = dataset_type_getter(dataset_name)
+
+ dataset_creator = dataset_creator_store(dataset_type)
+ results = dataset_creator(
+ dataset_name=dataset_name, dataset_type=dataset_type)
+ return results
+
+
+def fetch_dataset_sample_id(samplelist: List, database, species: str) -> dict:
+ """fetch the strain ids from the db only if\
+ it is in the samplelist"""
+ # xtodo create an in clause for samplelist
+
+ strain_query = """
+ SELECT Strain.Name, Strain.Id FROM Strain, Species
+ WHERE Strain.Name IN {}
+ and Strain.SpeciesId=Species.Id
+ and Species.name = '{}'
+ """
+
+ database_cursor = database.cursor()
+ database_cursor.execute(strain_query.format(samplelist, species))
+
+ results = database_cursor.fetchall()
+
+ return dict(results)
+
+
+def divide_into_chunks(the_list, number_chunks):
+ """Divides a list into approximately number_chunks
+ >>> divide_into_chunks([1, 2, 7, 3, 22, 8, 5, 22, 333], 3)
+ [[1, 2, 7], [3, 22, 8], [5, 22, 333]]"""
+
+ length = len(the_list)
+ if length == 0:
+ return [[]]
+
+ if length <= number_chunks:
+ number_chunks = length
+ chunk_size = int(ceil(length/number_chunks))
+ chunks = []
+
+ for counter in range(0, length, chunk_size):
+ chunks.append(the_list[counter:counter+chunk_size])
+ return chunks
+
+
+def escape(string_):
+ """function escape sql value"""
+ return escape_string(string_).decode('utf8')
+
+
+def mescape(*items) -> List:
+ """multiple escape for query values"""
+
+ return [escape_string(str(item)).decode('utf8') for item in items]
+
+
+def get_traits_data(sample_ids, database_instance, dataset_name, dataset_type):
+ """function to fetch trait data"""
+ # MySQL limits the number of tables that can be used in a join to 61,
+ # so we break the sample ids into smaller chunks
+ # Postgres doesn't have that limit, so we can get rid of this after we transition
+
+ _trait_data = defaultdict(list)
+ chunk_size = 61
+ number_chunks = int(ceil(len(sample_ids) / chunk_size))
+ for sample_ids_step in divide_into_chunks(sample_ids, number_chunks):
+ if dataset_type == "Publish":
+ full_dataset_type = "Phenotype"
+ else:
+ full_dataset_type = dataset_type
+ temp = ['T%s.value' % item for item in sample_ids_step]
+
+ if dataset_type == "Publish":
+ query = "SELECT {}XRef.Id,".format(escape(dataset_type))
+
+ else:
+ query = "SELECT {}.Name,".format(escape(full_dataset_type))
+
+ query += ', '.join(temp)
+ query += ' FROM ({}, {}XRef, {}Freeze) '.format(*mescape(full_dataset_type,
+ dataset_type,
+ dataset_type))
+ for item in sample_ids_step:
+
+ query += """
+ left join {}Data as T{} on T{}.Id = {}XRef.DataId
+ and T{}.StrainId={}\n
+ """.format(*mescape(dataset_type, item,
+ item, dataset_type, item, item))
+
+ if dataset_type == "Publish":
+ query += """
+ WHERE {}XRef.{}FreezeId = {}Freeze.Id
+ and {}Freeze.Name = '{}'
+ and {}.Id = {}XRef.{}Id
+ order by {}.Id
+ """.format(*mescape(dataset_type, dataset_type,
+ dataset_type, dataset_type,
+ dataset_name, full_dataset_type,
+ dataset_type, dataset_type,
+ full_dataset_type))
+
+ else:
+ query += """
+ WHERE {}XRef.{}FreezeId = {}Freeze.Id
+ and {}Freeze.Name = '{}'
+ and {}.Id = {}XRef.{}Id
+ order by {}.Id
+ """.format(*mescape(dataset_type, dataset_type,
+ dataset_type, dataset_type,
+ dataset_name, dataset_type,
+ dataset_type, dataset_type,
+ full_dataset_type))
+
+ # print(query)
+
+ _results = fetch_from_db_sample_data(query, database_instance)
+ return {}