about summary refs log tree commit diff
path: root/gn3/computations/correlations2.py
diff options
context:
space:
mode:
Diffstat (limited to 'gn3/computations/correlations2.py')
-rw-r--r--gn3/computations/correlations2.py36
1 files changed, 6 insertions, 30 deletions
diff --git a/gn3/computations/correlations2.py b/gn3/computations/correlations2.py
index 93db3fa..d0222ae 100644
--- a/gn3/computations/correlations2.py
+++ b/gn3/computations/correlations2.py
@@ -6,45 +6,21 @@ FUNCTIONS:
 compute_correlation:
     TODO: Describe what the function does..."""
 
-from math import sqrt
-from functools import reduce
+from scipy import stats
 ## From GN1: mostly for clustering and heatmap generation
 
 def __items_with_values(dbdata, userdata):
     """Retains only corresponding items in the data items that are not `None` values.
     This should probably be renamed to something sensible"""
-    def both_not_none(item1, item2):
-        """Check that both items are not the value `None`."""
-        if (item1 is not None) and (item2 is not None):
-            return (item1, item2)
-        return None
-    def split_lists(accumulator, item):
-        """Separate the 'x' and 'y' items."""
-        return [accumulator[0] + [item[0]], accumulator[1] + [item[1]]]
-    return reduce(
-        split_lists,
-        filter(lambda x: x is not None, map(both_not_none, dbdata, userdata)),
-        [[], []])
+    filtered = [x for x in zip(dbdata, userdata) if x[0] is not None and x[1] is not None]
+    return tuple(zip(*filtered)) if filtered else ([], [])
 
 def compute_correlation(dbdata, userdata):
-    """Compute some form of correlation.
+    """Compute the Pearson correlation coefficient.
 
     This is extracted from
     https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/utility/webqtlUtil.py#L622-L647
     """
     x_items, y_items = __items_with_values(dbdata, userdata)
-    if len(x_items) < 6:
-        return (0.0, len(x_items))
-    meanx = sum(x_items)/len(x_items)
-    meany = sum(y_items)/len(y_items)
-    def cal_corr_vals(acc, item):
-        xitem, yitem = item
-        return [
-            acc[0] + ((xitem - meanx) * (yitem - meany)),
-            acc[1] + ((xitem - meanx) * (xitem - meanx)),
-            acc[2] + ((yitem - meany) * (yitem - meany))]
-    xyd, sxd, syd = reduce(cal_corr_vals, zip(x_items, y_items), [0.0, 0.0, 0.0])
-    try:
-        return ((xyd/(sqrt(sxd)*sqrt(syd))), len(x_items))
-    except ZeroDivisionError:
-        return(0, len(x_items))
+    correlation = stats.pearsonr(x_items, y_items)[0] if len(x_items) >= 6 else 0
+    return (correlation, len(x_items))