diff options
Diffstat (limited to 'gn3/computations/correlations2.py')
-rw-r--r-- | gn3/computations/correlations2.py | 37 |
1 files changed, 26 insertions, 11 deletions
diff --git a/gn3/computations/correlations2.py b/gn3/computations/correlations2.py index 6c456db..93db3fa 100644 --- a/gn3/computations/correlations2.py +++ b/gn3/computations/correlations2.py @@ -1,15 +1,25 @@ +""" +DESCRIPTION: + TODO: Add a description for the module + +FUNCTIONS: +compute_correlation: + TODO: Describe what the function does...""" + from math import sqrt from functools import reduce ## From GN1: mostly for clustering and heatmap generation -def items_with_values(dbdata, userdata): +def __items_with_values(dbdata, userdata): """Retains only corresponding items in the data items that are not `None` values. -This should probably be renamed to something sensible""" + This should probably be renamed to something sensible""" def both_not_none(item1, item2): + """Check that both items are not the value `None`.""" if (item1 is not None) and (item2 is not None): return (item1, item2) return None def split_lists(accumulator, item): + """Separate the 'x' and 'y' items.""" return [accumulator[0] + [item[0]], accumulator[1] + [item[1]]] return reduce( split_lists, @@ -17,19 +27,24 @@ This should probably be renamed to something sensible""" [[], []]) def compute_correlation(dbdata, userdata): - x, y = items_with_values(dbdata, userdata) - if len(x) < 6: - return (0.0, len(x)) - meanx = sum(x)/len(x) - meany = sum(y)/len(y) + """Compute some form of correlation. + + This is extracted from + https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/utility/webqtlUtil.py#L622-L647 + """ + x_items, y_items = __items_with_values(dbdata, userdata) + if len(x_items) < 6: + return (0.0, len(x_items)) + meanx = sum(x_items)/len(x_items) + meany = sum(y_items)/len(y_items) def cal_corr_vals(acc, item): xitem, yitem = item return [ acc[0] + ((xitem - meanx) * (yitem - meany)), acc[1] + ((xitem - meanx) * (xitem - meanx)), acc[2] + ((yitem - meany) * (yitem - meany))] - xyd, sxd, syd = reduce(cal_corr_vals, zip(x, y), [0.0, 0.0, 0.0]) + xyd, sxd, syd = reduce(cal_corr_vals, zip(x_items, y_items), [0.0, 0.0, 0.0]) try: - return ((xyd/(sqrt(sxd)*sqrt(syd))), len(x)) - except ZeroDivisionError as zde: - return(0, len(x)) + return ((xyd/(sqrt(sxd)*sqrt(syd))), len(x_items)) + except ZeroDivisionError: + return(0, len(x_items)) |