about summary refs log tree commit diff
diff options
context:
space:
mode:
-rw-r--r--qtlfilesexport.py253
1 files changed, 0 insertions, 253 deletions
diff --git a/qtlfilesexport.py b/qtlfilesexport.py
deleted file mode 100644
index 100fa75..0000000
--- a/qtlfilesexport.py
+++ /dev/null
@@ -1,253 +0,0 @@
-"""
-Test the qtlfiles export of traits files
-
-Run with:
-
-    env SQL_URI="mysql://<user>:<password>@<host>:<port>/db_webqtl" python3 qtlfilesexport.py
-
-replacing the variables in the angled brackets with the appropriate values
-"""
-from gn3.random import random_string
-from gn3.computations.slink import slink
-from gn3.db_utils import database_connector
-from gn3.computations.qtlreaper import run_reaper
-from gn3.db.traits import retrieve_trait_data, retrieve_trait_info
-from gn3.computations.heatmap import export_trait_data, get_nearest_marker
-from gn3.db.genotypes import (
-    build_genotype_file,
-    parse_genotype_file,
-    load_genotype_samples)
-from gn3.computations.heatmap import (
-    cluster_traits,
-    compute_traits_order,
-    retrieve_strains_and_values)
-from gn3.computations.qtlreaper import (
-    generate_traits_file,
-    chromosome_sorter_key_fn,
-    parse_reaper_main_results,
-    organise_reaper_main_results,
-    parse_reaper_permutation_results)
-
-import plotly.express as px
-
-## for dendrogram
-import numpy as np
-import plotly.graph_objects as go
-import plotly.figure_factory as ff
-
-# for single heatmap
-from plotly.subplots import make_subplots
-
-TMPDIR = "tmp/"
-
-def trait_fullnames():
-    """Return sample names for traits"""
-    return [
-        "UCLA_BXDBXH_CARTILAGE_V2::ILM103710672",
-        "UCLA_BXDBXH_CARTILAGE_V2::ILM2260338",
-        "UCLA_BXDBXH_CARTILAGE_V2::ILM3140576",
-        "UCLA_BXDBXH_CARTILAGE_V2::ILM5670577",
-        "UCLA_BXDBXH_CARTILAGE_V2::ILM2070121",
-        "UCLA_BXDBXH_CARTILAGE_V2::ILM103990541",
-        "UCLA_BXDBXH_CARTILAGE_V2::ILM1190722",
-        "UCLA_BXDBXH_CARTILAGE_V2::ILM6590722",
-        "UCLA_BXDBXH_CARTILAGE_V2::ILM4200064",
-        "UCLA_BXDBXH_CARTILAGE_V2::ILM3140463"]
-
-def get_lrs_from_chr(trait, chr_name):
-    chromosome = trait["chromosomes"].get(chr_name)
-    if chromosome:
-        return [
-            locus["LRS"] for locus in
-            sorted(chromosome["loci"], key=lambda loc: loc["Locus"])]
-    return [None]
-
-def process_traits_data_for_heatmap(data, trait_names, chromosome_names):
-    print("TRAIT_NAMES: {}".format(trait_names))
-    print("chromosome names: {}".format(chromosome_names))
-    print("data keys: {}".format(data.keys()))
-    hdata = [
-        [get_lrs_from_chr(data[trait], chr_name) for trait in trait_names]
-        for chr_name in chromosome_names]
-    # print("hdata: {}".format(hdata))
-    return hdata
-
-def generate_heatmap(
-        data, image_filename_prefix, x_axis = None, x_label: str = "",
-        y_axis = None, y_label: str = "", output_dir: str = TMPDIR):
-    """Generate single heatmap section."""
-    print("X-AXIS:({}, {}), Y-AXIS: ({}, {}), ROWS:{}, COLS:{}".format(
-        x_axis, (len(x_axis) if x_axis else 0),
-        y_axis, (len(y_axis) if y_axis else 0),
-        len(data), len(data[0])))
-    fig = px.imshow(
-        data,
-        x = x_axis,
-        y = y_axis,
-        width=1000
-    )
-    fig.update_yaxes(title=y_label)
-    fig.update_xaxes(title=x_label)
-    image_filename = "{}/{}.html".format(output_dir, image_filename_prefix)
-    fig.write_html(image_filename)
-    return image_filename, fig
-
-def generate_dendrogram(
-        data, image_filename_prefix, x_axis = None, x_label: str = "",
-        y_axis = None, y_label: str = "", output_dir: str = TMPDIR):
-    fig = ff.create_dendrogram(
-        np.array(data), orientation="right", labels=y_axis)
-
-    heatmap = go.Heatmap(
-        x=fig['layout']['xaxis']['ticktext'],
-        y=fig['layout']['yaxis']['ticktext'],
-        z=data)
-    
-    # print("HEAMAP:{}".format(heatmap))
-    fig.add_trace(heatmap)
-
-    fig.update_layout({"width": 1000, "height": 500})
-    image_filename = "{}/{}.html".format(output_dir, image_filename_prefix)
-    fig.write_html(image_filename)
-    return image_filename, fig
-
-def generate_single_heatmap(
-        data, image_filename_prefix, x_axis = None, x_label: str = "",
-        y_axis = None, y_label: str = "", output_dir: str = TMPDIR):
-    """Generate single heatmap section."""
-    # fig = go.Figure({"type": "heatmap"})
-    num_cols = len(x_axis)
-    fig = make_subplots(
-        rows=1,
-        cols=num_cols,
-        shared_yaxes="rows",
-        # horizontal_spacing=(1 / (num_cols - 1)),
-        subplot_titles=x_axis
-    )
-    hms = [go.Heatmap(
-        name=chromo,
-        y = y_axis,
-        z = data_array,
-        showscale=False) for chromo, data_array in zip(x_axis, data)]
-    for col, hm in enumerate(hms):
-        fig.add_trace(hm, row=1, col=(col + 1))
-
-    fig.update_traces(
-        showlegend=False,
-        colorscale=[
-            [0.0, '#3B3B3B'], [0.4999999999999999, '#ABABAB'],
-            [0.5, '#F5DE11'], [1.0, '#FF0D00']],
-        selector={"type": "heatmap"})
-    fig.update_traces(
-        showlegend=True,
-        showscale=True,
-        selector={"name": x_axis[-1]})
-    fig.update_layout(
-        coloraxis_colorscale=[
-            [0.0, '#3B3B3B'], [0.4999999999999999, '#ABABAB'],
-            [0.5, '#F5DE11'], [1.0, '#FF0D00']]
-    )
-    print(fig)
-    image_filename = "{}/{}.html".format(output_dir, image_filename_prefix)
-    fig.write_html(image_filename)
-    return image_filename, fig
-
-def main():
-    """entrypoint function"""
-    conn = database_connector()[0]
-    threshold = 0
-    traits = [
-        retrieve_trait_info(threshold, fullname, conn)
-        for fullname in trait_fullnames()]
-    traits_data_list = [retrieve_trait_data(t, conn) for t in traits]
-    genotype_filename = build_genotype_file(traits[0]["riset"])
-    genotype = parse_genotype_file(genotype_filename)
-    strains = load_genotype_samples(genotype_filename)
-    exported_traits_data_list = [
-        export_trait_data(td, strains) for td in traits_data_list]
-    slinked = slink(cluster_traits(exported_traits_data_list))
-    print("SLINKED: {}".format(slinked))
-    traits_order = compute_traits_order(slinked)
-    print("KEYS: {}".format(traits[0].keys()))
-    ordered_traits_names = [
-        traits[idx]["trait_fullname"] for idx in traits_order]
-    print("ORDERS: {}".format(traits_order))
-    strains_and_values = retrieve_strains_and_values(
-        traits_order, strains, exported_traits_data_list)
-    strains_values = strains_and_values[0][1]
-    trait_values = [t[2] for t in strains_and_values]
-    traits_filename = "{}/traits_test_file_{}.txt".format(
-        TMPDIR, random_string(10))
-    generate_traits_file(strains_values, trait_values, traits_filename)
-    print("Generated file: {}".format(traits_filename))
-
-    main_output, permutations_output = run_reaper(
-        genotype_filename, traits_filename, separate_nperm_output=True)
-
-    print("Main output: {}, Permutation output: {}".format(
-        main_output, permutations_output))
-
-    qtlresults = parse_reaper_main_results(main_output)
-    permudata = parse_reaper_permutation_results(permutations_output)
-    # print("QTLRESULTS: {}".format(qtlresults))
-    # print("PERMUDATA: {}".format(permudata))
-
-    nearest = get_nearest_marker(traits, genotype)
-    print("NEAREST: {}".format(nearest))
-
-    organised = organise_reaper_main_results(qtlresults)
-
-    traits_ids = [# sort numerically, but retain the ids as strings
-        str(i) for i in sorted({int(row["ID"]) for row in qtlresults})]
-    chromosome_names = sorted(
-        {row["Chr"] for row in qtlresults}, key = chromosome_sorter_key_fn)
-    loci_names = sorted({row["Locus"] for row in qtlresults})
-    ordered_traits_names = {
-        res_id: trait for res_id, trait in
-        zip(traits_ids,
-            [traits[idx]["trait_fullname"] for idx in traits_order])}
-    # print("ordered:{}, original: {}".format(
-    #     ordered_traits_names, [t["trait_fullname"] for t in traits]))
-    # print("chromosome_names:{}".format(chromosome_names))
-    # print("trait_ids:{}".format(traits_ids))
-    # print("loci names:{}".format(loci_names))
-    hdata = process_traits_data_for_heatmap(organised, traits_ids, chromosome_names)
-
-    # print("ZIPPED: {}".format(zip(tuple(ordered_traits_names.keys()), hdata)))
-    # print("HDATA LENGTH:{}, ORDERED TRAITS LENGTH:{}".format(len(hdata), len(ordered_traits_names.keys())))
-    heatmaps_data = [
-        generate_heatmap(
-            data,
-            "heatmap_chr{}_{}".format(chromo, random_string(10)),
-            y_axis=tuple(
-                ordered_traits_names[traits_ids[order]]
-                for order in traits_order),
-            x_label=chromo,
-            output_dir=TMPDIR)
-        for chromo, data in zip(chromosome_names, hdata)]
-    print("IMAGES FILENAMES: {}".format([img[0] for img in heatmaps_data]))
-
-    dendograms_data = [
-        generate_dendrogram(
-            data,
-            "dendo_chr{}_{}".format(chromo, random_string(10)),
-            y_axis=tuple(
-                ordered_traits_names[traits_ids[order]]
-                for order in traits_order),
-            x_label=chromo,
-            output_dir=TMPDIR)
-        for chromo, data in zip(chromosome_names, hdata)]
-
-    res = generate_single_heatmap(
-        hdata,
-        "single_heatmap_{}".format(random_string(10)),
-        y_axis=tuple(
-            ordered_traits_names[traits_ids[order]]
-                for order in traits_order),
-        y_label="Traits",
-        x_axis=[chromo for chromo in chromosome_names],
-        x_label="Chromosomes",
-        output_dir=TMPDIR)
-
-if __name__ == "__main__":
-    main()