about summary refs log tree commit diff
diff options
context:
space:
mode:
-rw-r--r--gn3/computations/partial_correlations.py (renamed from gn3/partial_correlations.py)35
-rw-r--r--gn3/db/correlations.py37
-rw-r--r--gn3/db/species.py20
-rw-r--r--tests/unit/computations/test_partial_correlations.py (renamed from tests/unit/test_partial_correlations.py)57
4 files changed, 128 insertions, 21 deletions
diff --git a/gn3/partial_correlations.py b/gn3/computations/partial_correlations.py
index 1fb0ccc..e73edfd 100644
--- a/gn3/partial_correlations.py
+++ b/gn3/computations/partial_correlations.py
@@ -7,6 +7,7 @@ GeneNetwork1.
 
 from functools import reduce
 from typing import Any, Tuple, Sequence
+from scipy.stats import pearsonr, spearmanr
 
 def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
     """
@@ -122,3 +123,37 @@ def find_identical_traits(
                         (primary_name,) + control_names), {}).items()
                  if len(item[1]) > 1),
                 tuple()))
+
+def tissue_correlation(
+        primary_trait_values: Tuple[float, ...],
+        target_trait_values: Tuple[float, ...],
+        method: str) -> Tuple[float, float]:
+    """
+    Compute the correlation between the primary trait values, and the values of
+    a single target value.
+
+    This migrates the `cal_tissue_corr` function embedded in the larger
+    `web.webqtl.correlation.correlationFunction.batchCalTissueCorr` function in
+    GeneNetwork1.
+    """
+    def spearman_corr(*args):
+        result = spearmanr(*args)
+        return (result.correlation, result.pvalue)
+
+    method_fns = {"pearson": pearsonr, "spearman": spearman_corr}
+
+    assert len(primary_trait_values) == len(target_trait_values), (
+        "The lengths of the `primary_trait_values` and `target_trait_values` "
+        "must be equal")
+    assert method in method_fns.keys(), (
+        "Method must be one of: {}".format(",".join(method_fns.keys())))
+
+    return method_fns[method](primary_trait_values, target_trait_values)
+
+def batch_computed_tissue_correlation(
+        trait_value: str, symbol_value_dict: dict,
+        method: str = "pearson") -> Tuple[dict, dict]:
+    """
+    `web.webqtl.correlation.correlationFunction.batchCalTissueCorr`"""
+    raise Exception("Not implemented!")
+    return ({}, {})
diff --git a/gn3/db/correlations.py b/gn3/db/correlations.py
index 87ab082..f43b8a5 100644
--- a/gn3/db/correlations.py
+++ b/gn3/db/correlations.py
@@ -265,14 +265,41 @@ def fetch_tissue_probeset_xref_info(
         results or tuple(),
         (tuple(), {}, {}, {}, {}, {}, {}))
 
-def correlations_of_all_tissue_traits() -> Tuple[dict, dict]:
+def fetch_gene_symbol_tissue_value_dict_for_trait(
+        gene_name_list: Tuple[str, ...], probeset_freeze_id: int,
+        conn: Any) -> dict:
     """
+    Fetches a map of the gene symbols to the tissue values.
+
     This is a migration of the
-    `web.webqtl.correlation.CorrelationPage.calculateCorrOfAllTissueTrait`
+    `web.webqtl.correlation.correlationFunction.getGeneSymbolTissueValueDictForTrait`
     function in GeneNetwork1.
     """
-    raise Exception("Unimplemented!!!")
-    return ({}, {})
+    xref_info = fetch_tissue_probeset_xref_info(
+        gene_name_list, probeset_freeze_id, conn)
+    if xref_info[0]:
+        return fetch_gene_symbol_tissue_value_dict(xref_info[0], xref_info[2], conn)
+    return {}
+
+def correlations_of_all_tissue_traits(
+        trait_symbol: str, probeset_freeze_id: int,
+        method: str, conn: Any) -> Tuple[dict, dict]:
+    """
+    Computes and returns the correlation of all tissue traits.
+
+    This is a migration of the
+    `web.webqtl.correlation.correlationFunction.calculateCorrOfAllTissueTrait`
+    function in GeneNetwork1.
+    """
+    primary_trait_symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
+        (trait_symbol,), probeset_freeze_id, conn)
+    primary_trait_value = primary_trait_symbol_value_dict.vlaues()[0]
+    symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
+        tuple(), probeset_freeze_id, conn)
+    if method == "1":
+        return batch_computed_tissue_correlation(
+            primaryTraitValue,SymbolValueDict,method='spearman')
+    return batch_computed_tissue_correlation(primaryTraitValue,SymbolValueDict)
 
 def build_temporary_tissue_correlations_table(
         trait_symbol: str, probeset_freeze_id: int, method: str,
@@ -283,6 +310,8 @@ def build_temporary_tissue_correlations_table(
     This is a migration of the
     `web.webqtl.correlation.CorrelationPage.getTempTissueCorrTable` function in
     GeneNetwork1."""
+    symbol_corr_dict, symbol_p_value_dict = correlations_of_all_tissue_traits(
+        trait_symbol, probeset_freeze_id, method, conn)
     raise Exception("Unimplemented!!!")
     return ""
 
diff --git a/gn3/db/species.py b/gn3/db/species.py
index 1e5015f..702a9a8 100644
--- a/gn3/db/species.py
+++ b/gn3/db/species.py
@@ -47,17 +47,13 @@ def translate_to_mouse_gene_id(species: str, geneid: int, conn: Any) -> int:
         return geneid
 
     with conn.cursor as cursor:
-        if species == "rat":
-            cursor.execute(
-                "SELECT mouse FROM GeneIDXRef WHERE rat = %s", geneid)
-            rat_geneid = cursor.fetchone()
-            if rat_geneid:
-                return rat_geneid[0]
-
-        cursor.execute(
-            "SELECT mouse FROM GeneIDXRef WHERE human = %s", geneid)
-        human_geneid = cursor.fetchone()
-        if human_geneid:
-            return human_geneid[0]
+        query = {
+            "rat": "SELECT mouse FROM GeneIDXRef WHERE rat = %s",
+            "human": "SELECT mouse FROM GeneIDXRef WHERE human = %s"
+        }
+        cursor.execute(query[species], geneid)
+        translated_gene_id = cursor.fetchone()
+        if translated_gene_id:
+            return translated_gene_id[0]
 
     return 0 # default if all else fails
diff --git a/tests/unit/test_partial_correlations.py b/tests/unit/computations/test_partial_correlations.py
index 60e54c1..7ff8b80 100644
--- a/tests/unit/test_partial_correlations.py
+++ b/tests/unit/computations/test_partial_correlations.py
@@ -1,11 +1,7 @@
 """Module contains tests for gn3.partial_correlations"""
 
 from unittest import TestCase
-from gn3.partial_correlations import (
-    fix_samples,
-    control_samples,
-    dictify_by_samples,
-    find_identical_traits)
+from gn3.computations.partial_correlations import *
 
 sampleslist = ["B6cC3-1", "BXD1", "BXD12", "BXD16", "BXD19", "BXD2"]
 control_traits = (
@@ -209,3 +205,54 @@ class TestPartialCorrelations(TestCase):
                     control_names=contn, control_values=contv):
                 self.assertEqual(
                     find_identical_traits(primn, primv, contn, contv), expected)
+
+    def test_tissue_correlation_error(self):
+        """
+        Test that `tissue_correlation` raises specific exceptions for particular
+        error conditions.
+        """
+        for primary, target, method, error, error_msg in (
+                ((1,2,3), (4,5,6,7), "pearson",
+                 AssertionError,
+                 (
+                     "The lengths of the `primary_trait_values` and "
+                     "`target_trait_values` must be equal")),
+                ((1,2,3), (4,5,6,7), "spearman",
+                 AssertionError,
+                 (
+                     "The lengths of the `primary_trait_values` and "
+                     "`target_trait_values` must be equal")),
+                ((1,2,3,4), (5,6,7), "pearson",
+                 AssertionError,
+                 (
+                     "The lengths of the `primary_trait_values` and "
+                     "`target_trait_values` must be equal")),
+                ((1,2,3,4), (5,6,7), "spearman",
+                 AssertionError,
+                 (
+                     "The lengths of the `primary_trait_values` and "
+                     "`target_trait_values` must be equal")),
+                ((1,2,3), (4,5,6), "nonexistentmethod",
+                 AssertionError,
+                 (
+                     "Method must be one of: pearson, spearman"))):
+            with self.subTest(primary=primary, target=target, method=method):
+                with self.assertRaises(error, msg=error_msg):
+                    tissue_correlation(primary, target, method)
+
+    def test_tissue_correlation(self):
+        """
+        Test that the correct correlation values are computed for the given:
+        - primary trait
+        - target trait
+        - method
+        """
+        for primary, target, method, expected in (
+                ((12.34, 18.36, 42.51), (37.25, 46.25, 46.56), "pearson",
+                 (0.6761779252651052, 0.5272701133657985)),
+                ((1, 2, 3, 4, 5), (5, 6, 7, 8, 7), "spearman",
+                 (0.8207826816681233, 0.08858700531354381))
+        ):
+            with self.subTest(primary=primary, target=target, method=method):
+                self.assertEqual(
+                    tissue_correlation(primary, target, method), expected)