about summary refs log tree commit diff
diff options
context:
space:
mode:
-rw-r--r--gn3/computations/partial_correlations.py16
-rw-r--r--tests/unit/computations/test_partial_correlations.py22
2 files changed, 38 insertions, 0 deletions
diff --git a/gn3/computations/partial_correlations.py b/gn3/computations/partial_correlations.py
index 07dc16d..ffdf0c5 100644
--- a/gn3/computations/partial_correlations.py
+++ b/gn3/computations/partial_correlations.py
@@ -10,6 +10,8 @@ from typing import Any, Tuple, Sequence
 from scipy.stats import pearsonr, spearmanr
 
 from gn3.settings import TEXTDIR
+import pandas
+
 from gn3.data_helpers import parse_csv_line
 
 def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
@@ -258,6 +260,20 @@ def compute_partial_correlations_fast(# pylint: disable=[R0913, R0914]
             else fetched_correlations[corr[0]][0:2])
         for idx, corr in enumerate(all_correlations))
 
+def build_data_frame(
+        xdata: Tuple[float, ...], ydata: Tuple[float, ...],
+        zdata: Union[
+            Tuple[float, ...],
+            Tuple[Tuple[float, ...], ...]]) -> pandas.DataFrame:
+    """
+    Build a pandas DataFrame object from xdata, ydata and zdata
+    """
+    x_y_df = pandas.DataFrame({"x": xdata, "y": ydata})
+    if isinstance(zdata[0], float):
+        return x_y_df.join(pandas.DataFrame({"z": zdata}))
+    return x_y_df.join(pandas.DataFrame(
+        {"z{}".format(i): val for i, val in enumerate(row)} for row in zdata))
+
 def partial_correlation_matrix(
         xdata: Tuple[float, ...], ydata: Tuple[float, ...],
         zdata: Tuple[float, ...], method: str = "pearsons",
diff --git a/tests/unit/computations/test_partial_correlations.py b/tests/unit/computations/test_partial_correlations.py
index c5c35d1..b22bc62 100644
--- a/tests/unit/computations/test_partial_correlations.py
+++ b/tests/unit/computations/test_partial_correlations.py
@@ -2,9 +2,12 @@
 
 import csv
 from unittest import TestCase
+
+import pandas
 from gn3.computations.partial_correlations import (
     fix_samples,
     control_samples,
+    build_data_frame,
     dictify_by_samples,
     tissue_correlation,
     find_identical_traits,
@@ -297,6 +300,25 @@ class TestPartialCorrelations(TestCase):
                 ("a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l")),
             (0, 4, 8, 10))
 
+    def test_build_data_frame(self):
+        """
+        Check that the function builds the correct data frame.
+        """
+        for xdata, ydata, zdata, expected in (
+                ((0.1, 1.1, 2.1), (2.1, 3.1, 4.1), (5.1, 6.1 ,7.1),
+                 pandas.DataFrame({
+                     "x": (0.1, 1.1, 2.1), "y": (2.1, 3.1, 4.1),
+                     "z": (5.1, 6.1 ,7.1)})),
+                ((0.1, 1.1, 2.1), (2.1, 3.1, 4.1),
+                 ((5.1, 6.1 ,7.1), (5.2, 6.2, 7.2), (5.3, 6.3, 7.3)),
+                 pandas.DataFrame({
+                     "x": (0.1, 1.1, 2.1), "y": (2.1, 3.1, 4.1),
+                     "z0": (5.1, 5.2 ,5.3), "z1": (6.1, 6.2 ,6.3),
+                     "z2": (7.1, 7.2 ,7.3)}))):
+            with self.subTest(xdata=xdata, ydata=ydata, zdata=zdata):
+                self.assertTrue(
+                    build_data_frame(xdata, ydata, zdata).equals(expected))
+
     def test_partial_correlation_matrix(self):
         """
         Test that `partial_correlation_matrix` computes the appropriate