diff options
author | Frederick Muriuki Muriithi | 2021-10-29 06:34:19 +0300 |
---|---|---|
committer | BonfaceKilz | 2021-11-04 12:45:57 +0300 |
commit | 847a5e0656ed686a0541e47958a845a0d3725daf (patch) | |
tree | f2ec4c5a1907f8a190be40d08976effe54ef5b80 /tests/unit/computations | |
parent | 28b0ced4ec13451c5c7323ed5135d126f296836a (diff) | |
download | genenetwork3-847a5e0656ed686a0541e47958a845a0d3725daf.tar.gz |
Implement `tissue_correlation` function
Issue:
https://github.com/genenetwork/gn-gemtext-threads/blob/main/topics/gn1-migration-to-gn2/partial-correlations.gmi
* gn3/computations/partial_correlations.py: New function (tissue_correlation)
* tests/unit/test_partial_correlations.py ->
tests/unit/computations/test_partial_correlations.py: Move module. Implement
tests for new function
Migrate the `cal_tissue_corr` function embedded in the
`web.webqtl.correlation.correlationFunction.batchCalTissueCorr` function in
GN1 and implement tests to ensure it works correctly.
Diffstat (limited to 'tests/unit/computations')
-rw-r--r-- | tests/unit/computations/test_partial_correlations.py | 258 |
1 files changed, 258 insertions, 0 deletions
diff --git a/tests/unit/computations/test_partial_correlations.py b/tests/unit/computations/test_partial_correlations.py new file mode 100644 index 0000000..7ff8b80 --- /dev/null +++ b/tests/unit/computations/test_partial_correlations.py @@ -0,0 +1,258 @@ +"""Module contains tests for gn3.partial_correlations""" + +from unittest import TestCase +from gn3.computations.partial_correlations import * + +sampleslist = ["B6cC3-1", "BXD1", "BXD12", "BXD16", "BXD19", "BXD2"] +control_traits = ( + { + "mysqlid": 36688172, + "data": { + "B6cC3-1": { + "sample_name": "B6cC3-1", "value": 7.51879, "variance": None, + "ndata": None}, + "BXD1": { + "sample_name": "BXD1", "value": 7.77141, "variance": None, + "ndata": None}, + "BXD12": { + "sample_name": "BXD12", "value": 8.39265, "variance": None, + "ndata": None}, + "BXD16": { + "sample_name": "BXD16", "value": 8.17443, "variance": None, + "ndata": None}, + "BXD19": { + "sample_name": "BXD19", "value": 8.30401, "variance": None, + "ndata": None}, + "BXD2": { + "sample_name": "BXD2", "value": 7.80944, "variance": None, + "ndata": None}}}, + { + "mysqlid": 36688172, + "data": { + "B6cC3-21": { + "sample_name": "B6cC3-1", "value": 7.51879, "variance": None, + "ndata": None}, + "BXD21": { + "sample_name": "BXD1", "value": 7.77141, "variance": None, + "ndata": None}, + "BXD12": { + "sample_name": "BXD12", "value": 8.39265, "variance": None, + "ndata": None}, + "BXD16": { + "sample_name": "BXD16", "value": 8.17443, "variance": None, + "ndata": None}, + "BXD19": { + "sample_name": "BXD19", "value": 8.30401, "variance": None, + "ndata": None}, + "BXD2": { + "sample_name": "BXD2", "value": 7.80944, "variance": None, + "ndata": None}}}, + { + "mysqlid": 36688172, + "data": { + "B6cC3-1": { + "sample_name": "B6cC3-1", "value": 7.51879, "variance": None, + "ndata": None}, + "BXD1": { + "sample_name": "BXD1", "value": 7.77141, "variance": None, + "ndata": None}, + "BXD12": { + "sample_name": "BXD12", "value": None, "variance": None, + "ndata": None}, + "BXD16": { + "sample_name": "BXD16", "value": None, "variance": None, + "ndata": None}, + "BXD19": { + "sample_name": "BXD19", "value": None, "variance": None, + "ndata": None}, + "BXD2": { + "sample_name": "BXD2", "value": 7.80944, "variance": None, + "ndata": None}}}) + +dictified_control_samples = ( + {"B6cC3-1": {"sample_name": "B6cC3-1", "value": 7.51879, "variance": None}, + "BXD1": {"sample_name": "BXD1", "value": 7.77141, "variance": None}, + "BXD12": {"sample_name": "BXD12", "value": 8.39265, "variance": None}, + "BXD16": {"sample_name": "BXD16", "value": 8.17443, "variance": None}, + "BXD19": {"sample_name": "BXD19", "value": 8.30401, "variance": None}, + "BXD2": {"sample_name": "BXD2", "value": 7.80944, "variance": None}}, + {"BXD12": {"sample_name": "BXD12", "value": 8.39265, "variance": None}, + "BXD16": {"sample_name": "BXD16", "value": 8.17443, "variance": None}, + "BXD19": {"sample_name": "BXD19", "value": 8.30401, "variance": None}, + "BXD2": {"sample_name": "BXD2", "value": 7.80944, "variance": None}}, + {"B6cC3-1": {"sample_name": "B6cC3-1", "value": 7.51879, "variance": None}, + "BXD1": {"sample_name": "BXD1", "value": 7.77141, "variance": None}, + "BXD2": {"sample_name": "BXD2", "value": 7.80944, "variance": None}}) + +class TestPartialCorrelations(TestCase): + """Class for testing partial correlations computation functions""" + + def test_control_samples(self): + """Test that the control_samples works as expected.""" + self.assertEqual( + control_samples(control_traits, sampleslist), + ((("B6cC3-1", "BXD1", "BXD12", "BXD16", "BXD19", "BXD2"), + ("BXD12", "BXD16", "BXD19", "BXD2"), + ("B6cC3-1", "BXD1", "BXD2")), + ((7.51879, 7.77141, 8.39265, 8.17443, 8.30401, 7.80944), + (8.39265, 8.17443, 8.30401, 7.80944), + (7.51879, 7.77141, 7.80944)), + ((None, None, None, None, None, None), (None, None, None, None), + (None, None, None)), + (6, 4, 3))) + + def test_dictify_by_samples(self): + """ + Test that `dictify_by_samples` generates the appropriate dict + + Given: + a sequence of sequences with sample names, values and variances, as + in the output of `gn3.partial_correlations.control_samples` or + the output of `gn3.db.traits.export_informative` + When: + the sequence is passed as an argument into the + `gn3.partial_correlations.dictify_by_sample` + Then: + return a sequence of dicts with keys being the values of the sample + names, and each of who's values being sub-dicts with the keys + 'sample_name', 'value' and 'variance' whose values correspond to the + values passed in. + """ + self.assertEqual( + dictify_by_samples( + ((("B6cC3-1", "BXD1", "BXD12", "BXD16", "BXD19", "BXD2"), + ("BXD12", "BXD16", "BXD19", "BXD2"), + ("B6cC3-1", "BXD1", "BXD2")), + ((7.51879, 7.77141, 8.39265, 8.17443, 8.30401, 7.80944), + (8.39265, 8.17443, 8.30401, 7.80944), + (7.51879, 7.77141, 7.80944)), + ((None, None, None, None, None, None), (None, None, None, None), + (None, None, None)), + (6, 4, 3))), + dictified_control_samples) + + def test_fix_samples(self): + """ + Test that `fix_samples` returns only the common samples + + Given: + - A primary trait + - A sequence of control samples + When: + - The two arguments are passed to `fix_samples` + Then: + - Only the names of the samples present in the primary trait that + are also present in ALL the control traits are present in the + return value + - Only the values of the samples present in the primary trait that + are also present in ALL the control traits are present in the + return value + - ALL the values for ALL the control traits are present in the + return value + - Only the variances of the samples present in the primary trait + that are also present in ALL the control traits are present in the + return value + - ALL the variances for ALL the control traits are present in the + return value + - The return value is a tuple of the above items, in the following + order: + ((sample_names, ...), (primary_trait_values, ...), + (control_traits_values, ...), (primary_trait_variances, ...) + (control_traits_variances, ...)) + """ + self.assertEqual( + fix_samples( + {"B6cC3-1": {"sample_name": "B6cC3-1", "value": 7.51879, + "variance": None}, + "BXD1": {"sample_name": "BXD1", "value": 7.77141, + "variance": None}, + "BXD2": {"sample_name": "BXD2", "value": 7.80944, + "variance": None}}, + dictified_control_samples), + (("BXD2",), (7.80944,), + (7.51879, 7.77141, 8.39265, 8.17443, 8.30401, 7.80944, 8.39265, + 8.17443, 8.30401, 7.80944, 7.51879, 7.77141, 7.80944), + (None,), + (None, None, None, None, None, None, None, None, None, None, None, + None, None))) + + def test_find_identical_traits(self): + """ + Test `gn3.partial_correlations.find_identical_traits`. + + Given: + - the name of a primary trait + - the value of a primary trait + - a sequence of names of control traits + - a sequence of values of control traits + When: + - the arguments above are passed to the `find_identical_traits` + function + Then: + - Return ALL trait names that have the same value when up to three + decimal places are considered + """ + for primn, primv, contn, contv, expected in ( + ("pt", 12.98395, ("ct0", "ct1", "ct2"), + (0.1234, 2.3456, 3.4567), tuple()), + ("pt", 12.98395, ("ct0", "ct1", "ct2"), + (12.98354, 2.3456, 3.4567), ("pt", "ct0")), + ("pt", 12.98395, ("ct0", "ct1", "ct2", "ct3"), + (0.1234, 2.3456, 0.1233, 4.5678), ("ct0", "ct2")) + ): + with self.subTest( + primary_name=primn, primary_value=primv, + control_names=contn, control_values=contv): + self.assertEqual( + find_identical_traits(primn, primv, contn, contv), expected) + + def test_tissue_correlation_error(self): + """ + Test that `tissue_correlation` raises specific exceptions for particular + error conditions. + """ + for primary, target, method, error, error_msg in ( + ((1,2,3), (4,5,6,7), "pearson", + AssertionError, + ( + "The lengths of the `primary_trait_values` and " + "`target_trait_values` must be equal")), + ((1,2,3), (4,5,6,7), "spearman", + AssertionError, + ( + "The lengths of the `primary_trait_values` and " + "`target_trait_values` must be equal")), + ((1,2,3,4), (5,6,7), "pearson", + AssertionError, + ( + "The lengths of the `primary_trait_values` and " + "`target_trait_values` must be equal")), + ((1,2,3,4), (5,6,7), "spearman", + AssertionError, + ( + "The lengths of the `primary_trait_values` and " + "`target_trait_values` must be equal")), + ((1,2,3), (4,5,6), "nonexistentmethod", + AssertionError, + ( + "Method must be one of: pearson, spearman"))): + with self.subTest(primary=primary, target=target, method=method): + with self.assertRaises(error, msg=error_msg): + tissue_correlation(primary, target, method) + + def test_tissue_correlation(self): + """ + Test that the correct correlation values are computed for the given: + - primary trait + - target trait + - method + """ + for primary, target, method, expected in ( + ((12.34, 18.36, 42.51), (37.25, 46.25, 46.56), "pearson", + (0.6761779252651052, 0.5272701133657985)), + ((1, 2, 3, 4, 5), (5, 6, 7, 8, 7), "spearman", + (0.8207826816681233, 0.08858700531354381)) + ): + with self.subTest(primary=primary, target=target, method=method): + self.assertEqual( + tissue_correlation(primary, target, method), expected) |