aboutsummaryrefslogtreecommitdiff
path: root/tests/unit/computations
diff options
context:
space:
mode:
authorAlexander Kabui2021-05-12 19:40:27 +0300
committerAlexander Kabui2021-05-12 19:40:27 +0300
commitbeccacde5c9c7317bfe795e5c8c4ebe033f39f89 (patch)
tree4255ae2277e31f2a8e7e51a4e40deb764aa2e7dc /tests/unit/computations
parent3728b26ed5bd3cbd384dab6907e2518c6c7cf30b (diff)
downloadgenenetwork3-beccacde5c9c7317bfe795e5c8c4ebe033f39f89.tar.gz
rename p_val ro tissue_p_value for tissue_results
Diffstat (limited to 'tests/unit/computations')
-rw-r--r--tests/unit/computations/test_correlation.py12
1 files changed, 7 insertions, 5 deletions
diff --git a/tests/unit/computations/test_correlation.py b/tests/unit/computations/test_correlation.py
index 6414c3b..42ab796 100644
--- a/tests/unit/computations/test_correlation.py
+++ b/tests/unit/computations/test_correlation.py
@@ -236,7 +236,7 @@ class TestCorrelation(TestCase):
target_tissues_values = [1, 2, 3]
mock_compute_corr_coeff.side_effect = [(0.4, 0.9), (-0.2, 0.91)]
expected_tissue_results = {"1456_at": {"tissue_corr": 0.4,
- "p_value": 0.9, "tissue_number": 3}}
+ "tissue_p_val": 0.9, "tissue_number": 3}}
tissue_results = tissue_correlation_for_trait_list(
primary_tissue_values, target_tissues_values,
corr_method="pearson", trait_id="1456_at",
@@ -417,13 +417,15 @@ class TestCorrelation(TestCase):
target_tissue_data = {"trait_symbol_dict": target_trait_symbol,
"symbol_tissue_vals_dict": target_symbol_tissue_vals}
- mock_tissue_corr.side_effect = [{"tissue_corr": -0.5, "p_value": 0.9, "tissue_number": 3},
- {"tissue_corr": 1.11, "p_value": 0.2, "tissue_number": 3}]
+ mock_tissue_corr.side_effect = [{"tissue_corr": -0.5, "tissue_p_val": 0.9,
+ "tissue_number": 3},
+ {"tissue_corr": 1.11, "tissue_p_val": 0.2,
+ "tissue_number": 3}]
expected_results = [{"1412_at":
- {"tissue_corr": 1.11, "p_value": 0.2, "tissue_number": 3}},
+ {"tissue_corr": 1.11, "tissue_p_val": 0.2, "tissue_number": 3}},
{"1418702_a_at":
- {"tissue_corr": -0.5, "p_value": 0.9, "tissue_number": 3}}]
+ {"tissue_corr": -0.5, "tissue_p_val": 0.9, "tissue_number": 3}}]
results = compute_all_tissue_correlation(
primary_tissue_dict=primary_tissue_dict,