about summary refs log tree commit diff
path: root/tests/unit/computations
diff options
context:
space:
mode:
authorFrederick Muriuki Muriithi2021-10-29 06:34:19 +0300
committerBonfaceKilz2021-11-04 12:45:57 +0300
commit847a5e0656ed686a0541e47958a845a0d3725daf (patch)
treef2ec4c5a1907f8a190be40d08976effe54ef5b80 /tests/unit/computations
parent28b0ced4ec13451c5c7323ed5135d126f296836a (diff)
downloadgenenetwork3-847a5e0656ed686a0541e47958a845a0d3725daf.tar.gz
Implement `tissue_correlation` function
Issue:
https://github.com/genenetwork/gn-gemtext-threads/blob/main/topics/gn1-migration-to-gn2/partial-correlations.gmi

* gn3/computations/partial_correlations.py: New function (tissue_correlation)
* tests/unit/test_partial_correlations.py ->
  tests/unit/computations/test_partial_correlations.py: Move module. Implement
  tests for new function

  Migrate the `cal_tissue_corr` function embedded in the
  `web.webqtl.correlation.correlationFunction.batchCalTissueCorr` function in
  GN1 and implement tests to ensure it works correctly.
Diffstat (limited to 'tests/unit/computations')
-rw-r--r--tests/unit/computations/test_partial_correlations.py258
1 files changed, 258 insertions, 0 deletions
diff --git a/tests/unit/computations/test_partial_correlations.py b/tests/unit/computations/test_partial_correlations.py
new file mode 100644
index 0000000..7ff8b80
--- /dev/null
+++ b/tests/unit/computations/test_partial_correlations.py
@@ -0,0 +1,258 @@
+"""Module contains tests for gn3.partial_correlations"""
+
+from unittest import TestCase
+from gn3.computations.partial_correlations import *
+
+sampleslist = ["B6cC3-1", "BXD1", "BXD12", "BXD16", "BXD19", "BXD2"]
+control_traits = (
+    {
+        "mysqlid": 36688172,
+        "data": {
+            "B6cC3-1": {
+                "sample_name": "B6cC3-1", "value": 7.51879, "variance": None,
+                "ndata": None},
+            "BXD1": {
+                "sample_name": "BXD1", "value": 7.77141, "variance": None,
+                "ndata": None},
+            "BXD12": {
+                "sample_name": "BXD12", "value": 8.39265, "variance": None,
+                "ndata": None},
+            "BXD16": {
+                "sample_name": "BXD16", "value": 8.17443, "variance": None,
+                "ndata": None},
+            "BXD19": {
+                "sample_name": "BXD19", "value": 8.30401, "variance": None,
+                "ndata": None},
+            "BXD2": {
+                "sample_name": "BXD2", "value": 7.80944, "variance": None,
+                "ndata": None}}},
+    {
+        "mysqlid": 36688172,
+        "data": {
+            "B6cC3-21": {
+                "sample_name": "B6cC3-1", "value": 7.51879, "variance": None,
+                "ndata": None},
+            "BXD21": {
+                "sample_name": "BXD1", "value": 7.77141, "variance": None,
+                "ndata": None},
+            "BXD12": {
+                "sample_name": "BXD12", "value": 8.39265, "variance": None,
+                "ndata": None},
+            "BXD16": {
+                "sample_name": "BXD16", "value": 8.17443, "variance": None,
+                "ndata": None},
+            "BXD19": {
+                "sample_name": "BXD19", "value": 8.30401, "variance": None,
+                "ndata": None},
+            "BXD2": {
+                "sample_name": "BXD2", "value": 7.80944, "variance": None,
+                "ndata": None}}},
+    {
+        "mysqlid": 36688172,
+        "data": {
+            "B6cC3-1": {
+                "sample_name": "B6cC3-1", "value": 7.51879, "variance": None,
+                "ndata": None},
+            "BXD1": {
+                "sample_name": "BXD1", "value": 7.77141, "variance": None,
+                "ndata": None},
+            "BXD12": {
+                "sample_name": "BXD12", "value": None, "variance": None,
+                "ndata": None},
+            "BXD16": {
+                "sample_name": "BXD16", "value": None, "variance": None,
+                "ndata": None},
+            "BXD19": {
+                "sample_name": "BXD19", "value": None, "variance": None,
+                "ndata": None},
+            "BXD2": {
+                "sample_name": "BXD2", "value": 7.80944, "variance": None,
+                "ndata": None}}})
+
+dictified_control_samples = (
+    {"B6cC3-1": {"sample_name": "B6cC3-1", "value": 7.51879, "variance": None},
+     "BXD1": {"sample_name": "BXD1", "value": 7.77141, "variance": None},
+     "BXD12": {"sample_name": "BXD12", "value": 8.39265, "variance": None},
+     "BXD16": {"sample_name": "BXD16", "value": 8.17443, "variance": None},
+     "BXD19": {"sample_name": "BXD19", "value": 8.30401, "variance": None},
+     "BXD2": {"sample_name": "BXD2", "value": 7.80944, "variance": None}},
+    {"BXD12": {"sample_name": "BXD12", "value": 8.39265, "variance": None},
+     "BXD16": {"sample_name": "BXD16", "value": 8.17443, "variance": None},
+     "BXD19": {"sample_name": "BXD19", "value": 8.30401, "variance": None},
+     "BXD2": {"sample_name": "BXD2", "value": 7.80944, "variance": None}},
+    {"B6cC3-1": {"sample_name": "B6cC3-1", "value": 7.51879, "variance": None},
+     "BXD1": {"sample_name": "BXD1", "value": 7.77141, "variance": None},
+     "BXD2": {"sample_name": "BXD2", "value":  7.80944, "variance": None}})
+
+class TestPartialCorrelations(TestCase):
+    """Class for testing partial correlations computation functions"""
+
+    def test_control_samples(self):
+        """Test that the control_samples works as expected."""
+        self.assertEqual(
+            control_samples(control_traits, sampleslist),
+            ((("B6cC3-1", "BXD1", "BXD12", "BXD16", "BXD19", "BXD2"),
+              ("BXD12", "BXD16", "BXD19", "BXD2"),
+              ("B6cC3-1", "BXD1", "BXD2")),
+             ((7.51879, 7.77141, 8.39265, 8.17443, 8.30401, 7.80944),
+              (8.39265, 8.17443, 8.30401, 7.80944),
+              (7.51879, 7.77141, 7.80944)),
+             ((None, None, None, None, None, None), (None, None, None, None),
+              (None, None, None)),
+             (6, 4, 3)))
+
+    def test_dictify_by_samples(self):
+        """
+        Test that `dictify_by_samples` generates the appropriate dict
+
+        Given:
+            a sequence of sequences with sample names, values and variances, as
+            in the output of `gn3.partial_correlations.control_samples` or
+            the output of `gn3.db.traits.export_informative`
+        When:
+            the sequence is passed as an argument into the
+            `gn3.partial_correlations.dictify_by_sample`
+        Then:
+            return a sequence of dicts with keys being the values of the sample
+            names, and each of who's values being sub-dicts with the keys
+            'sample_name', 'value' and 'variance' whose values correspond to the
+            values passed in.
+        """
+        self.assertEqual(
+            dictify_by_samples(
+                ((("B6cC3-1", "BXD1", "BXD12", "BXD16", "BXD19", "BXD2"),
+                  ("BXD12", "BXD16", "BXD19", "BXD2"),
+                  ("B6cC3-1", "BXD1", "BXD2")),
+                 ((7.51879, 7.77141, 8.39265, 8.17443, 8.30401, 7.80944),
+                  (8.39265, 8.17443, 8.30401, 7.80944),
+                  (7.51879, 7.77141, 7.80944)),
+                 ((None, None, None, None, None, None), (None, None, None, None),
+                  (None, None, None)),
+                 (6, 4, 3))),
+            dictified_control_samples)
+
+    def test_fix_samples(self):
+        """
+        Test that `fix_samples` returns only the common samples
+
+        Given:
+            - A primary trait
+            - A sequence of control samples
+        When:
+            - The two arguments are passed to `fix_samples`
+        Then:
+            - Only the names of the samples present in the primary trait that
+              are also present in ALL the control traits are present in the
+              return value
+            - Only the values of the samples present in the primary trait that
+              are also present in ALL the control traits are present in the
+              return value
+            - ALL the values for ALL the control traits are present in the
+              return value
+            - Only the variances of the samples present in the primary trait
+              that are also present in ALL the control traits are present in the
+              return value
+            - ALL the variances for ALL the control traits are present in the
+              return value
+            - The return value is a tuple of the above items, in the following
+              order:
+                ((sample_names, ...), (primary_trait_values, ...),
+                 (control_traits_values, ...), (primary_trait_variances, ...)
+                 (control_traits_variances, ...))
+        """
+        self.assertEqual(
+            fix_samples(
+                {"B6cC3-1": {"sample_name": "B6cC3-1", "value": 7.51879,
+                             "variance": None},
+                 "BXD1": {"sample_name": "BXD1", "value": 7.77141,
+                          "variance": None},
+                 "BXD2": {"sample_name": "BXD2", "value":  7.80944,
+                          "variance": None}},
+                dictified_control_samples),
+            (("BXD2",), (7.80944,),
+             (7.51879, 7.77141, 8.39265, 8.17443, 8.30401, 7.80944, 8.39265,
+              8.17443, 8.30401, 7.80944, 7.51879, 7.77141, 7.80944),
+             (None,),
+             (None, None, None, None, None, None, None, None, None, None, None,
+              None, None)))
+
+    def test_find_identical_traits(self):
+        """
+        Test `gn3.partial_correlations.find_identical_traits`.
+
+        Given:
+            - the name of a primary trait
+            - the value of a primary trait
+            - a sequence of names of control traits
+            - a sequence of values of control traits
+        When:
+            - the arguments above are passed to the `find_identical_traits`
+              function
+        Then:
+            - Return ALL trait names that have the same value when up to three
+              decimal places are considered
+        """
+        for primn, primv, contn, contv, expected in (
+                ("pt", 12.98395, ("ct0", "ct1", "ct2"),
+                 (0.1234, 2.3456, 3.4567), tuple()),
+                ("pt", 12.98395, ("ct0", "ct1", "ct2"),
+                 (12.98354, 2.3456, 3.4567), ("pt", "ct0")),
+                ("pt", 12.98395, ("ct0", "ct1", "ct2", "ct3"),
+                 (0.1234, 2.3456, 0.1233, 4.5678), ("ct0", "ct2"))
+        ):
+            with self.subTest(
+                    primary_name=primn, primary_value=primv,
+                    control_names=contn, control_values=contv):
+                self.assertEqual(
+                    find_identical_traits(primn, primv, contn, contv), expected)
+
+    def test_tissue_correlation_error(self):
+        """
+        Test that `tissue_correlation` raises specific exceptions for particular
+        error conditions.
+        """
+        for primary, target, method, error, error_msg in (
+                ((1,2,3), (4,5,6,7), "pearson",
+                 AssertionError,
+                 (
+                     "The lengths of the `primary_trait_values` and "
+                     "`target_trait_values` must be equal")),
+                ((1,2,3), (4,5,6,7), "spearman",
+                 AssertionError,
+                 (
+                     "The lengths of the `primary_trait_values` and "
+                     "`target_trait_values` must be equal")),
+                ((1,2,3,4), (5,6,7), "pearson",
+                 AssertionError,
+                 (
+                     "The lengths of the `primary_trait_values` and "
+                     "`target_trait_values` must be equal")),
+                ((1,2,3,4), (5,6,7), "spearman",
+                 AssertionError,
+                 (
+                     "The lengths of the `primary_trait_values` and "
+                     "`target_trait_values` must be equal")),
+                ((1,2,3), (4,5,6), "nonexistentmethod",
+                 AssertionError,
+                 (
+                     "Method must be one of: pearson, spearman"))):
+            with self.subTest(primary=primary, target=target, method=method):
+                with self.assertRaises(error, msg=error_msg):
+                    tissue_correlation(primary, target, method)
+
+    def test_tissue_correlation(self):
+        """
+        Test that the correct correlation values are computed for the given:
+        - primary trait
+        - target trait
+        - method
+        """
+        for primary, target, method, expected in (
+                ((12.34, 18.36, 42.51), (37.25, 46.25, 46.56), "pearson",
+                 (0.6761779252651052, 0.5272701133657985)),
+                ((1, 2, 3, 4, 5), (5, 6, 7, 8, 7), "spearman",
+                 (0.8207826816681233, 0.08858700531354381))
+        ):
+            with self.subTest(primary=primary, target=target, method=method):
+                self.assertEqual(
+                    tissue_correlation(primary, target, method), expected)