diff options
author | zsloan | 2021-10-12 20:56:31 +0000 |
---|---|---|
committer | zsloan | 2021-10-12 20:56:31 +0000 |
commit | 6e211182354fb4d6941e3a44ec1ec9d378b0e4ef (patch) | |
tree | 60d9aaf382eefbb47cdbab9c74d98481cf0983de /scripts/wgcna_analysis.R | |
parent | b815236123ff8e144bd84f349357a1852df95651 (diff) | |
parent | 77c274b79c3ec01de60e90db3299763cb58f715b (diff) | |
download | genenetwork3-6e211182354fb4d6941e3a44ec1ec9d378b0e4ef.tar.gz |
Merge branch 'main' of https://github.com/genenetwork/genenetwork3 into bug/fix_rqtl_covariates
Diffstat (limited to 'scripts/wgcna_analysis.R')
-rw-r--r-- | scripts/wgcna_analysis.R | 115 |
1 files changed, 115 insertions, 0 deletions
diff --git a/scripts/wgcna_analysis.R b/scripts/wgcna_analysis.R new file mode 100644 index 0000000..17b3537 --- /dev/null +++ b/scripts/wgcna_analysis.R @@ -0,0 +1,115 @@ + + +library(WGCNA); +library(stringi); +library(rjson) + +options(stringsAsFactors = FALSE); + +imgDir = Sys.getenv("GENERATED_IMAGE_DIR") +# load expression data **assumes from json files row(traits)(columns info+samples) +# pass the file_path as arg +# pass the file path to read json data + +args = commandArgs(trailingOnly=TRUE) + +if (length(args)==0) { + stop("Argument for the file location is required", call.=FALSE) +} else { + # default output file + json_file_path = args[1] +} + +inputData <- fromJSON(file = json_file_path) + + +trait_sample_data <- do.call(rbind, inputData$trait_sample_data) + +dataExpr <- data.frame(apply(trait_sample_data, 2, function(x) as.numeric(as.character(x)))) +# transform expressionData + +dataExpr <- data.frame(t(dataExpr)) +gsg = goodSamplesGenes(dataExpr, verbose = 3) + +if (!gsg$allOK) +{ +if (sum(!gsg$goodGenes)>0) +printFlush(paste("Removing genes:", paste(names(dataExpr)[!gsg$goodGenes], collapse = ", "))); +if (sum(!gsg$goodSamples)>0) +printFlush(paste("Removing samples:", paste(rownames(dataExpr)[!gsg$goodSamples], collapse = ", "))); +# Remove the offending genes and samples from the data: +dataExpr <- dataExpr[gsg$goodSamples, gsg$goodGenes] +} + +## network constructions and modules + +names(dataExpr) = inputData$trait_names + +# Allow multi-threading within WGCNA +enableWGCNAThreads() + +# choose softthreshhold (Calculate soft threshold) +# xtodo allow users to pass args + +powers <- c(c(1:10), seq(from = 12, to=20, by=2)) +sft <- pickSoftThreshold(dataExpr, powerVector = powers, verbose = 5) + +# check the power estimate + +if (is.na(sft$powerEstimate)){ + powerEst = 1 +}else{ + powerEst = sft$powerEstimate +} + +# pass user options +network <- blockwiseModules(dataExpr, + #similarity matrix options + corType = inputData$corType, + #adjacency matrix options + + power = powerEst, + networkType = "unsigned", + #TOM options + TOMtype = inputData$TOMtype, + + #module indentification + verbose = 3, + + minmodulesSize = inputData$minModuleSize, + deepSplit = 3, + PamRespectsDendro = FALSE + ) + + + +genImageRandStr <- function(prefix){ + + randStr <- paste(prefix,stri_rand_strings(1, 9, pattern = "[A-Za-z0-9]"),sep="_") + + return(paste(randStr,".png",sep="")) +} + +mergedColors <- labels2colors(network$colors) + +imageLoc <- file.path(imgDir,genImageRandStr("WGCNAoutput")) +png(imageLoc,width=1000,height=600,type='cairo-png') + +plotDendroAndColors(network$dendrograms[[1]],mergedColors[network$blockGenes[[1]]], +"Module colors", +dendroLabels = FALSE, hang = 0.03, +addGuide = TRUE, guideHang = 0.05) + + +json_data <- list(input = inputData, + output = list(ModEigens=network$MEs, + soft_threshold=sft$fitIndices, + blockGenes =network$blockGenes[[1]], + net_colors =network$colors, + power_used_for_analy=powerEst, + net_unmerged=network$unmergedColors, + imageLoc=imageLoc)) + +json_data <- toJSON(json_data) + +write(json_data,file= json_file_path)
\ No newline at end of file |