diff options
author | zsloan | 2021-09-23 19:17:34 +0000 |
---|---|---|
committer | zsloan | 2021-09-23 19:17:34 +0000 |
commit | b815236123ff8e144bd84f349357a1852df95651 (patch) | |
tree | dc0a8e44cec018af680919eb744d6eeb1007ca57 /scripts/rqtl_wrapper.R | |
parent | 00be7692a53f0199247a994a6494481f57142a9a (diff) | |
download | genenetwork3-b815236123ff8e144bd84f349357a1852df95651.tar.gz |
Fix covariates as described by Danny
Diffstat (limited to 'scripts/rqtl_wrapper.R')
-rw-r--r-- | scripts/rqtl_wrapper.R | 53 |
1 files changed, 48 insertions, 5 deletions
diff --git a/scripts/rqtl_wrapper.R b/scripts/rqtl_wrapper.R index 7518175..20c0e06 100644 --- a/scripts/rqtl_wrapper.R +++ b/scripts/rqtl_wrapper.R @@ -9,6 +9,7 @@ option_list = list( make_option(c("-g", "--geno"), type="character", help=".geno file containing a dataset's genotypes"), make_option(c("-p", "--pheno"), type="character", help="File containing two columns - sample names and values"), make_option(c("-c", "--addcovar"), action="store_true", default=NULL, help="Use covariates (included as extra columns in the phenotype input file)"), + make_option(c("--covarstruct"), type="character", help="File detailing which covariates are categorical or numerical"), make_option(c("--model"), type="character", default="normal", help="Mapping Model - Normal or Non-Parametric"), make_option(c("--method"), type="character", default="hk", help="Mapping Method - hk (Haley Knott), ehk (Extended Haley Knott), mr (Marker Regression), em (Expectation-Maximization), imp (Imputation)"), make_option(c("-i", "--interval"), action="store_true", default=NULL, help="Use interval mapping"), @@ -33,6 +34,20 @@ verbose_print <- function(...){ } } +adjustXprobs <- function(cross){ + sex <- getsex(cross)$sex + pr <- cross$geno[["X"]]$prob + stopifnot(!is.null(pr), !is.null(sex)) + + for(i in 1:ncol(pr)) { + pr[sex==0,i,3:4] <- 0 + pr[sex==1,i,1:2] <- 0 + pr[,i,] <- pr[,i,]/rowSums(pr[,i,]) + } + cross$geno[["X"]]$prob <- pr + invisible(cross) +} + if (is.null(opt$geno) || is.null(opt$pheno)){ print_help(opt_parser) stop("Both a genotype and phenotype file must be provided.", call.=FALSE) @@ -51,7 +66,7 @@ get_geno_code <- function(header, name = 'unk'){ return(trim(strsplit(header[mat],':')[[1]][2])) } -geno_to_csvr <- function(genotypes, trait_names, trait_vals, out, sex = NULL, +geno_to_csvr <- function(genotypes, trait_names, trait_vals, out, type, sex = NULL, mapping_scale = "Mb", verbose = FALSE){ # Assume a geno header is not longer than 40 lines header = readLines(genotypes, 40) @@ -148,8 +163,12 @@ for (i in 1:length(trait_names)) { trait_names[i] = paste("T_", this_trait, sep = "") } +# Get type of genotypes, since it needs to be checked before calc.genoprob +header = readLines(geno_file, 40) +type <- get_geno_code(header, 'type') + verbose_print('Generating cross object\n') -cross_object = geno_to_csvr(geno_file, trait_names, trait_vals, cross_file) +cross_object = geno_to_csvr(geno_file, trait_names, trait_vals, cross_file, type) # Calculate genotype probabilities if (!is.null(opt$interval)) { @@ -160,16 +179,40 @@ if (!is.null(opt$interval)) { cross_object <- calc.genoprob(cross_object) } +# If 4way, adjust X chromosome genotype probabilities +if (type == "4-way") { + verbose_print('Adjusting genotype probabilities for 4way cross') + cross_object <- adjustXprobs(cross_object) +} + # Pull covariates out of cross object, if they exist -covars = vector(mode = "list", length = length(trait_names) - 1) +covars <- c() # Holds the covariates which should be passed to R/qtl if (!is.null(opt$addcovar)) { - #If perm strata are being used, it'll be included as the final column in the phenotype file + # If perm strata are being used, it'll be included as the final column in the phenotype file if (!is.null(opt$pstrata)) { - covar_names = trait_names[3:length(trait_names) - 1] + covar_names = trait_names[2:(length(trait_names)-1)] } else { covar_names = trait_names[2:length(trait_names)] } covars <- pull.pheno(cross_object, covar_names) + # Read in the covar description file + covarDescr <- read.table(opt$covarstruct, sep="\t", header=FALSE) + for(x in 1:nrow(covarDescr)){ + cat(covarDescr[x, 1]) + name <- paste0("T_", covarDescr[x, 1]) # The covar description file doesn't have T_ in trait names (the cross object does) + type <- covarDescr[x, 2] + if(type == "categorical"){ + if(length(table(covars[,name])) > 2){ # More then 2 levels create the model matrix for the factor + mdata <- data.frame(toExpand = as.factor(covars[, name])) + options(na.action='na.pass') + modelmatrix <- model.matrix(~ toExpand + 0, mdata)[,-1] + covars <- cbind(covars, modelmatrix) + }else{ # 2 levels? just bind the trait as covar + verbose_print('Binding covars to covars\n') + covars <- cbind(covars, covars[,name]) + } + } + } } # Pull permutation strata out of cross object, if it is being used |