aboutsummaryrefslogtreecommitdiff
path: root/gn3
diff options
context:
space:
mode:
authorMuriithi Frederick Muriuki2021-08-09 18:34:46 +0300
committerMuriithi Frederick Muriuki2021-08-09 18:34:46 +0300
commit72ab476e5825c8c2b0d5102d6f1227ace8f7fa68 (patch)
tree8ea62e82e56055e0faef773dad735aaa829476d5 /gn3
parent243d76bd5cdb989ee7d3311e44aafb7e8f7da712 (diff)
downloadgenenetwork3-72ab476e5825c8c2b0d5102d6f1227ace8f7fa68.tar.gz
Build up the heatmap data
Issue: https://github.com/genenetwork/gn-gemtext-threads/blob/main/topics/gn1-migration-to-gn2/clustering.gmi * Add code to compute and organise the data that will be used to draw the final heatmap. This varies significantly in how it works from the original, but it still tries to retain the general flow of data.
Diffstat (limited to 'gn3')
-rw-r--r--gn3/computations/heatmap.py173
1 files changed, 173 insertions, 0 deletions
diff --git a/gn3/computations/heatmap.py b/gn3/computations/heatmap.py
new file mode 100644
index 0000000..98ea26f
--- /dev/null
+++ b/gn3/computations/heatmap.py
@@ -0,0 +1,173 @@
+"""
+This module will contain functions to be used in computation of the data used to
+generate various kinds of heatmaps.
+"""
+
+from gn3.computations.slink import slink
+from gn3.computations.correlations2 import compute_correlation
+
+def export_trait_data(
+ trait_data: dict, strainlist: Sequence[str], dtype: str="val",
+ var_exists: bool=False, n_exists: bool=False):
+ """
+ Export data according to `strainlist`. Mostly used in calculating
+ correlations.
+
+ DESCRIPTION:
+ Migrated from
+ https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L166-L211
+
+ PARAMETERS
+ trait: (dict)
+ The dictionary of key-value pairs representing a trait
+ strainlist: (list)
+ A list of strain names
+ type: (str)
+ ... verify what this is ...
+ var_exists: (bool)
+ A flag indicating existence of variance
+ n_exists: (bool)
+ A flag indicating existence of ndata
+ """
+ def __export_all_types(tdata, strain):
+ sample_data = []
+ if tdata[strain]["val"]:
+ sample_data.append(tdata[strain]["val"])
+ if var_exists:
+ if tdata[strain].var:
+ sample_data.append(tdata[strain]["var"])
+ else:
+ sample_data.append(None)
+ if n_exists:
+ if tdata[strain]["ndata"]:
+ sample_data.append(tdata[strain]["ndata"])
+ else:
+ sample_data.append(None)
+ else:
+ if var_exists and n_exists:
+ sample_data += [None, None, None]
+ elif var_exists or n_exists:
+ sample_data += [None, None]
+ else:
+ sample_data.append(None)
+
+ return tuple(sample_data)
+
+ def __exporter(accumulator, strain):
+ if tdata.has_key(strain):
+ if dtype == "val":
+ return accumulator + (tdata[strain]["val"], )
+ if dtype == "var":
+ return accumulator + (tdata[strain]["var"], )
+ if dtype == "N":
+ return tdata[strain]["ndata"]
+ if dtype == "all":
+ return accumulator + __export_all_types(
+ accumulator, tdata, strain)
+ else:
+ raise KeyError("Type `%s` is incorrect" % dtype)
+ else:
+ if var_exists and n_exists:
+ return accumulator + (None, None, None)
+ if var_exists or n_exists:
+ return accumulator + (None, None)
+ return accumulator + (None,)
+
+ return reduce(__exporter(strain), strainlist, tuple())
+
+def trait_display_name(trait: Dict):
+ """
+ Given a trait, return a name to use to display the trait on a heatmap.
+
+ DESCRIPTION
+ Migrated from
+ https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L141-L157
+ """
+ if trait.get("db", None) and trait.get("trait_name", None):
+ if trait["db"]["dataset_type"] == "Temp":
+ desc = trait["description"]
+ if desc.find("PCA") >= 0:
+ return "%s::%s" % (
+ trait["db"]["displayname"],
+ desc[desc.rindex(':')+1:].strip())
+ return "%s::%s" % (
+ trait["db"]["displayname"],
+ desc[:desc.index('entered')].strip())
+ else:
+ prefix = "%s::%s" % (
+ trait["db"]["dataset_name"], trait["trait_name"])
+ if trait["cellid"]:
+ return "%s::%s" % (prefix, trait["cellid"])
+ return prefix
+ return trait["description"]
+
+def cluster_traits(traits_data_list: Sequence[Dict]):
+ """
+ Clusters the trait values.
+
+ DESCRIPTION
+ Attempts to replicate the clustering of the traits, as done at
+ https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/heatmap/Heatmap.py#L138-L162
+ """
+ def __compute_corr(tdata_i, tdata_j):
+ if tdata_j[0] < tdata_i[0]:
+ corr, nOverlap = compute_correlation(tdata_i, tdata_j)
+ if (1 - corr) < 0:
+ return 0.0
+ return 1 - corr
+ return 0.0
+
+ def __cluster(tdata_i):
+ res2 = tuple(
+ __compute_corr(tdata_i, tdata_j) for tdata_j in enumerate(traits))
+
+ return tuple(__cluster(tdata_i) for tdata_i in enumerate(traits_data_list))
+
+def heatmap_data(
+ fd, search_result, conn: Any, colorScheme=None, userPrivilege=None,
+ userName=None):
+ """
+ heatmap function
+
+ DESCRIPTION
+ This function is an attempt to reproduce the initialisation at
+ https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/heatmap/Heatmap.py#L46-L64
+ and also the clustering and slink computations at
+ https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/heatmap/Heatmap.py#L138-L165
+ with the help of the `gn3.computations.heatmap.cluster_traits` function.
+
+ It does not try to actually draw the heatmap image.
+
+ PARAMETERS:
+ TODO: Elaborate on the parameters here...
+ """
+ cluster_checked = fd.formdata.getvalue("clusterCheck", "")
+ strainlist = [strain for strain in fd.strainlist if strain not in fd.parlist]
+ genotype = fd.genotype
+
+ def __retrieve_traitlist_and_datalist(threshold, fullname):
+ trait = retrieve_trait_info(threshold, fullname, conn)
+ return (trait, export_trait_data(retrieve_trait_data(trait), strainlist))
+
+ traits_details = [
+ __retrieve_traitlist_and_datalist(threshold, fullname)
+ for fullname in search_result]
+ traits_list = map(lambda x: x[0], traits_details)
+ traits_data_list = map(lambda x: x[1], traits_details)
+
+ return {
+ "target_description_checked": fd.formdata.getvalue(
+ "targetDescriptionCheck", ""),
+ "cluster_checked": cluster_checked,
+ "slink_data": (
+ slink(cluster_traits(traits_list, strainlist))
+ if cluster_checked else False)
+ "sessionfile": fd.formdata.getvalue("session"),
+ "genotype": genotype,
+ "nLoci": sum(map(lambda x: len(x), genotype))
+ "strainlist": strainlist,
+ "ppolar": fd.ppolar,
+ "mpolar":fd.mpolar,
+ "traits_list": traits_list
+ "traits_data_list": traits_data_list
+ }