diff options
author | Frederick Muriuki Muriithi | 2021-09-16 13:06:04 +0300 |
---|---|---|
committer | Frederick Muriuki Muriithi | 2021-09-16 13:06:04 +0300 |
commit | 056171a0a2f127e90ab803b74635495fb0c079a2 (patch) | |
tree | b14c46a89f26bc695427c1eef561757fb9d9b4dc /gn3 | |
parent | 2cc9f382e199dbdbaab98c7e06deabd72e244adb (diff) | |
download | genenetwork3-056171a0a2f127e90ab803b74635495fb0c079a2.tar.gz |
Intergrate the heatmap generation with the API
Issue:
https://github.com/genenetwork/gn-gemtext-threads/blob/main/topics/gn1-migration-to-gn2/clustering.gmi
* Intergrate the heatmap generation code on the /api/heatmaps/clustered
endpoint.
The endpoint should take a json query of the form:
{"traits_names": [ ... ] }
where the "traits_name" value is a list of the full names of traits.
A sample query to the endpoint could be something like the following:
curl -i -X POST "http://localhost:8080/api/heatmaps/clustered" \
-H "Accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"traits_names": [
"UCLA_BXDBXH_CARTILAGE_V2::ILM103710672",
"UCLA_BXDBXH_CARTILAGE_V2::ILM2260338",
"UCLA_BXDBXH_CARTILAGE_V2::ILM3140576",
"UCLA_BXDBXH_CARTILAGE_V2::ILM5670577",
"UCLA_BXDBXH_CARTILAGE_V2::ILM2070121",
"UCLA_BXDBXH_CARTILAGE_V2::ILM103990541",
"UCLA_BXDBXH_CARTILAGE_V2::ILM1190722",
"UCLA_BXDBXH_CARTILAGE_V2::ILM6590722",
"UCLA_BXDBXH_CARTILAGE_V2::ILM4200064",
"UCLA_BXDBXH_CARTILAGE_V2::ILM3140463"
]
}'
which should respond with a json response containing the raw binary string
for the png format and possibly another for the svg format.
Diffstat (limited to 'gn3')
-rw-r--r-- | gn3/api/heatmaps.py | 28 | ||||
-rw-r--r-- | gn3/app.py | 2 |
2 files changed, 30 insertions, 0 deletions
diff --git a/gn3/api/heatmaps.py b/gn3/api/heatmaps.py new file mode 100644 index 0000000..cac9c71 --- /dev/null +++ b/gn3/api/heatmaps.py @@ -0,0 +1,28 @@ +from flask import jsonify +from flask import request +from flask import Blueprint +from gn3.heatmaps import build_heatmap +from gn3.db_utils import database_connector + +heatmaps = Blueprint("heatmaps", __name__) + +@heatmaps.route("/clustered", methods=("POST",)) +def clustered_heatmaps(): + heatmap_request = request.get_json() + traits_names = heatmap_request.get("traits_names", tuple()) + if len(traits_names) < 1: + return jsonify({ + "message": "You need to provide at least one trait name." + }), 400 + conn, _cursor = database_connector() + _heatmap_file, heatmap_fig = build_heatmap(traits_names, conn) + + # stream the heatmap data somehow here. + # Can plotly actually stream the figure data in a way that can be used on + # remote end to display the image without necessarily being html? + return jsonify( + { + "query": heatmap_request, + "output_png": heatmap_fig.to_image(format="png"), + "output_svg": heatmap_fig.to_image(format="svg") + }), 200 @@ -7,6 +7,7 @@ from flask import Flask from gn3.api.gemma import gemma from gn3.api.rqtl import rqtl from gn3.api.general import general +from gn3.api.heatmaps import heatmaps from gn3.api.correlation import correlation from gn3.api.data_entry import data_entry @@ -30,6 +31,7 @@ def create_app(config: Union[Dict, str, None] = None) -> Flask: app.register_blueprint(general, url_prefix="/api/") app.register_blueprint(gemma, url_prefix="/api/gemma") app.register_blueprint(rqtl, url_prefix="/api/rqtl") + app.register_blueprint(heatmaps, url_prefix="/api/heatmaps") app.register_blueprint(correlation, url_prefix="/api/correlation") app.register_blueprint(data_entry, url_prefix="/api/dataentry") return app |